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Abstract— Aimed at achieving ultra-high precision control
performance for high-end applications of robots equipped with
harmonic drives, an adaptive joint torque controller developed
previously is extended to all the joints of a seven degrees of
freedom (DOF) robot manipulator using four different types of
harmonic drives. The developed adaptive joint torque controller
uses additional sensing including the joint and motor positions
and the joint torque, and adaptively compensates the large
friction associated with harmonic drives, while incorporating
the dynamics of flexspline. With guaranteed L2/L∞ stability
and asymptotic stability, the adaptive joint torque controller
allows any motion controller to be employed. Experimental
results using the developed adaptive joint torque controller
incorporating a motion controller based on the virtual decompo-
sition control demonstrate precision trajectory tracking control
of a 7-DOF robot at both moderate and ultra-low speeds. The
precision control with encoder-resolution accuracy at an ultra-
low joint speed of 0.001 (rad/s) characterizes the effectiveness
of the friction compensation.

I. INTRODUCTION

Harmonic drives are interesting for robotic applications
due to their attractive properties such as high reduction ratio,
compact size, lightweight and coaxial assembly. A typical
harmonic drive includes a wave generator, a circular spline,
and a flexspline placed in between. Being connected to
the circular spline and the output shaft, the flexspline is
a deformable device. This fact results in several inherent
negative aspects particularly associated with the dynamics of
harmonic drives, such as friction, dynamics of the flexspline,
nonlinearity, and hysteresis. These negative factors dramati-
cally challenge the control systems aimed at achieving high
precision trajectory control [1]-[4].

In contrast to the input-output based linear control ap-
proaches that linearize the dynamics of harmonic drives
around certain operational conditions [5], [6], the model-
based dynamic control of harmonic drives has a potential of
achieving precise trajectory control covering a wide range
of operational conditions by exploiting the natural nonlinear
dynamics of harmonic drives. Through experimental exami-
nations of four different types of harmonic drives from HD
Systems Inc., the large friction and the dynamics of the
flexspline are identified as two main dynamics issues to be
addressed in the control design.

To make control implementation manageable, the dynam-
ics of the flexspline is approximately modeled as a pure
torsional spring plus damping effect. However, this modeling
approximation may complicate the parameter identification
procedure and may even result in a big bias in parameter
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estimation. Therefore, adaptive control is used to auto-
matically handle the parameter uncertainties for structured
dynamics. As will be shown below, structured dynamics
incorporating parameter uncertainty can be mathematically
handled to deliver the L2 and L∞ stability and furthermore
the asymptotic stability of the joint torque control.

Once the joint torque control interface performs well, most
standard robot motion control algorithms that are based on
joint torque control can be directly applied. In this paper, pre-
cision motion control of a robot manipulator equipped with
seven harmonic drives of four different types is addressed,
see Fig. 1. Joint torque control is enabled by using three
measurements, namely the joint and motor positions and the
joint torque, and their practically available time derivatives.
The asymptotic stability of the joint torque control allows the
virtual decomposition control [7] to be employed to realize
precision motion control of robot manipulators equipped with
harmonic drives at both moderate and ultra-low speeds.

This paper is organized as follows. In Section II, the
dynamic model of harmonic drives is presented by taking
into account the friction and the flexspline dynamics. In
Section III, an adaptive joint controller originally developed
in [8] is extended to all the joints of a robot to ensure joint
torque tracking control. Based this adaptive joint torque con-
troller, the virtual decomposition control [7], [9] is applied
in Section IV. In Section V, experimental results on precision
motion control of a 7-joint robot manipulator equipped with
harmonic drives are demonstrated. The precision control
result at an ultra-low speed confirms the effectiveness of the
friction compensation.
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II. HARMONIC DRIVE DYNAMICS

A typical harmonic drive consists of a wave-generator
that is connected to the motor, a circular spline that is
connected to the base, and a flexspline that is placed in
between and connected to the joint [1]. The flexspline is a
deformable device and is modeled as a pure torsional spring
with damping effect.

Fig. 2 illustrates a joint assembly with harmonic drive
and controller. For each harmonic drive, four pairs of strain
gauges are mounted on the flexspline by using the approach
in [10], [11]. The outputs of the four pairs of strain gauges
create the joint torque measurement. Meanwhile, an encoder
is mounted at the motor side and a resolver is mounted at the
joint side. All three (two positions and one torque) measure-
ments are fed to the adaptive joint torque controller to make
sure that the measured torque tracks the desired or required
torque computed from a motion controller asymptotically.

