
Monitoring of a Class of Timed Discrete Events Systems

Adib Allahham, Hassane Alla

Abstract— This paper extends the notion of residuals for fault
detection, well known in the continuous system to the timed
discrete events systems. The aim is to design the fault indicators,
two problems are considered. Firstly, the dynamics of clocks
which monitor the system must be sensible to the behavior
change resulting from a fault. Secondly, we must specify the
inequality clocks constraints for which the system is normal as
long as they are satisfied. We introduce the notion of acceptable
system behavior modeled by stopwatch automata. This behavior
is supervised by two clocks for each interruptible task of
the system. The time sub-spaces in the stopwatch automaton
locations delimit exactly the range of acceptable behavior. They
are synthesized using an algorithm based on the reachability
analysis techniques of stopwatch automata. One of the main
results of designing this time space is the detection the system
faults as early as possible.

I. INTRODUCTION

Monitoring the complex systems plays an important role

for economic reasons and for security and reliability motives.

One of the used monitoring methods is the model-based

method. The monitoring task consists in determining the

occurrence of any faults (called fault detection) and to

identify its type or origin (called fault diagnosis). In this

paper, we consider the problem of fault detection in systems

that, for this purpose, can be modeled as timed discrete-event

system.

In the cadre of timed discrete-event system (TDES), the pos-

sible kinds of faults are the drastic faults, which dispossess

the system its ability to perform its task, and the partial

faults that result in change in timing characteristics of the

system’s resources. Another type of categorization of faults

arises from the manner in which faults are to disappear after

they occur [12]. Permanent faults which disappear due to a

repair of the fault and intermitting faults. The intermitting

faults can appear several times during the task execution of

the system and disappear without any external action on the

system. Apparition of these faults changes the dynamic of

system.

The design of analytical models to fault detection in continu-

ous system needs a central problem to be considered. One has

to design fault indicators, called residuals, which are sensitive

to faults. The residuals express the discrepancies between

actual data (measures) and the system model, which is

always modeled by both equality and inequality constraints.

Equality constraints model the dynamic behavior of system

and the inequality constraints express the operating range

where the system have to remain inside for normal operating.

Adib Allahham, Hassane Alla are with the GIPSA-Lab.,
Control systems Departement. adib.al-lahham@inpg.fr,
hassane.alla@inpg.fr

In this paper, we extend the notion of residuals applied in the

continuous system to the TDES for design its fault indicators.

To realize this aim, two problems must be considered. Firstly,

the dynamics of clocks which monitor the system must reflect

the behavior change resulting from a fault. Secondly, we

must specify the inequality constraints for which the system

is normal as long as they are satisfied.

We represent the system by a linear hybrid automaton that

combines a finite state automaton with dense time. In that

representation, the oriented arcs are annotated by switch-

ing conditions between the different states. Each location

corresponds to a given system state: differential and alge-

braic equations that represent the dynamic behavior together

with the acceptable state-subspace are indicated. The state-

subspace in each location delimits the range of the system’s

variables for normal behavior in this state.

All prior works on fault monitoring in TDES consider a fault

have occurred in a system if a faulty event occurs. [5], [7],

reaching a faulty state [9], [10] or more generally violating

system specification. The used mechanism for monitoring

the system specification is based on watchdogs which detect

a fault if the expected observation is produced early or

late with respect to certain time bounds [11], [8]. In these

methods, it is not possible to detect the occurrence of a

fault immediately when it occurs because the system must

wait the time bound expiration. It is desirable to detect the

fault occurrence as early as possible, without waiting for

the expiration of timed bounds. One of the main result of

delimiting exactly the acceptable behavior in each state, is

the detection of faults as early as possible, as we will see.

II. PROBLEM FORMULATION

We consider the fault detection in the complex systems

where their physical components can be subjected to un-

predictable faults during the execution of their tasks. These

faults can be either permanent or intermitting. Because of

intermitting faults, an intermediate state can appear between

a normal state and a faulty one. In this state, the system

can come back to the normal behavior (case of intermitting

fault) or it leaves toward a faulty state (Fig.1.a). In this

paper, we introduce the notion of acceptable behavior which

is composed of the normal and intermediate states, and

consider the faults that interrupt the task of a resource.

