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Abstract— In this paper we discuss methods to reduce spa-
tial uncertainty in the simultaneous localization and mapping
(SLAM) procedure for a mobile robot equipped with a 2D
laser scanner and operating in a structured, but non-static
environment. We augment the classic EKF-based SLAM pro-
cedure with two new modules. The first one reliably extracts
line segments from the laser scans, employing a novel fuzzy-set-
based grid map. The second one corrects the robot odometry
by using scan matching. Both modules rely on a laser scanner
measurement model, which covers both the quantitative and
qualitative types of uncertainty.

I. INTRODUCTION

Automated building of maps from sensory data is one

of the central problems for autonomous robots. Many par-

ticular environment representations have been proposed in

the literature [14]. A grid-based map can easily be updated

with range sensors readings, tolerating data uncertainty and

ambiguity, but requires a large amount of memory to cover

bigger areas with a dense grid. In contrary, the feature-based

map is a concise and explicit representation of the geometric

entities. Such maps are less popular because of difficulties

with the direct extraction of the features from raw sensory

data. Whenever the robot pose xR = [xr yr θr]
T is unknown,

the map has to be constructed while computing a pose

estimate. One of the most used methods to solve this SLAM

problem is the Extended Kalman Filter (EKF), used with the

feature-based maps [13]. Unfortunately, implementations of

the EKF-based SLAM (hereinafter: EKF-SLAM) for robots

operating in complicated indoor environments, that are often

cluttered and populated, suffer from difficulties in the sensory

data interpretation [4], [12] and limitations of the EKF

framework [6].

To remedy these problems we propose a new approach

to the geometric feature extraction from laser range data,

that combines the advantages of both the feature-based

and grid-based maps. A feature-based global map serves

as representation of the environment in the EKF-SLAM.

Horizontal straight line segments extracted from the 2D

laser scanner data are used as features. These features can

be further structured, representing distinctive objects in the

environment [10].

A proper choice of the representation of geometric features

has to be made, to avoid overparametrization and singular-

ities, and to make the uncertainty independent of the used

coordinates. To satisfy these requirements we have adopted

the SPmodel feature representation [5].
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The robustness to spurious and noisy range data exhibited

by the grid-based maps stems mainly from the fact, that

the given state of the particular cell is a result of many

sensory readouts, taken at different moments and (typically)

from different vantage points. These data are compared and

integrated according to the chosen uncertainty calculus. In

contrary, the features are usually extracted directly from the

currently available laser sensor ”snapshot”, i.e. single scan.

That makes this approach prone to errors due to spurious

range measurements. The laser range measurements are

affected by errors in the form of bias and noise [3]. Spurious

readings are a result of a particular sensor behaviour, or are

caused by dynamic objects in the vicinity of the robot.

To compensate this drawback of the feature-based map, we

propose to use a local grid map, which supports the feature

extraction by identifying the areas, that contain information

on static objects (e.g. walls). The successively updated grid

map accumulates data taken from several consecutive poses

of the robot and filters out unreliable measurements.

By using two types of representation in parallel, we are

also able to combine two frameworks for the uncertainty rep-

resentation: the probabilistic methods to explicitly propagate

quantitative uncertainty in the EKF-SLAM, and the fuzzy

sets theory to remedy the qualitative-type uncertainty in the

feature extraction.

II. LASER SCANNER UNCERTAINTY MODEL

A. Probabilistic Modelling of Uncertainty

The laser scanner on our Labmate robot is a Sick LMS

200. This sensor, which determines the distance by mea-

suring the time of flight of the emitted pulse, is commonly

applied on mobile robots for navigation. For the presented

experiments it is configured to work in the 8 m range mode,

with the angular resolution of 0.5◦. In order to have a

physical basis for the further error propagation and proper

treatment of the spatial uncertainty in the feature extraction

and SLAM we experimentally determined the main uncer-

tainty components in the range measurements of the LMS

200 scanner. A more detailed characterization of the Sick

LMS 200 sensor is provided by [16], however in this research

a scanning mode with a different angular resolution was used.