The dynamic equation of a harmonic drive assembled with
a DC motor can be written as

kf [d(φ̇− q̇) + (φ− q)] = τ (1)

I∗φ̈+ fφ(φ̇, τ) + kf [d(φ̇− q̇) + (φ− q)] = u+ ud (2)

where τ denotes the physical torque passing through the
flexspline; kf > 0 is the stiffness of the flexspline; φ is the
angle of the motor rotor divided by the gear ratio; q is the
joint angle; dkf > 0 represents the damping coefficient of
the flexspline; I∗ denotes the rotor inertia of the DC motor
multiplied by the gear ratio squared; fφ(φ̇, τ) denotes the
frictional torque that is assumed to be a function of the
motor rotor velocity and the payload; u is the motor driving
torque multiplied by the gear ratio; and ud ∈ L∞ denotes
the disturbance torque caused by external disturbances.

Remark 2.1: Introducing damping effect into the flexspline
dynamics can be found in [12] and recently in [13]. In case

of d = 0, (1) and (2) are equivalent to the dynamics of a
flexible joint [9], [14], [15].

The model of the frictional torque fφ(φ̇, τ) takes the
Coulomb and viscous effects into account, and is expressed
as

fφ(φ̇, τ) =




g(τ)kc + c+ kvpφ̇ φ̇ > 0
[−g(τ)kc, g(τ)kc] + c φ̇ = 0
−g(τ)kc + c+ kvnφ̇ φ̇ < 0

def
= Yφ(φ̇, τ)θ (3)

where kc > 0 denotes the magnitude of the Coulomb torque
at zero payload and c > 0 denotes a DC offset. Introducing
the DC offset c in the friction model allows the Coulomb
friction to have different values at positive and negative
velocities; kvp > 0 and kvn > 0 denote the viscous friction
coefficients at positive and negative velocities, respectively;

g(t)
def
= 1 + g1 | τ | +g2 | τ |2 (4)

with g1 > 0 and g2 > 0 is a function used to emulate the
load dependent Coulomb friction effect1; and

θ =
[
kc c kvp kvn

]T ∈ R4

represents the uncertain parameter vector, and Yφ(φ̇, τ) ∈
R1×4 represents the corresponding regressor matrix.

III. ADAPTIVE JOINT TORQUE CONTROL

The adaptive joint controller originally developed in [8]
is extended to all the joints of a seven-DOF robot. For each
joint, the control algorithms are summarized as

F (s)
def
=

1
ds+ 1

(5)

ζ
def
=

1
kf

(6)

φd = q + F (s)ζ̂τr (7)

φ̇r = φ̇d + λφ(φd − φ) + λτ (τr − τ) (8)

u = I∗φ̈r + f̂φ(φ̇r, τ) + kφ(φ̇r − φ̇)
+τr + kτ (τr − τ) (9)

to realize joint torque control, where τr ∈ L∞ represents
the required torque coming from the output of a motion
controller with τ̇r ∈ L∞; ζ̂ denotes the estimate of ζ defined
by (6); λφ > 0, λτ > 0, kφ > 0, and kτ > 0 are control
gains; and

f̂φ(φ̇r, τ) = Yφ(φ̇r, τ)θ̂. (10)

The parameter estimates θ̂ and ζ̂ are updated in real-time
by using the P function defined in [9] (page 311) as

θ̂i = P(si(t), ρi, θ
−
i , θ

+
i ) (11)

ζ̂ = P(sζ(t), ρζ , ζ
−, ζ+) (12)

1Fig. 1 in [8] shows a payload dependent Coulomb friction profile for
harmonic drive CSF-45-120-2A-GR from HD Systems Inc. It shows that
the Coulomb friction at a payload of 1000 (Nm) is almost about 7 ∼ 8
times higher than that without payload.
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where θ̂i denotes the ith element of θ̂, i = 1, 2, 3, 4; ρi > 0
is an update gain; θ−i and θ+i denote the lower and upper
bounds of the ith element of θ; and si(t) denotes the ith
element of s(t) ∈ R4 defined by

s(t) = (φ̇r − φ̇)Yφ(φ̇r, τ)T . (13)