We call the system which is subjected to this type of

faults as interruptible system and its tasks as interruptible

task. We call also the intermitting faults which cause task’s

interruption as malfunction.

As the FDI (Fault Detection and Isolation [2]) in continuous

systems, the fault detection system must be capable to

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC10.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1003

Normal

behavior
fault

Intermediate

state

Acceptable

behavior Process

Fault Detection System

(Stopwatch automaton)

S
ig

n
a
ls

 o
f

th
e
 s

y
s
te

m
’s

b
u

il
t-

in
 s

e
n

so
rs

S
ig

n
a
ls

 o
f m

o
n

ito
rin

g

s
e
n

s
o

rs

Alarm

-a- -b-

Fig. 1. a- Considered system behavior b- Structure of proposed monitoring
system

follow the change of the system’s dynamic resulting from

the faults. More precisely: it is necessary to observe the

system trajectory between normal and intermediate states.

For that, we represent the system by a stopwatch automaton

[1] that combines a finite state automaton with a continuous

time model. In that representation, the dynamic behavior

is represented by the increase rate of the stopwatches in

each location. This rate can be switched between 1 and

0 to express the progression or suspension of the variable

represented by stopwatch. Figure 1.b shows the structure of

our detection system where the monitoring signals represent

the outputs of logic sensors. It is then possible to follow the

system behavior between the normal and intermediate states,

for all the system tasks.

As Figure 1 shows, the monitoring system sets on the alarm

when the monitored system leaves from an acceptable state to

a faulty one. In other words, when the algebraic inequalities

which characterize the acceptable behavior are violated.

Then, we must determine the time sub-space in each location

which characterizes this behavior. This leads to calculate

all the trajectories corresponding to the normal behavior,

and to the trajectories for which the system comes back

from the intermediate state to normal state. It is necessary

to notice that the presence of intermitting faults which

leads to the intermediate state, can violate the inequalities

constraints, since it prevents the system to execute its tasks

during its specified durations. This effect corresponds to

some trajectories in a stopwatch automaton SWA. Then,

it is necessary to delimit only the trajectories that satisfy

the property: ” all the tasks are executed during its defined

durations” and eliminate the others.

So, the problem of determining the time sub-state of this

automaton becomes a problem of synthesis of a SWA∗

which satisfy the property mentioned above (Fig.2). We

can synthesize these time sub-spaces using the reachability

analysis methods of Stopwatch automata, as we will see.

The rest of this paper is organized as follows: Section III

defines the stopwatch automaton and some of its technique of

time analysis. These techniques will be used to synthesize the

time-subspace corresponding to acceptable behavior in each

location. Section IV describes the behavior of an interruptible

task and our method to monitor its behavior. Section V

models this behavior by a stopwatch automaton. Section

VI presents the method of reachability synthesis of this

automaton for determining the inequalities delimiting the

acceptable behavior in each location of the system. We apply

this method in an illustrative example in Section VII. Finally,

Section VIII concludes the paper with a summary and future

works.

Synthesis

algorithm

Property

SWA
*SWA

Fig. 2. Reachability synthesis of SWA for monitoring purposes

III. STOPWATCH AUTOMATA

We basically define stopwatch automata as a class of linear

hybrid automaton where the time derivative of a clock in a

location can be either 0 or 1 [1].

Definition 1: A Stopwatch automaton is a 7-tuple

(L, l0, X,Σ, A, I,Dif) where

• L is a finite set of locations,

• l0 is the initial location,

• X is a finite set of positive real-valued stopwatches,

• Σ is a finite set of labels,

• A ⊂ L × C(X) × σ × 2X × L is a finite set of arcs.

a = (l, δ, t, R, l′) ∈ A is the arc between the locations l

and l′, with the guard δ, the label name t and the set of

stopwatches to reset R. C(X) is the set of constraints

over X .

