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Abstract - A method for evaluating reliance level of a virtual 
metrology system (VMS) is proposed. This method calculates a 
reliance index (RI) value between 0 and 1 by analyzing the 
process data of production equipment to decide if the virtual 
metrology result is reliable. A RI threshold is also defined in 
this method. If a RI value is higher than the threshold, the 
conjecture result is reliant; otherwise, the conjecture result 
needs to be further examined. In addition to the RI, the method 
also proposes process data similarity indexes (SIs). The SIs are 
defined to evaluate the degree of similarity between the input 
set of process data and those historical sets of process data used 
to establish the conjecture model. Two kinds of SIs are 
included in the method: global similarity index (GSI) and 
individual similarity index (ISI). Both the GSI and ISI are 
applied to assist the RI in gauging the reliance level and 
locating the key parameter(s) that cause major deviation, 
hence the VMS manufacturability problem is resolved. An 
illustrative example with 300-mm semiconductor foundry 
production equipment in Taiwan is demonstrated in this work. 
The real experimental results show that this method is 
applicable to the VMS of (such as semiconductor and 
TFT-LCD) production equipment. 

Index Terms – Reliance level, reliance index (RI), degree of 
similarity, global similarity index (GSI), individual similarity index 
(ISI), virtual metrology, manufacturability. 

I. INTRODUCTION 
Currently, in most of the semiconductor and TFT-LCD 

plants, quality of products manufactured from production 
equipment is monitored by sample-testing, i.e. the products 
in manufacturing process are selectively tested periodically, 
or dummy materials (such as monitoring wafers or glass) are 
actually applied in a manufacturing process and tested so as 
to monitor whether the quality of the process is acceptable. 
The conventional method generally assumes that abnormal 
conditions regarding process quality of production 
equipment do not occur abruptly, so that measurement 
results of the selected products or the dummy materials can 
be used to infer the product quality within a period of 
production. However, the conventional monitoring method 
can merely know the quality of the selected products or the 
dummy materials actually tested, and cannot know the 
quality of the process in-between the selected products. If 
abnormal conditions of the production equipment occur 
between two selected tests, the conventional monitoring 

method cannot find out the abnormal conditions in time, 
thus inferior products may be produced.  

For resolving the aforementioned problem, every product 
should be tested comprehensively. However, testing every 
product needs to install large amounts of metrology 
equipment and requires a lot of cycle time. Large amounts 
of dummy materials will also be wasted. Therefore, it is 
desired to provide a method, denoted virtual metrology [1], 
for monitoring process quality without actual measurement, 
such that quality of production process can be seamlessly 
monitored in time. Moreover, virtual metrology is essential 
for wafer-to-wafer advanced process control [1]. 

When a virtual metrology system (VMS) is used to 
conjecture a virtual measurement value of a product, if the 
product happens to be a selected test sample that has an 
actual measurement value, then the conjecture error of the 
virtual measurement value can be evaluated. However, in 
most cases, the product is not a selected test sample, such 
that no actual measurement value can be provided for 
comparison with the virtual measurement value. Thus, the 
accuracy of the virtual measurement value is unknown. A 
user, consequently, cannot appreciate in time what the 
reliance level of the virtual measurement value is, such that 
hesitation about application occurs. This will cause the 
so-called applicability or manufacturability problem of a 
VMS [9]. 

The proposed method has two aspects. One is to define a 
reliance index (RI) for evaluating reliance level of a VMS 
conjecture result. The other is to formulate process data 
similarity indexes (SIs), including global similarity index 
(GSI) and individual similarity index (ISI), for assessing 
degree of similarity between the input set of process data 
and the historical sets of process data used for establishing 
the conjecture model. The purpose of applying the GSI and 
ISI to gauge the similarity level is to assist the RI in 
consolidating VMS reliance level and locating the key 
parameter(s) that cause major deviation. 