Accordingly, ρζ > 0 is an update gain; ζ− and ζ+ denote
the lower and upper bounds of ζ; and sζ(t) is governed by

sζ(t) = −(1 + kτ )τr
[
(φ̇d − φ̇) + λφ(φd − φ)

]
. (14)

Remark 3.1: In view of (8) and (9), φ̈r in u is a linear
function of τ̇ , and so is u. On the other hand, φ̈ is a linear
function of u in view of (2), and τ̇ is a linear function
of φ̈ in view of (1). Thus, an algebraic loop involving τ̇ ,
φ̈r, u, and φ̈ is formed in view of (1), (2), (8), and (9).
A necessary and sufficient condition to ensure the stability
of this algebraic loop in discrete-time implementation is
kfdλτ < 1, which imposes a limitation on λτ in (8). Note
that the algebraic loop is formed by including a damping
coefficient d in the dynamic model (1) and (2). In other
words, if the damping effect is negligible as in the cases
of [9], [14], [15], no algebraic loop exists. By using a close
estimation of d = 0.001 (s), a stiffness kf = 2.9 × 105

(Nm/rad), and a control parameter λτ = 0.0002 (1/Nms), it
yields kfdλτ = 0.058 < 1. The necessary and sufficient
condition to ensure the stability of the algebraic loop is
satisfied.

The theoretical results are summarized in a theorem.
Theorem 1: Consider a harmonic drive described by (1)-(4)
combined with the adaptive joint torque control described by
(5)-(14). It follows that

i) ∫ T

0

(φ̇r − φ̇)2dt ≤ 1
k2

φ

∫ T

0

u2
ddt+

2
kφ
V1(0)(15)

∫ T

0

(φd − φ)2dt ≤ 1
2kφ(1 + kτ )λφkf

∫ T

0

u2
ddt

+
1

(1 + kτ )λφkf
V1(0) (16)

∫ T

0

(φ̇d − φ̇)2dt ≤ 1
2kφ(1 + kτ )dkf

∫ T

0

u2
ddt

+
1

(1 + kτ )dkf
V1(0) (17)

∫ T

0

(τr − τ)2dt ≤ 1
2kφ(1 + kτ )λτ

∫ T

0

u2
ddt

+
1

(1 + kτ )λτ
V1(0) (18)

with V1(0) ≥ 0;
ii)

φ̇r − φ̇ ∈ L2 (19)

φ̇d − φ̇ ∈ L2 (20)

φd − φ ∈ L2 (21)

τr − τ ∈ L2 (22)

if ud ∈ L2;
iii)

φ̇r − φ̇ ∈ L∞ (23)

φ̇d − φ̇ ∈ L∞ (24)

φd − φ ∈ L∞ (25)

τr − τ ∈ L∞ (26)

if τr ∈ L∞; and
iv)

φ̇r − φ̇ → 0 (27)

φ̇d − φ̇ → 0 (28)

φd − φ → 0 (29)

τr − τ → 0 (30)

if ud ∈ L2, τr ∈ L∞, τ̇r ∈ L∞, and q̇ ∈ L∞.
The proof can be found in [8].
Remark 3.2: It can be verified that all stability results

in Theorem 1 are still valid for d = 0 in (1) and (2).
Therefore, the adaptive joint torque controller is compatible
with the dynamic model in which only the torsional stiffness
is considered as in [9], [14], [15]. Importantly, in case of
d = 0, the algebraic loop described in Remark 3.1 is non-
existent.

IV. ROBOT MOTION CONTROL

As far as joint position control of a seven-joint robot
manipulator as illustrated in Fig. 1 is concerned, the seven
joints are numbered sequentially from the base toward the
tip, with joint j connecting link j with link j − 1. Seven
frames, {Lj}, j ∈ {1, 7}, are formed in a way that frame
{Lj} is fixed to link j with its z axis coincident with the
jth joint axis.

Given τj → τjr, j ∈ {1, 7}, the motion control objective
is to find τjr such that qj → qjd, j ∈ {1, 7}.

Given reference signals qjd, q̇jd, and q̈jd, the virtual
decomposition control algorithm in [9] is summarized in this
section.