• I ∈ C(X)L maps an invariant to each location,

• Dif ∈ ({0, 1}X)L maps an activity to each location,

Ẋ being the set of time derivatives of the stopwatches

w.r.t time.Ẋ = Dif(l)(x)x∈X . Given a location l and

a clock x, we will denote Dif(l)(x)x∈X = {0, 1}. 2

A. Techniques of Reachability Analysis For SWA

A state of the SWA is a pair (L,E) where L is a location

of SWA and E is its time state space which is a polyhedron.

As we will see, there are two types of evolutions from a

state (L,E), namely the continuous evolution by letting the

time progress and the discrete evolution by firing a transition.

Accordingly, we define two types of successors: those by

continuous evolution, which we call continuous-successors,

and those by discrete evolution, which we call discrete-

successors. The successor operators are basic ingredients

in forward reachability analysis. For backward reachability

analysis, we introduce subsequently the predecessor opera-

tors: continuous-predecessors and discrete-predecessors.

Forward Analysis: Consider an initial state (L0,Ea
0) where

Ea
0 is the time space at the entry of L0. The forward

reachability method consists in starting with this initial state

and computing iteratively theirs successors until the desired

state (Ln,En) is reached. For that, the automaton follows

two types of evolutions:

WeC10.4

1004

• remaining in the same location while the time progresses.

The reachable state following this evolution is calculated

by the continuous-successor Succt. For example, the state

(L0, υ
′), where υ′ = υ + t and υ ∈ Ea

0 , is the continuous-

successor of (L0, υ), denoted by Succt(L0, υ), if:

∃t ∈ R+s.t.∀t′ ≤ t, υ + t′ |= I(L0) : (L0, υ
′) =

Succt(L0, υ)
where υ′ ∈ E0 : the reachable space in L0.

• firing a transition a = (L0, g0,n, ti, R0,n, Ln) ∈ A. The

state (Ln, υ′) is the discrete-successor of the state (L0, υ)
where υ ∈ E0 and denotes as succd(L0, υ) if:

υ′ |= g0,n ∧ (υ′ = υ[R0,n]) ∧ (υ[R0,n] |= I(Ln)) :
(Ln, υ′) = succd(L0, υ)

where υ′ ∈ Ea
n : time space at the entery of En

Backward Analysis: Given the states (Ln, En) and

(Lm, Em). The Backward reachability starts with any state

(Ln, En), calculates iteratively its predecessors until the

desired state (Lm, Em) is reached. For this type of analysis,

the automaton follows the following evolutions:

• remaining in the same location while the time evolves. The

reachable state following this evolution is calculated by the

continuous-predecessor Pret. For example, the state (Ln, υ′)
is the continuous-predecessor of (Ln, υ) whereυ = υ′ + t,

and denoted by Pret(Ln, υ), if:

∃t ∈ R+s.t.∀t′ ≤ t, υ′ + t′ |= I(Ln) : (Ln, υ′) =
Pret(Ln, υ)

where υ′, υ ∈ En : the reachable space in Ln.

• firing a transition a = (Lm, gm,n, ti, Rm,n, Ln) ∈ A. The

state (Lm, υ′) is the discrete-predecessor of the state (Ln, υ)
where υ ∈ En and denotes as Pred(Ln, υ) if:

υ′ |= gm,n ∧ (υ = υ′[Rm,n]) ∧ (υ′[Rm,n] |= I(Ln)) :
(Lm, υ′) = Pred(Ln, υ′)

where υ′ ∈ Em : time space at the entery of Lm

IV. BEHAVIOR OF INTERRUPTIBLE TASKS

Suppose that S a complex system which is composed of

a set of tasks referred as Task. Taskint represent the set of

interruptible tasks in S where Taskint ⊂ Task.

Assume that Taski ∈ Taskint. It has a known execution

duration [αi, βi] which we call the normal duration of Taski.

It is given in the technical characteristics of the resources

which execute Taski or measured directly. Because of the

interruptions resulting from malfunctions and for productiv-

ity motives, the designer accepts a tolerated duration for the

execution of Taski. It is given by the interval [αi, γi) where

βi < γi. We call it: the acceptable duration of Taski.