Unlike the range data provided by older AMCW lasers

[1], the bias of the LMS 200 scanner is to a large extent

independent from the target surface colour and texture. The

range bias was determined, and it was found that the bias

is a function of both the measured distance rm and the

incidence angle φi between the laser beam and the target
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surface. However, we have found negligible the bias depend-

ing on the incidence angle for angles up to φimax
= 70o.

Because the laser beam incidence angle is usually unknown

while exploring an unknown environment, only a functional

relationship between the bias and the measured range was

established:

r = rm + ∆r
′

, (1)

∆r
′

= −16.8 + 5.8 × 10−3rm − 6.7 × 10−7r2
m,

where rm and r are the raw and the corrected range mea-

surement, respectively. The equations (1) are used to correct

(calibrate) the range measurements prior to their further

processing.

An extensive set of experimental results involving different

types and colours of surfaces ensured us, that the range

measurement noise distribution is approximately Gaussian:

r̂ = r̄ + δr, δr = N(0, σr), (2)

where r̄ is a true (unknown) range, and σr is the range

measurement standard deviation. The σr was found to be

a slightly non-linear function of the measured range:

σr = 4.4 − 1.4 × 10−4rm + 2.1 × 10−7r2
m. (3)

The uncertainty in the angle of the measurements is caused

by the finite resolution of the scanner mirror encoder and

the finite beam-width of the laser. However, in most of the

laser scanners this uncertainty is very small, and it is often

neglected [1]. We have determined the angular uncertainty,

because it provides a physical basis for the sensor beam

model required by the grid-based maps, and it is used by the

scan matching algorithm [9] we have adopted. The angular

uncertainty is also represented by a normal distribution:

ϕ̂ = ϕ + δϕ, δϕ = N(0, σϕ), (4)

where the standard deviation σϕ=0.0083◦ has been estimated

taking into account the angular resolution of the scanner.

In Figure 1 a graphical interpretation of the LMS 200

scanner measurement uncertainty model is shown.
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Fig. 1. The LMS 200 uncertainty model visualization

B. Sources of Qualitative Errors

Besides the errors in the range measurements that can

be described quantitatively and captured by a probabilistic

model, such as the one we have proposed in the previous

section, the laser scanners are prone to qualitative errors,

which are caused by the interaction of the laser beam with

particular objects in the environment. Such errors can be

caused by mirror-like or pitch black surfaces, however the

most common spurious range measurements arise when the

laser beam hits simultaneously two surfaces at different dis-

tances. In a time of flight (TOF) scanner such a measurement

appears between the two surfaces. This type of errors has

been reported in many publications, for both AMCW [1] and

TOF [15], [16] laser scanners, and is usually called ”mixed

pixels”.

Because of the qualitative nature of the mixed pixels,

there is no analytical model of the uncertainty caused by

this phenomena. To avoid erratic behaviour of the map-

building and localization procedures the mixed pixels should

be eliminated at the early stage of feature extraction. How-

ever, there is no general method to recognize mixed pixels

in the range measurements. The methods known from the

literature are either sensor-specific [1] or application-specific

[15]. Because of that, the EKF-SLAM should use a feature

extraction procedure, which is robust to the mixed pixels,

and other spurious measurements of similar nature, e.g.

range readings corrupted by dynamic objects, such as people

walking by the robot.

III. GRID-ASSISTED FEATURE EXTRACTION

A. Fuzzy Support Grid Concept

The grid maps handle the spatial uncertainty by estimating

the confidence, that the given cell is empty or occupied.