First, the required joint velocities and accelerations are
obtained as

q̇jr = q̇jd + λj (qjd − qj) (31)

q̈jr = q̈jd + λj (q̇jd − q̇j) (32)

where λj > 0 is a constant.
Let LjX ∈ �6 be the linear/angular velocities of frame

{Lj}, and expressed in frame {Lj}, and let LjF ∈ �6 be
the force/moment measured and expressed in frame {Lj}.
Moreover, let LjULj+1 ∈ �6×6 be a force/moment transfor-
mation matrix that transfers a force/moment vector measured
and expressed in frame {Lj+1} to the same force/moment
measured and expressed in frame {Lj}.

Thus, the linear/angular velocities of all seven links are
computed as

LjX = Zq̇j + Lj−1UT
Lj

Lj−1X (33)

for j = 1, 2, · · · , 7 with Z = [0, 0, 0, 0, 0, 1]T and L0X = 0.
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Accordingly, the required linear/angular velocities of all
seven links are computed as

LjXr = Zq̇jr + Lj−1UT
Lj

Lj−1Xr (34)

for j = 1, 2, · · · , 7 with Z = [0, 0, 0, 0, 0, 1]T and L0Xr = 0.
Differentiating (34) with respect to time yields d

dt

(
LjXr

)
for

j = 1, 2, · · · , 7. Define

YLj
θLj

= MLj

d

dt

(
LjXr

)
+ CLj

(Ljω)LjXr +GLj
(35)

for j ∈ {1, 7}, where MLj
∈ �6×6, CLj

(Ljω) ∈ �6×6, and
GLj

∈ �6 are two matrices and one vector representing the
dynamic properties of link j with their detailed expressions
given in [7]. In (35), YLj

∈ �6×13 is a regressor matrix and
θLj

∈ �13 is the dynamic parameter vector2 of link j.
The required net forces/moments of all links are computed

as
LjF r = YLj

θ̂Lj
(36)

for j ∈ {1, 7}, where the parameter estimate vector θ̂Lj
∈

�13 is used in lieu of the true parameter vector θLj
∈ �13.

Define

ψLj
= Y T

Lj

(
LjXr − LjX

)
. (37)

The γth element of θ̂Lj
∈ �13 is updated by

θ̂Ljγ = P
(
ψLjγ , ρLjγ , θ

−
Ljγ , θ

+
Ljγ

)
(38)

for γ ∈ {1, 13}, where ψLjγ denotes the γth element of ψLj
,

ρLjγ > 0 is an update gain, θ−Ljγ and θ+Ljγ denote the lower
and upper bounds of the γth element of θLj

∈ �13.
After obtaining LjF r ∈ �6, j ∈ {1, 7}, the required

forces/moments at frames {Lj}, j ∈ {1, 7}, are computed
as

LjFr = LjF r + LjULj+1
Lj+1Fr (39)

for j = 7, 6, · · · , 1 with L8Fr = 0.
Finally, the required joint torques are computed as

τjr = ZT LjFr + kpj(q̇jr − q̇j) + P (
q̇jr − q̇j , kIj , t

−
sj , t

+
sj

)
(40)

with kpj > 0, kIj > 0, t−sj < 0, and t+sj > 0, for j ∈ {1, 7}.
Theorem 2: Consider a seven-joint serial-link robot manipu-
lator subjected to the virtual decomposition control described
by (31)-(40), under bounded reference signals qjd, q̇jd, q̈jd,
j ∈ {1, 7}, and asymptotic joint torque tracking control
τj → τjr, j ∈ {1, 7}. It follows that

qid − qi → 0 (41)

q̇id − q̇i → 0. (42)

The proof can be found in [9].

2There exist three dependent parameters in θLj
, in order to express (35)

in a linear-in-parameter form.

V. EXPERIMENTS

The adaptive joint torque controller incorporating the
virtual decomposition control is experimentally verified on
a seven-joint redundant robot manipulator, see Fig. 1. Four
different types of harmonic drives as listed in Table I are
tested with respect to the proposed control approach. The
control gains associated with the adaptive joint torque con-
troller described by (5)-(14) and the virtual decomposition
base motion controller described by (31)-(40) are listed in
Table II.

The QNX based real-time operating system with RT-LAB
from OPL-RT is adopted as a main platform for control
computation with a sampling rate of 1000 Hz.