Hypothsis 1: The execution speed of the task Taski is

supposed to be constant or it varies slightly around a mean

value. This speed variation is taken into account by the

interval [αi, βi]. This interval takes also into account the

predictable normal stops during the task execution. 2

This type of tasks represents the most services executed

by the resources in many systems such as manufacturing

systems (processing, transport, filling, .etc.) which represent

one of our interest domains. So, this hypothesis is realistic

and necessary in our modeling point of view.

We refer to the apparition and disappearing of a malfunction

or a permanent fault by its affect on the task execution,

then we refer it by Interruption and resuming of the task.

Considering the properties of the tasks mentioned above, we

distinguish the following behavior of an interruptible task

given in Figure 3. In this figure the arrows ↓ and ↑ represent

respectively the signal of logical sensor which detects the

interruption and resuming of Taski.

• Taski is executed without interruption, therefore the

execution duration belongs to the interval tf ∈ [αi, βi].
• Taski has been executed but with several interruptions.

For each interruption, the system resumes a little later

from the position at which it has been interrupted. In

this case: tf ∈ [αi, γi).

To monitor the task Taski, we shall use the following timers:

• xi measures the time since the monitored task was

released for execution. In acceptable behavior, xi ∈
[αi, γi);

• yi accumulates the time of partial execution of Taski.

When Taski finishes, yi will belong to [αi, βi].

The timers xi and yi are reset to zero when the task begins.

xi will be used to check that Taski has completed before

the expiration of its tolerated deadline. yi is used to monitor

the achieved amount of Taski. Taski is correctly executed

if when the task end occurs, yi ∈ [αi, βi] and xi ∈ [αi, γi).

Time

execution
Time

tf

Task end

Task end

tf

execution execution

Fig. 3. Behavior of an interruptible task

V. MODELING OF AN INTERRUPTIBLE TASK

is

iriV

1

1

i

i

x

y

x

x

3l1l 2l
Normal execution Interruption

i i

i i

x

y

J

E

d

d

Initial

0

0

i

i

x

y

x

x

1

0

i

i

x

y

x

x

i i

i i

x

y

J

E

d

d

Alarm

Faulty state

i i iyD Ed d

i ix J
4l

iH

i ix J

Fig. 4. Stopwatch automaton of an interruptible task

To model the acceptable behavior of Taski, we need

to use a Stopwatch automaton with three states such that

the automaton can move back and forth between ”Initial”,

WeC10.4

1005

”normal execution” and ”Interruption” as shown in Fig. 4.

The state l1 indicates that the resource is waiting to start the

task, l2 indicating that the resource is executing its task and

l3 indicating the task is interrupted after having started.

Definition 2: Let (L, l1, X,Σi, A, I,Dif) the Stopwatch

automaton of task Taski where

• L = {l1, l2, l3}, and l1 is the initial location,

• X = {xi, yi} ,

• Σi = {σi, si, ri, εi},

• I(l3) = I(l2) = {xi ≤ γi, yi ≤ βi};

• Dif(l2)(xi) = Dif(l3)(xi) = 1, Dif(l1)(xi) = 0
Dif(l2)(yi) = 1, Dif(l3)(yi) = Dif(l1)(yi) = 0 2

In this automaton, the interruption and resumption are mod-

eled by transitions to and from l3 in which the clock yi does

not progress. The labels si and ri represent respectively the

stop and the resumption of Taski in the physical system,

while label σi corresponds to the end of this task. εi which

is the always true event, represents the necessary condition

to start the task. Here it starts immediately.

The stopwatch yi adds up the durations of partial execution

of Taski while xi measures the total execution duration.

When the stopwatches values reach αi ≤ yi ≤ βi ∧
αi ≤ xi < γi the automaton leaves l2 to the initial state.

In this automaton, we find the following guards:

• l2
g2

−→ l3: g2 = 0 ≤ xi < γi. The stop can happen at any

instant during the execution of the task, without exceeding

the acceptable duration;

• l3
g3

−→ l2: g3 = 0 ≤ xi < γi. The resumption of Taski

must happen without exceeding the acceptable duration;

• l2
g4

−→ l1: g4 = αi ≤ yi ≤ βi ∧ αi ≤ xi < γi represents

the execution of Taski in its acceptable duration.