In accordance with the aforementioned aspects, the 
method proposed is divided into a training phase, a tuning 
phase, and a conjecturing phase. The VMS of production 
equipment in a 300-mm semiconductor foundry in Taiwan 
was selected as an illustrative example to verify the 
practicality and manufacturability of the proposed method. 
The rest of this work is organized as follows. Section 2 
elucidates the algorithms of the RI, GSI, and ISI. Section 3 
explains the VMS operating procedures by applying the RI 
and GSI. Section 4 elaborates the applicability and 
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Fig. 1. Block Diagram of a Virtual Metrology System.

implications of the RI and GSI. Section 5 presents the 
illustrative example. Finally, Section 6 makes a summary 
and conclusions. 

II. RI AND SI ALGORITHMS 
A block diagram of the VMS possessing the RI, GSI, and 

ISI is shown in Fig. 1. As depicted in Fig. 1, a data 
preprocess module processes and standardizes raw process 
data from a piece of production equipment, and sifts 
important parameters from all of the original parameters to 
prevent immaterial parameters from affecting the prediction 
accuracy [8]. A conjecture model uses a set of input process 
data after preprocess to conjecture the virtual measurement 
value. The conjecture algorithm applicable to the conjecture 
model can be such as a neural-network (NN) algorithm, a 
multi-regression (MR) algorithm, or a time-series algorithm, 
etc. When a NN algorithm is adopted, during the training 
phase, a self-searching means is used to self-search the 
optimal combination of parameters of the conjecture model 
[2][3]. A RI module generates the RI value to estimate the 
reliance level of the virtual measurement value. A similarity 
index (SI) module calculates the GSI and ISI values for 
evaluating the degree of similarity of the input-set process 
data.  

The RI value is defined to be between 0 and 1. To 
distinguish how good the RI is, an approach for calculating 
the RI threshold value (RIT) is also proposed. If the RI is 
greater than the RIT, then the virtual measurement is reliable; 
otherwise, the reliance level of the virtual measurement is 
relatively low such that the conjecture result needs further 
verification.  

The definition of the GSI is the degree of similarity 
between the set of process data currently inputted and all of 
the historical sets of process data in the conjecture model for 
training and tuning purposes. And, the definition of the ISI 
of an individual process parameter is the degree of similarity 
between this individual process-parameter’s standardized 
process datum of the input set and the same 
process-parameter’s standardized process data in all of the 
historical sets for training and tuning the conjecture model. 
The GSI and ISI values are utilized to assist the RI in 
gauging the reliance level and identify the key process 
parameters that cause major deviation. 

The operating procedures of the VMS are divided into a 
training phase, a tuning phase, and a conjecturing phase. In 

the following, the algorithms related to the RI, GSI, and ISI 
are first presented, and then their overall operating 
procedures are explained. 
2.1 Reliance Index (RI) 

It is assumed that n sets of historical data are collected, 
including process data ( )n ..., 2, 1,i ,i =X  and the 
corresponding actual measurement values ( )n,2,1,i,yi L= , 
where each set of process data contains p individual 
parameters (from parameter 1 to parameter p), i.e. 

[ ]Ti pi,i,2i,1 x ..., ,x ,x=X . Besides, (m-n) sets of process data in 
actual production are also collected, but except 1ny + , no 
actual measurement values are available. In other words, 
only the first piece among (m-n) pieces of the products is 
selected and actually measured. In the current 
manufacturing practice, the actual measurement value 1ny +  
obtained is used for inferring and evaluating the quality of 
the (m-n-1) pieces of the products.  