In view of (5)-(9), the variables required for implementing
the control torque u include the joint position q, velocity q̇,
and acceleration q̈; the motor position φ and velocity φ̇; the
joint torque τ and its derivative τ̇ ; and the required torque τr
and its derivative τ̇r. In the implementation, only q, φ, and
τ are taken directly from the measurements. The remaining
variables q̇, q̈, φ̇, and τ̇ are generated numerically by using
s ⇒ s 200

s+200 ⇒ 200(z−1)
z−0.8 , where a low-pass filter with a

cut-off frequency of 200 (rad/s) is added and s = z−1
T

with T = 0.001 (s) is applied. For instance, the resolver
in Joint 7 gives a 2π/216 ≈ 9.6 × 10−5 (rad) resolution
for q, which is equivalent to a 9.6 × 10−5 × 2002 ≈ 3.8
(rad/s2) resolution for q̈. In view of I∗ = 1.0 (Nms2),
it yields a 3.8 (Nm) torque resolution for the control. The
maximum continuous torque for Joint 7 is 0.63×160 = 100.8
(Nm). Thus, the numerical differentiation induced torque
ripple takes less than 4% of the maximum continuous control
torque. On the other hand, use of the derivative of the
measured torque introduces I∗λτ×200 ≈ 0.04 (λτ = 0.0002
is used) times torque measurement noise into the control
torque for Joint 7. The same analysis applies to the other
joints. In summary, the use of high order derivatives of
the measurement variables through numerical differentiation
only introduces an acceptable level of noise to the control
torque.

In [8], the joint torque controller incorporating a simple
motion controller was experimentally tested with respect to
a particular harmonic drive located at Joint 7. The feasibility
of the controller was witnessed by extensive experimental
results for both joint torque control and joint position control
presented in both time and frequency domains. Quantitative
experimental analysis with respect to both friction compen-
sation and flexspline dynamics based control was given.

In this paper, the adaptive joint torque controller is ex-
tended to all seven joints of a robot manipulator equipped
with harmonic drives, and is being used together with the
virtual decomposition control for achieving precision motion
control. Experimental results are presented with respect to
both individual joint motion and coordinated joint motion.

The experimental results for individual joint motion con-
ducted on Joints 3, 4, 5, and 7, respectively, under different
sinusoidal inputs are summarized in Table III.

Coordinated joint motion at both moderate and ultra-low
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TABLE I

HARMONIC DRIVE AND MOTOR PARAMETERS.

Motor Harmonic drive Gear ratio Stiffness (Nm/rad)

Joints 1-3 RBEH-3002 CSF-45-120-2A-GR 120 2.9 × 105

Joint 4 RBEH-2103 CSF-32-120-2A-GR 120 1.1 × 105

Joints 5-6 RBEH-1503 CSF-25-160-2A-GR 160 5.0 × 104

Joint 7 RBEH-1503 CSF-20-160-2A-GR 160 2.6 × 104

TABLE II

CONTROL PARAMETERS FOR JOINT TORQUE CONTROL.

Joints 1-3 Joint 4 Joints 5-6 Joint 7
d (s) 0.001 0.001 0.001 0.001

λφ (1/s) 50 45 50 50
λτ (1/Nms) 0.0002 0.0002 0.0002 0.0002
I∗ (Nms2) 28∗ 5 2.1 1.0
kφ (Nms) 500 200 100 25

kτ 0 0.8 0.75 1.0

ρ1 (Nm) 2000 2000 1000 400
θ−1 (Nm) -35 -5 -4 -4
θ+
1 (Nm) 35 5 4 7

ρ2 (Nm) 10000 200 100 100
θ−2 (Nm) -200 -50 -20 -10
θ+
2 (Nm) 200 50 20 10

ρ3 (Nms2) 50000 30000 50000 40000
θ−3 (Nms) 0 0 0 0
θ+
3 (Nms) 700 90 90 80

ρ4 (Nms2) 50000 30000 50000 40000
θ−4 (Nms) 0 0 0 0
θ+
4 (Nms) 700 90 90 80

ρζ (1/(Nm)2) 1.0 × 10−6 1.0 × 10−5 1.0 × 10−4 1.0 × 10−4

ζ− (1/Nm) 2.5 × 10−6 7 × 10−6 1.5 × 10−5 3.0 × 10−5

ζ+ (1/Nm) 3.5 × 10−6 1.0 × 10−5 2.5 × 10−5 4.0 × 10−5

λ (1/s) 25 45 30 30
kp (Nms) 2000 500 100 80
kI (Nm) 25000 4000 2000 2000
t−s (Nm) -400 -200 -100 -50
t+s (Nm) 400 200 100 50

∗ The value used in the controller may be different from the physical value.