Figure 4 shows the acceptable behavior and faulty state. The

task leaves the acceptable behavior to faulty state l4 either

from the location l2 or l3. The guards of arcs towards l4
do not respect guard g4. They are identical and given by:

g5 = ¬g4, then g5 = (xi = γi ∧ yi < αi).

Definition 3: A possible trajectory in SWA which repre-

sents an interruptible task can be defined as:

• Initially: Start from the state (l1,(xi = 0, yi = 0)),
• Discrete evolution: Sequence of states as (l1. l2. l3. l2. l1).
• Continuous evolution: Stopwatches evolution (xi, yi).
Example, (0, 0),...,(αi, αi) or (0, 0),...,(γi − τi, αi) where τi

a small amount of time. 2

Proprerty 1: The trajectories which lead Taski to the

state l1 from l2 × (xi, yi) where xi ∈ [αi, γi) and yi ∈
[αi, βi], represent all the possible evolution in the acceptable

behavior permitting to execute Taski correctly. 2

The valuations of the stopwatches that satisfy the acceptable

execution of task Taski given by g4 define a polyhedron

which is denoted as di, and called the desired space.

Note that the trajectories mentioned in Property 1 satisfy only

the guard g4. As long as g5 = ¬g4, then these trajectories

do not lead to the faulty state.

VI. CHARACTERIZING THE TIME SPACE STATE OF THE

SYSTEM IN ITS ACCEPTABLE BEHAVIOR

As we saw in the previous section, the task can evolve

either inside the states of acceptable behavior or towards a

faulty state. In this section, we concentrate on the time space

synthesis that characterizes the evolution in the acceptable

states for a complex system S.

The acceptable behavior of a system S is a stopwatch au-

tomaton given by Definition 1. It is destined to execute many

tasks where some of them are interruptible. The behavior of

these tasks are described in Definition 2.

Definition 4: Let A = (L, l0, X,Σ, A, I,Dif) and A∗

= (L′, l0, X,Σ, A, I,Dif) be two identical stopwatch au-

tomata. In these automata, the corresponding locations have

the same invariants, the same stopwatches dynamics, and the

corresponding arcs have the same guards and the same set

of initialized stopwatches. Let Ei and E∗

i be the reachable

time space in two corresponding locations where li ⊂ L and

l′i ⊂ L′ respectively. We say that A∗ is more restrictive (in

terms of behavior) than A, denoted by A∗ � A, if E∗

i ⊆ Ei.

2

problem 1: Reachability synthesis for monitoring

purposes. Let A = (L, l0, X,Σ, A, Inv,Dif) be a

stopwatch automaton and Q be a subset of trajectories

L×X which represents a natural generalization of Property

1 for all the interruptible tasks of the system S represented

by A. The reachability synthesis problem is to find the

automaton A∗ � A such that for each trajectory q in A∗ ⇒
q ∈ Q. 2

We make use the following algorithm to solve this problem.

A. Synthesis Algorithm

Our algorithm for constructing the restrictive automaton

A∗, involves two phases. Firstly, we calculate by using

the forward analysis, the reachable time space of A which

corresponds to the set of all possible trajectories including

those leading to faulty state. In the second phase, a procedure

based on backward analysis is given to synthesize from the

previous set of trajectories, only those satisfying Property 1,

for each interruptible task in S.

We will introduce the used notations in the algorithm:

• Ei Time reachable space in a location i.

• Ea
i Time space at the entry of Li for all the visits.

• ea
i,j Time reachable space at the entry of Lj by firing aij .

• P1 The memory that saves the location’s name and the

space at its entry.

• EF
j The space in Lj resulting from Forward analysis.

• D = d1, ..., dm The set of time desired space. ∀ taski ∈
taskint: di ∈ D. m number of interruptible tasks in S.