In general, a set of actual measurement values 
( )n,2,1,i,yi L=  is a normal distribution with mean μ  

and standard deviation σ , i.e. ( )2
iy ~ N μ, σ . All the 

actual measurement values can be standardized with respect 
to the mean and standard deviation of the sample set 
( )n,2,1,i,yi L= . Consequently, their standardized values 
(also called z scores) 

n21 yyy Z,,Z,Z L are obtained, where 
each z score has a mean of zero and a standard deviation of 
one, i.e. ( )10, N~Z

iy  [4]. With respect to the actual 

measurement data, when its corresponding 
iyZ  is close to 

0, it means that the actual measurement value approaches to 
the central value of the specification. The equations of 
standardization are listed as follows [4]: 

n,2,1,i ,
σ

yyZ
y

i
yi

L=
−

=  (1)

( )n21 yyy
n
1y +++= L  (2)

( ) ( ) ( )[ ]2
n

2
2

2
1y yyyyyy

1n
1σ −++−+−
−

= L  (3)

where iy is the i-th actual measurement value, 

iyZ
 

is the standardized i-th actual measurement 
value, 

y  is the mean of all the actual measurement 
values, and 

yσ is the standard deviation of all the actual 
measurement values. 

This work adopts a neural-network (NN) algorithm as the 
conjecture algorithm for establishing the VMS conjecture 
model [2][3][7], and uses a multi-regression (MR) algorithm 
[4] to be the reference algorithm for establishing the 
reference model that serves as a comparison base of the 
conjecture model. However, other prediction-oriented 
algorithms may also be applied to be the conjecture 
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algorithm or the reference algorithm of the proposed method, 
as long as the reference algorithm is different from the 
conjecture algorithm. 

When the NN algorithm and the MR algorithm are 
utilized, if their convergence conditions both are that SSE 
(Sum of Square Error) is minimum with n ∞, their 
standardized predictive measurement values (defined as 

iNyZ and 
iryZ  respectively) should be the same as the 

standardized actual measurement value 
iyZ . In other words, 

when n ∞, 
riiNi yyy ZZZ == all stand for the standardized 

actual measurement value, but they have different names 
due to different purposes and various models. Hence, 

( )2
ZZy yiyNi
σμ   ,N~Z  and ( )2

ZZy yiyir
σμ   ,N~Z  indicate that 

NiyZ  and 
riyZ  belong to the same statistical distribution. 

However, due to different estimating models, the 
estimations of mean and standard deviation are different 
between those two prediction algorithms. That is the 
standardized mean estimating equation ( )

NiiyZ ŷZμ̂ = and 

standard deviation estimating equation ( )
NyZyZ σ̂σ̂ )= with 

respect to the NN conjecture model are different from the 
standardized mean estimating equation ( )

iriyZ ŷZˆ =μ and 

standard deviation estimating equation ( )
rŷZyZ

ˆˆ σσ = with 

respect to the MR reference model. 
The purpose of the RI is to gauge the reliance level of the 

virtual measurement value. Therefore, the RI should 
consider degree of similarity between the statistical 
distribution 

NiŷZ  of the virtual measurement value and the 

statistical distribution 
iyZ of the actual measurement value. 

However, when virtual metrology is applied, no actual 
measurement value is available to verify if the virtual 
measurement value is trustworthy. (Note that, virtual 
metrology will not be necessary if actual measurement 
values are obtained.) Instead, this work adopts the statistical 
distribution 

riŷZ  estimated by the reference algorithm to 

replace 
iyZ . Consequently, as indicated in Fig. 2, the RI is 

defined as the intersection-area value (overlap area A) 
between the statistical distribution 

NiŷZ  of the NN virtual 

measurement value and the statistical distribution 
riŷZ of 

the MR reference prediction value. The RI equation is listed 
below: 

2

Z Zˆ ˆy yNi ri
2

1 x μ( )
2 σ1RI 2 e dx

2π σ
+

−−∞
= ∫

 
(4) 

riŷŷŷ ZZZμ
NiiN

<= ifwith
 

 

Niir ŷriŷŷ ZZZμ <= if
  

and σ  is set to be 1. 