TABLE III

POSITION CONTROL PERFORMANCES FOR INDIVIDUAL JOINTS.

Frequency Amplitude Maximum joint
(Hz) (rad) position error

(rad)

Joint 3 0.5 0.1 0.0004
2.0 0.02 0.0021

Joint 4 0.5 0.1 0.0005
2.0 0.02 0.0020

Joint 5 0.5 0.1 0.0006
2.0 0.02 0.0020

Joint 7 0.5 0.15 0.0008
5.0 0.015 0.0033

speeds are also tested. All seven joints of the robot move
simultaneously with an increment of 10 deg. for each joint.
The control performance at a moderate speed witnesses the
controller capability of handling the dynamic interactions not
only among the multiple joints but also between the joint
torque control and the motion control. The control perfor-

mance at an ultra-low speed particularly demonstrates the
effectiveness of the joint friction compensation. Figs. 3 and 4
demonstrate the position tracking control results of Joint 3
at both moderate and ultra-low speeds3. The maximum joint
trajectory tracking errors are 4.88 × 10−4 (rad) = 1.68 arc-
min4 at a moderate speed of 0.4 (rad/s), and 4.48×10−5 (rad)
= 0.154 arc-min5 at an ultra-low speed of 0.001 (rad/s). In
Fig. 4, no stick-slip behavior is observed, which demonstrates
the feasibility of the adaptive joint friction compensation.

Remark 4.1: Like most direct adaptive control approaches,
it is unnecessary to have parameter estimates converged to

3Results for other joints have a similar profile. They are not presented
here for saving space.

4This result is comparable to the result of individual joint movement of
Joint 3 at Row 1 of Table III, where the maximum joint position error is 4×
10−4 (rad) at a maximum speed of 0.314 (rad/s). The similarity of position
tracking errors between individual joint movement and coordinated robot
movement reveals the effectiveness of the virtual decomposition control
that handles robot linkage dynamics.

5This value reaches the scale of the encoder resolution of 2π/(4×1000×
120) = 1.3 × 10−5 (rad).
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Fig. 3. Joint 3 position tracking result for a coordinated all-joint movement
at a moderate speed of 0.4 (rad/s). The dashed line is the designed trajectory
and the solid line is the actual joint position.
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Fig. 4. Joint 3 position tracking result for a coordinated all-joint movement
at an ultra-low speed of 0.001 (rad/s). The dashed line is the designed
trajectory and the solid line is the actual joint position.

their true values before having states convergence. In fact, the
parameter estimates using the projection function P defined
in [9] are never convergent. The use of high parameter update
gains reduces the portion of the parameter uncertainties in
the (Lyapunov-like) system non-negative function and allows
each parameter estimate to change rapidly within its lower
and upper bounds, aimed at suppressing state errors.

Remark 4.2: With respect to four different types of com-
mercially available harmonic drives, experimental results are
reported in terms of the maximum trajectory tracking errors
in L∞. For a more precise comparison, other norms in the
sense of L1 or L2 might be required. Recently, a realistic
benchmark problem for robust robot control was developed
in [16].

VI. CONCLUSIONS

An adaptive joint torque controller that effectively com-
pensates the large friction associated with harmonic drives,
while incorporating the dynamics of the flexspline, is able
to achieve asymptotic joint torque control. This adaptive
joint torque controller has been extended to all the joints

of a robot manipulator equipped with four different types of
harmonic drives, and has been combined with a motion con-
troller, namely the virtual decomposition control, to achieve
precision motion control. Both individual joint motion and
coordinated joint motion have been tested. Similar results for
both motions at a moderate speed suggested the effectiveness
of the virtual decomposition control. On the other hand, the
effectiveness of the friction compensation was demonstrated
by the ultra-precision motion control with encoder-resolution
accuracy achieved at an ultra-low joint speed of 0.001 (rad/s).
No stick-slip behavior was observed. Finally, it has to be
pointed out that the precision control results reported in this
paper require the measurements of both the motor and joint
positions and the joint torque for each joint.
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