• P2 The memory that saves the location’s name that have a

desired space at its outgoing arc. An element of P2 has the

following form: {(Li, di) ∈ P2 : Li ∈ L di ∈ D }
• P3 The memory that saves the arcs to be analyzed in

backward analysis. An element of P3 has the following

form: (Li, ai,j , Lj) where Li location source, Lj location

destination and ai,j the arc to be analyzed.

WeC10.4

1006

• E
(i)
j The space in Lj calculated by backward analysis at

iteration i.

• ProjectLj
(E) function which gives the projection of the

space E on the active and suspended stopwatches in Lj .

We construct the space of A∗ by using the following algo-

rithm:

• Forward Analysis

1) Initialize P1: P1 = {(L0, e
a
0)},

E0 =....= Ei =....=Em = ∅
Ea

0 =....= Ea
i =....=Ea

m = ∅.

2) Pick an element from P1. Let be (Li, e
a
i).

3) Calculate the reachable space in Li:

Ei = Succt(e
a
i) ∪ Ei

4) For each outgoing arc from Li, do:

Si,j = Succd(Ei) : Lj the destination location

ea
ij = ProjectLj

(Si,j)

if ea
ij * Ea

j :Ea
j = Ea

j ∪ ea
i,j

add (Lj , ea
i,j) to P1.

If P1 6= ∅, go to step (1).

• Backward Analysis

1) Initialize E
(0)
0 = EF

0 ,=E
(0)
m = EF

m,

P2 = { (Li, dn),...,(Lj , dk),...,(Ln, dm)}, P3 = {∅}.

2) Pick an element from P2. Let be (Lj , dk).
3) Calculate the space in Lj which allows to reach dk:

E
(i)
j = Pret(dk).

if E
(i−1)
j ⊆ E

(i)
j go to step (2).

otherwise E
(i)
j = E

(i)
j ∩ E

(i−1)
j .

4) Add to P3 all the entering arcs to be analyzed. Let for

Lj be P3 = {(Ln, an,j , Lj), (Ll, al,j , Lj)}
4.1) Pick the last element in P3. Let be (Ll, al,j , Lj)
4.2) Calculate the space at entry of Lj permitting to

reach E
(i)
j : Ea

j = Ea
j ∩ E

(i)
j

4.3) Calculate the space in Ll permitting to reach Ea
j

by firing al,j : E
(i)
l = Pred(E

a
j)

if E
(i−1)
l * E

(i)
l : E

(i)
l = E

(i)
l ∩ E

(i−1)
l go to step

(4).

If P3 6= ∅ go to step (4.1).
If P2 6= ∅, go to step (2).

Using this algorithm for an interruptible task mentioned in

Figure 4, we have found the reachable time space in l2 and l3
by a forward analysis (Fig. 5.a). In these spaces, we can see

that there are some trajectories that do not permit to reach the

desired space di shown in (Fig. 5.b). These trajectories are

eliminated by the backward analysis step. The resulting space

(Fig. 5.c) represents all the possible evolution permitting to

execute task Taski according to the guard g4. We call this

resulting space: exact space of Taski.

Remark 1: Robustness of the exact space

Some partial faults that affect the timing characteristics may

occur in the execution of the resources the Taski. These

faults can also be detected by the violation of the exact space.

B. Termination Criterion

Unlike timed automata, the reachability problem for Stop-

watch automata is undecidable [6]. This is because the

iy

iy iy

ix

iEiE iE

iJiJ iJi iJ D�iD

iD

id

-a- -b- -c-
ix

iy

ix

Fig. 5. Time state space of an interruptible task in l2 and l3: (a) reachable
space and one of possible trajectory, (b) desired, (c) exact space

values of stopwatches in a location of automaton is described

by non-convex polyhedron. Fortunately, thanks to the tools

of the hybrid systems as model-checker PHAVer [3], the

manipulation of these polyhedron is possible.

In PHAVer, if the invariants of the automaton is bounded,

then the analysis termination can be forced by using simpli-

fication techniques of a complex polyhedra. This is because

there are only a finite number of possible predicates. The

simplification is done in a strictly conservative fashion of

the reachable set of states [4].