With larger overlap area A, the RI is higher. It indicates 
that the result from the conjecture model is closer to that of 
the reference model such that the corresponding virtual 
measurement value is more reliable. Otherwise, with smaller 
RI, the corresponding virtual measurement value is less 
reliant. When the distribution 

iNŷZ estimated from 
iNyZ  is 

totally overlapped with the distribution 
irŷZ  estimated 

from 
iryZ , according to the distribution theory of statistics, 

the RI value is equal to 1; and, when those two distributions 
are almost separate, the RI value approaches to 0.   

 
Fig. 2. Statistical Distributions of 

iNŷZ  and 
irŷZ  for Defining 

the RI. 
After obtaining the RI, the RI threshold value (RIT) has to 

be defined. If RI > RIT, then the reliance level of the virtual 
measurement value is acceptable. A systematic approach for 
determining the RIT is described below. 

Before determining the RIT, it is necessary to define a 
maximal tolerable error limit (EL). The error of the virtual 
measurement value is an absolute percentage of the 
difference between the actual measurement value iy  and 

Niŷ obtained from the NN conjecture model divided by the 
mean of all the actual measurement values, y , namely 

%
y

ŷyError Nii
i 100×−=

 
(5) 

The EL can then be specified based on the error defined 
in Eq. (5) and the accuracy specification of VM. 
Consequently, RIT is defined as the RI value corresponding 
to the EL, as shown in Fig. 3. That is 

CZ

2

enter

1 x μ( )
2 σ

T
1RI 2 e dx

2π σ

−−∞
= ∫

 
(6) 

with μ  and σ  defined in Eq. (4) and  

( )[ ] yLŷCenter //EyZZ
Ni

σ2×+=
 (7) 

where yσ  is specified in Eq. (3). 
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Fig. 3. Statistical Distributions of 

NiŷZ  and 
riŷZ  for Defining 

the RIT . 
2.2 Similarity Indexes (SIs) 

As mentioned in Section 2.1, when virtual metrology is 
applied, no actual measurement value is available to verify 
if the virtual measurement value is trustworthy. Therefore, 
instead of the standardized actual measurement value

iyZ , 

the standardized MR prediction value 
irŷZ is adopted to 

calculate the RI. This substitution may cause inevitable 
gauging errors of the RI. To compensate this unavoidable 
substitution, the similarity indexes (SIs), including a global 
similarity index (GSI) and an individual similarity index 
(ISI), are proposed to assist the RI in gauging the reliance 
level of virtual metrology and identifying the key process 
parameters that have large deviations (z score values).   
2.2.1 Global Similarity Index (GSI) 

The concept of the GSI is to evaluate the degree of 
similarity between a set of process data and the model set of 
process data. This model set is derived from all of the 
historical sets of process data used for building the 
conjecture model. 

This work utilizes Mahalanobis distance [5][6] to 
quantify the degree of similarity. Mahalanobis distance is a 
distance measure introduced by P.C. Mahalanobis in 1936. 
It is based on correlation between variables by which 
different patterns can be identified and analyzed. It is a 
useful way of determining similarity of an unknown sample 
set to a known one. It differs from Euclidean distance in that 
it takes into account the correlation of the data set and is 
scale-invariant, i.e. not dependent on the scale of 
measurements. If the similarity of the data set is high, its 
Mahalanobis distance calculated will be relatively small. 

This work uses the size of the GSI (i.e. Mahalanobis 
distance) calculated to discriminate if the set of process data 
newly entered is similar to the model set of the process data. 
If the GSI calculated is small, the newly input set is 
somewhat similar to the model set. Thus the virtual 
measurement value conjectured from the newly input 
(high-similarity) set is relatively accurate. On the contrary, 
if the GSI calculated is too large, the newly input set is 
somewhat different from the model set. Hence the virtual 
measurement value estimated in accordance with the newly 
input (low-similarity) set has low reliance level in accuracy. 