An important aspect of a grid map implementation is the

mathematical framework used to represent and update this

confidence. The most popular grid update scheme is based

upon the Bayesian theory, which has well established foun-

dations, but does not have ability to represent the lack of

information. An alternative is the fuzzy-set-based method

proposed in [8], which provides a good representation of

different forms of uncertainty and incompleteness of infor-

mation. In the previous research [11] we have found that

the fuzzy grid map update scheme is most appropriate for

the application under study, being able to filter out corrupted

measurements caused by dynamic objects in the vicinity of

the robot, and most of the mixed pixels.
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Fig. 2. Membership functions for the LMS 200 laser beam
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In the fuzzy-set-based mapping method, originally de-

veloped for a sonar-equipped robot, the sets of occupied

Ok
i and empty Ek

i cells are determined by computing their

membership functions according to the sensor beam model

(Fig. 2) for every i−th range measurement taken from the

k-th robot pose. In our implementation, the sensor model

represents the degrees of membership of a given cell to the

sets of occupied and empty cells, according to the laser range

reading r, and its uncertainty σr [11]. The data gathered

from a single robot pose are aggregated to the sets Ok

and Ek, representing locally the occupied and empty cells,

respectively. The sets Ek and Ok generated at the k-th pose

are aggregated with the previously available information.

Two sets describing the lack of information, by identifying

the cells being ambiguous (A) or indeterminate (I) are

computed:

O = O∪Ok, E = E ∪Ek, A = E ∩O, I = Ē ∩ Ō. (5)

Because our aim is to build a feature-based model of

the environment, we are looking for cells providing reliable

support for line segment extraction. To this end, we define a

set of support cells, being very occupied and unambiguous.

The term ”very occupied” emphasizes the difference between

low and high values of occupancy, and is implemented by

squaring the value of the membership function:

S = O2 ∩ Ā ∩ Ī. (6)

In the local fuzzy support grid (FSG) computed according

to (6) the contours of objects are identified as aligned cells

of high membership degree to the S set. Figure 3 shows a

3D view of a FSG map resulting from an experiment with

the LMS 200 scanner, where the higher values mean better

support for line extraction, while the darker peaks are the

spurious measurements, mostly due to people walking by or

small obstacles moved during the experiment.

Fig. 3. An example of the fuzzy support grid

Unlike the feature-based map, the grid-based mapping

paradigm provides no means to accommodate the spatial
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Fig. 4. Maximum measured distance in the clustering algorithm

uncertainty induced by pose errors. Because of that, if the

FSG is built using scans registered with the odometry, it

can become inconsistent due to registration errors. To reduce

such problems, we correct the odometry with the estimates of

relative robot displacement obtained from incremental scan

matching [12].

B. Feature Extraction Method

There are several known approaches to the extraction of

lines from a grid-type representation. One of the most used

is the Hough transform [9], [11]. Unfortunately, the Hough

transform does not take the spatial uncertainty into account

when estimating the line parameters, and introduces itself an

uncertainty depending on the level of discretization of the

parameter space. The loss of precision is also inherent to

the grid representation, because individual range readings

are incorporated into the cells of given size, hence the

information about their precise position is lost.

An alternative are the scan splitting algorithms that con-

sider the order in which the range measurements were

obtained. Such an algorithm is the Iterative End Point Fit

(IEPF), which we have already used in the previous work

[10]. This ”divide and conquer” type algorithm is much

faster than the Hough transform. However, the order of range

measurements scanned from a particular robot pose is not

preserved in the grid map. Because of that, the proposed

segment extraction method considers individual scans instead

of the whole fuzzy grid, while the FSG is used to judge the

validity of the individual measurements, by comparing them

to the evidence accumulated by the past scanner readings.

The line segments are extracted from the ordered set

of laser scanner points. Only the points, that fall in the

FSG cells of high membership degree to the S set are

considered in further processing. The spatial uncertainty of a

point is represented by its covariance matrix computed upon

the values of σr and σϕ obtained from the laser scanner

uncertainty model.

The points are grouped together to form individual objects.