VII. ILLUSTRATIVE EXAMPLE

To illustrate the way to design a monitoring system, we

consider the following example. A part of manufacturing

system is made up of a transfer station and a robot. The

transfer station is composed of an actuator and a conveyor.

This system and its working specification are shown in

Figure 6. When the control system gives the order d, the

co
nv

ey
or

Sensor

Pallet
Robot

Assembly

station

-1-

Actuator

-2-

d

dR

R
b e

b

R

Fig. 6. -1- The manufacturing system -2- Working specification

actuator puts down a pallet on the conveyor. When the sensor

B detects the transferred pallet (event b), the transfer station

comes back to its initial state, and the robot, if it is not

busy (event e), transfers the pallet to the assembly station.

When the robot finishes its task (event R), it returns to its

initial state. The necessary information for building up the

monitoring system is given in the following table. t.u is the

abbreviation for ”time units”.

Task name Conveyor task Robot task

αi (t.u) 3 2

βi (t.u) 4 3

γi (t.u) 5 4

Used stopwatches x2 and y2 x4 and y4

Event of task end b R

Interruption signal s2 s4

Resuming signal r2 r4

In Figure 7.1, we give the monitoring automaton of the

considered system composed of 12 locations and focalize to

a part of this automaton in Figure 7.2 for simplicity reasons.

WeC10.4

1007

In this figure, the event d comes from the controller and

gives to the conveyor the starting order. It is monitored by

clock x1. Note that the automaton state is updated only by

the set of events coming either from the controller or from

the process permanently.

The time spaces in the locations L2, L7, L8, L9, L10 and

2 2

4 4

2 2

4 4

4 2

2 2

4 4

x 1, y 1

x 1, y 1

0 x y 2

0 x y 2

0 x x 2

y 4,x 5

y 3,x 4

x x

x x

d � �

d � �

d � �

d �

d �

2 2

4 4

2 2

4 4

4 2

2 2

4 4

x 1, y 1

x 1, y 0

0 x y 2

0 x y 2

0 x x 2

y 4,x 5

y 3,x 4

x x

x x

d � �

d � �

d � �

d �

d �

4s

4r

2r

b b
R

R
2s

L8
L7

L9

2 20 2d � �x y

4 1x 1, x 1x x 4s

4r
R

L10L2

2y 4d

L12

4x 4 �

4 40 x y 2d � �

2x 1x

2 20 x y 2d � �

2 2

4 4

x 1, y 0

x 1, y 1

x x

x x

4 4

4 2

2 2

4 4

0 x y 2

0 x x 2

y 4,x 5

y 3,x 4

d � �

d � �

d �

d �

4y 1x

-1- -2-

L8

L2

L1

L3

L4

L5
L6

L7L9

L10 L11
L12

d

dd

b

bb

e

R

R

R

R

R

2r

2s

4s4r

2s

2r

2s

2r

4r
4s

4r

4s

4s

4r
4y 3d

10 xd

4 13 x xd �

4 1x 1, x 1x x

4x 4 �

4 40 x y 2d � �

4y 0x

4y 3d
10 xd

4 13 x xd �

2x 5 �

2y 1x

Fig. 7. 1- Automaton SWA
∗ 2- Scoped part of SWA

∗

L12 are represented by the algebraic inequalities and have

been calculated by applying the proposed algorithm and by

using the model-checker PHAVer [3]. It provides commands

for computing reachable (Forward and backward) states and

simulation relations, plus a number of commands for the

manipulation and output of data structures.

Figure 8 shows a scenario of working where the robot and

Alarm

0.5

1.5 3 t2

1

2y
2()y T

2 4, x y
4,x

-1- 3 t

2()x T

3

Fig. 8. Scenario of working

conveyor start their tasks simultaneously. This situation is

presented by location L7 as the stopwatches dynamic’s show.

In this scenario, the conveyor is interrupted 2 t.u. Then, the

system fires to L8. The inequality in bold in L8 detects

the fault presented in Figure 8 at instant x2(θ) = 3 t.u.