The equations for computing the standardized process 

data 
j,ixZ of the conjecture model are shown below: 

p,1,2,jm;,1,nn,,1,2,i,
σ

xx
Z

j

jji,

ji,
x

x LLL =+=
−

= (8)

( )
jn,j2,j1,

x...xx
n
1x j +++=  (9)

( ) ( ) ( )[ ]2
jjn,

2
jj2,

2

jj1,j
xx...xxxx

1n
1σ x −++−+−
−

=  (10)

where j,ix is the j-th process parameter in the i-th set of 
process data, 

j,ixZ  is the standardized j-th process parameter in 
the i-th set of process data, 

jx  is the mean of the j-th process data, and 

jxσ  is the standard deviation of the j-th process 
data. 

At first, the model set of the process parameters are defined 
as [ ]Tp,M,M,MM x  ...,,x,x   X 21= , and let j,Mx equals to 

p,1,2,j,x j L= , so that each element in the model set after 
standardization (also denoted as the standardized model 
parameter, j,MZ ) will all be 0. In other words, all of the 

elements in [ ]Tp,M,M,MM Z...,,Z,Z    Z 21= are 0. Thereafter, the 
correlation coefficients between the standardized model 
parameters are calculated. 

Assume that the correlation coefficient between the s-th 
parameter and the t-th parameter is rst and k sample sets of 
data are considered, then 

( )tksk2t2s1t1s

tl
k

1l
slst

zz...zzzz
1k

1

zz
1k

1r

⋅++⋅+⋅
−

=

∑ ⋅
−

=
=

    
 (11)

After the correlation coefficients between the standardized 
model parameters are calculated, the matrix of correlation 
coefficients can be obtained as: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1rr

r1r
rr1

2p1p

p221

p112

K

MOMM

L

L

R  (12)

Assume that the inverse matrix (R-1) of R is defined as A, 
then  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

pp2p1p

p22221

p11211

1-

a..aa
............

a...aa
a...aa

RA  (13)

Hence, the equation for calculating the Mahalanobis 
distance ( )2

λD  between the standardized λ-th set process 
data ( )λZ  and the standardized model set process data 
( )MZ  is listed as follows:  
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( ) ( )Mλ
1T

Mλ
2
λD ZZRZZ −−= −  

λZRΖ 1T
λ

−=  
(14)

Finally, we have 

∑ ∑=
= =

p

1j

p

1i
jλiλij zzaD2

λ  (15)

The Mahalanobis distance ( 2
λD ) expressed in Eq. (15) is the 

GSI of the standardized λ-th set process data. 
After obtaining the GSI, the GSI threshold (GSIT) should 

be defined. In general, the default GSIT is assigned to be two 
to three times of the maximal GSIa (the subscript “a” stands 
for each historical set in the training phase). 

Further, when the GSI corresponding to a certain set of 
process data is too large, individual similarity indexes (ISIs) 
of all of the parameters in the set have to be analyzed so as 
to understand which parameter(s) cause this dissimilarity. 
The explanation for obtaining the ISIs of the standardized 
λ-th set process data, Zλ,j, j=1, 2, …, p, are as follows. 
2.2.2 Individual Similarity Index (ISI) 

In fact, the λ-th ISIj, j=1, 2, …, p are Zλ,j, j=1, 2, …, p 
themselves. If Zλ,j is near zero, this individual parameter is 
quite similar to the corresponding model parameter ZM,j (=0). 
Therefore, the ISIj is defined to be Zλ,j itself and is near zero. 
On the contrary, if Zλ,j is much larger than three, then Zλ,j is 
far away from the corresponding standardized model 

parameter, ZM,j. As such, dissimilarity may occur and its 
corresponding ( )j,ZISI j λ=  is much larger than three. A 
Pareto chart of ISIs can be applied for displaying the 
dissimilarity tendency. After presenting the algorithms 
related to the RI, GSI, and ISI, the operating procedures of 
the VMS is explained below. 