This procedure should reliably find all discontinuities in a

scanned sequence of points. A tracking-like, EKF-based ap-

proach to the detection of discontinuities has been proposed

in [5]. The process model used in this approach does not have

any physical basis, what makes it’s parameter values hard to

tune. The procedure is also computationally expensive, due

to the Mahalanobis distance computation required for each

measurement.
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Starting from the analysis of the LMS 200 sensor quali-

tative uncertainty, we have developed a different approach,

which is computationally efficient and based on the under-

lying physics of the laser range measurements. We have

observed, that the incidence angle φi for each valid mea-

surement must be smaller than the experimentally found

φimax
. If the previous measured range ri is known, then

from this value, and the scanner angular resolution ∆ϕ one

can compute the maximum and minimum values of the next

range ri+1, that satisfy the criteria φiri+1
≤ φimax

(Fig. 4). If

the actual measured range falls between these values, then it

is accepted as a member of the same group as its predecessor.

If not, the measurement is treated as a beginning of a new

group. The following pseudo-code shows this algorithm:

procedure RANGECLUSTERING(np,φimax ,∆ϕ)

kmin:=
cos(φimax

+∆ϕ

cos φimax

) ; {min. range factor }

kmax:=
cos(φimax

−∆ϕ

cos φimax

) ; {max. range factor }

ng:=1 ; {group counter initialised}
ng(r1):=ng;
for i:=1 to np-1 do

if ri+1 > (rikmin − 3σr) and ri+1 < (rikmax + 3σr)
then ng(ri+1):=ng

else ng:=ng+1; ng(ri+1):=ng {new group}
return ng . {returns all groups}

In this algorithm np is the number of points in the scan,

ng is a group number of a given measurement, σr is the

measurement standard deviation obtained from (3). If the

number of points in a group is small, then this group

is discarded as containing outliers. An approach to laser

scanner data clustering, which is based on an idea similar

to the one used in the above-presented algorithm has been

discussed in [4]. However, the method of [4] works in the

Cartesian coordinates, what makes it computationally less

effective.

Next, the IEPF algorithm is applied to find candidate

line segments from groups of points representing particular

objects. The supporting line of an extracted segment is de-

scribed by the SPmodel feature LRF , with regard to the robot

frame. The feature parameters and covariance are computed

by applying the weighted total least squares method. The

endpoints of the segment are determined by projecting the

laser points onto the infinite line and trimming the line at the

extreme points. Finally, the center point and the length lF
are computed. There is no uncertainty of the segment length

determined.

Results obtained with the FSG-supported segment extrac-

tion method have been compared in Fig. 5 to the results of the

standard split-and-merge approach to laser data segmentation

[5]. When a scan (Fig. 5A) containing range measurements

caused by a dynamic object (indicated by ”1”) and some

outliers due to mixed pixels (”2”) is processed by the IEPF

algorithm, the resulting local map (Fig. 5B) contains artifacts

and segments, whose orientation is poorly estimated. If the

segmentation is assisted by the FSG map (Fig. 5C), which

identifies the areas, that provide reliable support for line

segment extraction, the resulting local map (Fig. 5D) is

better. It does not contain artifacts related to dynamic objects.

The remaining line segments have more correct location,

because the FSG filtered out vast majority of the outliers, that

in the standard approach acted as ”leverage points” during

the least squares estimation of supporting lines parameters.
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Fig. 5. Comparison of line segment extraction results: without and with
the FSG

The FSG map is built at the full scan rate. The geometric

features (segments) are extracted in average each ten FSG up-

dating cycles. The scanned points that are acquired between

two consecutive calls to the feature extraction procedure

contribute to the FSG map, so the evidence they carry as

to the occupancy of particular areas supports the feature

extraction process.

IV. SIMULTANEOUS LOCALIZATION AND MAPPING

The mobile robot builds the global, feature-based map

simultaneously while localizing within it. The EKF-SLAM

algorithm with the stochastic map [13] is implemented,

therefore the map is represented by the state vector x̂ con-

taining the estimated pose of the robot x̂R and the estimated

locations of n features x̂WFi
, (i = 1 . . . n). The spatial

uncertainty of the estimated features, the robot pose, and

their correlations are represented by the covariance matrix

Cx. All locations are represented with regard to the global

reference frame W . The initial robot pose is used as the base

coordinates.