The corresponding value of y2 is y2(θ) = 1 t.u. We can

explain the setting on the alarm by following reason: To

finish the conveyor task correctly, one needs to have at least

the duration α2 − y2(θ) = 3 − 1 = 2 t.u. In this case, the

corresponding value of x2 is x2 = x2(θ) + (α2 − y2(θ)) =
3 + 2 = 5 t.u. This execution duration will exceed the

maximum permitted duration of conveyor’s task γ2−ε where

ε is an amount of time infinity small. So, one detects this

fault as early as possible at instant 3 t.u. As long as using

the other method based on watchdog mechanism will detect

this fault at instant 5 t.u.

VIII. CONCLUSION

In this paper, we have proposed a method for the real-time

monitoring systems, based on stopwatch automata. It takes

into account the behavior of some tasks called ’interruptible

tasks’. The locations of this automaton represent the system

reachable state in this behavior. The state of monitoring

system is updated only by the set of events coming either

from the controller or from the process. The acceptable

behavior of each interruptible task is supervised by using

two clocks. The time sub-state space in each location of this

automaton represents the temporal constraints that the system

must respect. These time sub-state space are represented

by a set of algebraic inequalities. The monitoring system

detects any violation of these constraints. Consequently, it

detects the system faults as early as possible. The time state

space for a complex system are calculated by an algorithmic

method based on forward and backward reachability analysis

techniques of stopwatch automata.

The future works will take into account more complex

modification of the dynamic of the task resulting from

faults. These faults will lead the system to multi mode

behavior (instead of two: ”execution” and ”interruption”).

For example, we will consider the faults that can accelerate

or slow down a resource during its task execution. For that,

one needs to use the linear hybrid automata where the time

derivative of the variable in each location can be x. = c

where c ∈ R.

REFERENCES

[1] F. Cassez and K.J. Larsen. The impressive power of stopwatch.
Number 1877, pages 138–152. Lecture Notes in Computer Science,
Springer-Verlag, 2000.

[2] J. Chen and R.J. Patton. Robust model-based fault diagnosis for

dynamic systems. Kluwer Academic Publishers, 1999.
[3] G. Frehse. Phaver: Algorithmic verification of hybrid systems past

hytech. In Proceedings of the Fifth International Workshop on Hybrid

Systems: Computation and Control, pages 258–273, 2005.
[4] G. Frehse, B.H. Krogh, and R.A. Rutenbar. Verifying analog oscillator

circuits using forward/backward abstraction refinement. volume 1,
2006.

[5] M. Ghazel, A. Toguéni, and M. Bigang. A monitoring approach for
discrete events systems based on a timed perti net model. Proceedings

of 16th IFAC World Congress, 2005.
[6] T. A. Henzinger, P. W. Kopke, A. Puri, and V. Varaiya. What’s

decidable about hybrid automata? Journal of Computer Sciences, 57,
1998.

[7] S. Lafortune K. Sinnamohideen M. Sampath, R. Senqupta and
C. Teneketzis. Failure diagnosis using discrete- event models. IEEE

Transaction on Control Systems Technology, 4(2):105–124, March
1996.

[8] D. N. Pandalai and L. E. Holloway. Template languages for fault
monitoring of timed discrete event processes. IEEE Transactions On

Automatic Control, 45(5), May 2000.
[9] R. H. Kwong S. H. ZAd and W. M. Wonham. Fault diagnosis

in discrete-event systems: Framework and model reduction. IEEE

Transactions On Automatic Control, 48(7):1199–1212, July 2003.
[10] R. Kumar S. Jiang and H. E. Garcia. Diagnosis of repeated/intermittent

failure in discrete event systems. IEEE Transaction On Robotic and

Automation, 19(2):310–323, 2003.
[11] V.S. Srinivasan and M.A. Jafari. Fault detection/monitoring using

time petri nets. IEEE Transactions on Systems, Man and Cybernetics,
23:1155–1162, 1993.

[12] S. Jiang Z. Huang, V. Chandra and R. Kumar. Modeling discrte
event systems with faults using a rules based modeling formalism.
Mathematical Modeling of Systems, 1(1), 1996.

WeC10.4

1008