III. VMS OPERATING PROCEDURES 
The activity diagram showing the operating procedures 

of the VMS is depicted in Fig. 4. The operating procedures 
are divided into the training phase, tuning phase, and 
conjecturing phase, and each phase contains four parts: NN 
conjecture, MR reference, RI, and GSI. Referring to Fig. 1, 
the NN conjecture part is executed in the conjecture model; 
the MR reference part and the RI part are computed in the RI 
module; and the GSI part is calculated in the SI module, 
respectively. The steps for constructing each part in the 
training phase are presented in the upper portion of Fig. 4. 

Production equipment is a time-varying system. Its 
property will drift or shift as time goes by. Execution of 
maintenance or part-replacement may also alter the 
production equipment’s property. To remedy the 
property-drift problem, the conjecture and reference models 
should be tuned by a fresh actual measurement sample as 
shown in the tuning phase of Fig. 4. For example, to 
accurately conjecture the quality data of 25 pieces of wafers 
in a semiconductor cassette, at least the quality datum of one 
wafer in the cassette should be actually measured and served 

as the sample for tuning the conjecture 
and reference models. The tuning 
phase also has four parts: NN 
conjecture, MR reference, RI and GSI. 
They are described below. After 
finishing the tuning phase, the 
conjecturing phase (as shown in the 
lower portion of Fig. 4) begins.  

IV. IMPLICATIONS OF THE RI 
AND GSI 

After obtaining the RIb and GSIb, 
as well as their corresponding RIT and 
GSIT, the procedure for determining 
reliance level of the VMS conjecture 
result is shown in Fig. 5. If both RIb > 
RIT and GSIb < GSIT are true, then a 
green light is on. It indicates that the 
NN conjecture result and the MR 
prediction result are quite similar, and 
the degree of similarity between the 
set of process data newly entered and 
the historical sets of process data used 
for model-building is high, so that 
great confidence on the virtual 
measurement value is confirmed. 

If RIb > RIT is true and GSIb < GSIT 
is false, then a blue light is on. It 
implies that, although the VMS has 
provided a conjecture result, yet due 
to the GSIb is too high, some Fig. 4. Operating Procedures of the VMS with the RI and GSI. 
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deviations of the process data may occur. Hence, the process 
data with high ISI values have to be examined for 
preventing overconfidence. 

If RIb > RIT is false and GSIb < GSIT is true, then a yellow 
light is on. It means that the virtual measurement value may 
be inaccurate. However, since the GSIb is low, which 
implies that the degree of similarity (between the set of 
process data newly entered and the historical sets of process 
data used for model-building) is high, the situation may be 
due to bad MR prediction. 

If both RIb > RIT and GSIb < GSIT are false, then a red 
light is on. It infers that large deviation between the NN 
conjecture result and the MR prediction result occurs. And, 
since the GSIb is too high, the degree of similarity is low. As 
such, it is confirmed that the virtual measurement value is 
not reliant. In this case, the most deviant parameter(s) can be 
identified from the corresponding ISI Pareto chart. An 
illustrative example for explaining the applications of the RI, 
GSI, and ISI to the VMS is presented as follows. 

 
Fig. 5. Flow Chart for Determining Reliance Level of the VMS 

Conjecture Result. 

 

V. ILLUSTRATIVE EXAMPLE 

This illustrative example is taken from a VMS of 
production equipment in a 300-mm semiconductor foundry 
in Taiwan. In this example, there are 125 sets of equipment 
sample data (process data; Xi, i=1, 2, …, 125). The 101 sets 
process data in front have their corresponding actual 
measurement values (yi, i=1, 2, …, 101). It is noted that the 
102th to 125th sets of process data are related to the products 
currently under manufacturing, hence their actual 
measurement values (y102 to y125) do not exist, and their 
virtual measurement values are required instead. According 
to the physical properties of semiconductor equipment and 
experience of equipment engineers, 24 significant process 
parameters are selected as the inputs to the NN conjecture 
model. Among the 125 sets process data and 101 actual 
measurement values, the first 100 sets of historical process 
data and 100 historical actual measurement values are used 
as the training data for building the NN conjecture model. 
The last 25 (101th to 125th) sets of process data belong to 25 
wafers contained in the same cassette, where the first wafer 
(101th) is usually the sample product whose quality datum is 
actually measured for the purpose of monitoring the quality 
of the whole cassette. Consequently, this (101th) set of 
process data and actual measurement value can be used as 
the data for the tuning purpose. Then, the other 24 (102th to 
125th) sets process data of the cassette are used for 
performing virtual measurement. As such, in this example, 
n=100; m=125; p=24; a=1, 2, …, 100; and b=101, 102, …, 
125. 

Following the operating procedures shown in Figs. 4 and 
5, the results of the illustrative example are presented as 

Fig. 6. Real Experimental Results of the Illustrative Example. 
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follows. The actual and virtual measurement values, RI 
values, and GSI values in the training, tuning, and 
conjecturing phases are shown in Figs. 6(a), 6(b), and 6(c), 
respectively. 

In the training phase (a=1, 2, …, 100), both the actual 
and virtual measurement values are shown in Fig. 6(a). The 
RIa and GSIa are displayed in Figs. 6(b) and 6(c), 
respectively. The RIT (=0.567) is obtained with the specified 
EL (3%) and is depicted in Fig. 6(b). The GSIMax during the 
training phase is about 5, so the GSIT is assigned to be 15. 
Both the GSIMax and GSIT are shown in Fig. 6(c). During the 
tuning phase (b=101), both the actual and virtual 
measurement values, RI101, and GSI101 are shown in Fig. 6(a), 
6(b), and 6(c), respectively. As for the conjecturing phase 
(b=102, 103, …, 125), only the virtual measurement values, 
RIb, and GSIb are presented in Fig. 6(a), 6(b), and 6(c), 
respectively. 

Observing the 107th and 120th data sets, since their RIs 
are smaller than the RIT, it indicates that there is no 
confidence on the virtual measurement values 

107N
ŷ and 

120N
ŷ . Moreover, since their GSIs are greater than the GSIT, 

bad reliance level of 
107N

ŷ and 
120N

ŷ are confirmed. 

Therefore, red lights are shown on RI107 and RI120. In these 
cases, their associated ISIs of the 107th and 120th sets process 
data have to be checked to understand whose process data 
are deviated from the historical sets process data for 
model-building, thereby locating the problems.  

Referring to the 114th data set, since its RI114 is greater 
than the RIT but its GSI114 is greater than the GSIT, it implies 
that the corresponding ISIs of the 114th set process data have 
to be checked for preventing overconfidence on the reliance 
level. The blue light is shown on RI114 for this case.  

Except for the 107th, 114th, and 120th data sets, since the 
RIs of the remaining data sets are greater than the RIT, and 
their corresponding GSIs are smaller than the GSIT, it 
concludes that their corresponding virtual measurement 
values 

bNŷ  are all reliant. As such, the green lights are 
shown on all of the corresponding RIb. 
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Fig. 7. ISI Pareto Chart of the 107th Set Process Data. 

When GSIb > GSIT occurs, the corresponding ISIs of the 
process data shall be examined such that the cause of 
deviation may be identified. Taking the 107th data set as an 

example and referring to Fig. 7, it can be found that the 13th 
parameter in the ISI Pareto chart has the largest deviation.  

VI. SUMMARY AND CONCLUSIONS 

A method for evaluating reliance level of a virtual 
metrology system is proposed. In this method, a reliance 
index (RI) and a RI threshold (RIT) value are calculated by 
analyzing the process data of production equipment, thereby 
determining if the virtual metrology result is reliant. In 
addition, a global similarity index (GSI) and an individual 
similarity index (ISI) are also proposed for defining the 
degree of similarity between the input set process data and 
all of the historical sets process data used for establishing 
the conjecture model, thereby assisting in gauging the 
degree of reliance. Based on the results of the illustrated 
example, this proposed method with the RI, GSI, and ISI is 
believed to be feasible and can make the VMS 
manufacturable. 
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