In the EKF-SLAM prediction stage, the state vector at

the k-th step is computed by estimating the robot relative

displacement from k−1 to k. In wheeled robots the displace-

ment estimate is provided by the encoder-based odometry.

However, if the residual systematic errors in the odometry are

significant, or the random error isn’t modelled correctly, the

pose uncertainty, particularly in the orientation, easily lead to

EKF divergence [6]. Because some odometry errors cannot

be anticipated by any mathematical model, one must recourse

to other types of sensors to improve the robot displacement

prediction. If proprioceptive sensors such as rate-gyros and
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compasses [3] are not available, the displacement estimate

can be obtained from an exteroceptive sensor.

In the SLAM framework, the uncertainty in both the robot

pose and the feature locations is decreased by re-observing

the features. The new observations are the segments in

the current local map. They are extracted from the laser

scanner data according to the approach presented in the

previous section. The observations are matched with the

features stored in the global map. The successfully associated

features are used to update the state vector and its covariance

by applying the well-known EKF equations. Unmatched

features from the local map are added to the global map,

augmenting the state vector.

The computational complexity of the EKF-SLAM estima-

tion stage is O(n2m), where m is the number of matched

features [5]. If the feature matching fails, e.g. due to spurious

features, the global map grows quickly, what makes the

estimation time unacceptable and prohibits on-line operation

of the robot.

V. ROBOT DISPLACEMENT ESTIMATION

Keeping track on the robot pose and its uncertainty during

motion of the vehicle is important to both the FSG-assisted

feature extraction and the EKF-SLAM itself. The encoder-

based odometry alone is insufficient to accomplish this task,

because of undetected bias and uncertainty due to unforeseen

or ”catastrophic” errors [3].

One approach to overcome these problems is to employ the

laser scanner readings to estimate the relative displacement

between two sequential steps of the EKF-SLAM. The relative

translation and rotation between two robot poses can be

obtained by scan matching, i.e. by finding a rotation and

translation that maximize the overlap of these scans. For

correction of the odometry errors we match two consecu-

tive scans to compute the incremental displacement ∆xRi
.

Integrating these displacements, given by the translation

∆ti = [∆xi ∆yi]
T and rotation ∆θi for the pair of scans

i − 1 and i, we establish an alternative form of odometry.

There are a number of methods for matching scans known

from the literature. Unfortunately, most of these methods do

not provide a realistic covariance matrix C∆ of the relative

displacement estimate [2]. Such an estimate is required

to integrate the alternative odometry measurements in the

prediction stage of the EKF-SLAM algorithm. One of the

scan matching methods, that satisfy this requirement is the

WLSM algorithm presented in [9]. The WLSM algorithm

explicitly models the sources of errors in both the range

measurements and the matching process itself, hence it is

able to calculate a realistic covariance of the displacement.

We have implemented this algorithm as the basis for the

alternative odometry.

A key assumption underlying the use of Kalman filtering

in the SLAM algorithm is that the robot motion estimate is

statistically independent from the exteroceptive observations.

Due to this reason we cannot use for scan matching the same

range data, which are then used for the feature extraction.

As already mentioned, the points from only one scan per ten

are used for the line segment extraction, with the remaining

laser data updating only the FSG membership values. Our

alternative odometry adheres to this data processing scheme,

by using only the scans taken in-between two consecutive

steps of the EKF-SLAM algorithm [12]. This way separate

range readings are used to estimate the vehicle motion and

the features, what ensures independence of the information

sources in the Kalman filter.

VI. EXPERIMENTAL RESULTS

In order to verify the presented approach to the spatial

uncertainty management, we have performed several exper-

iments with the Labmate robot equipped with the LMS 200

scanner.
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Fig. 6. Maps resulting from an experiment in the corridor

Figure 6 shows how filtering of dynamic objects and

outliers improves quality of the segment-based map. In Fig.

6B a map built by the SLAM algorithm from the raw data

shown in Fig. 6A is depicted. It contains a number of

spurious segments in the areas where the scan points caused

by a dynamic object (a person walking in front of the robot)

were encountered. The green line indicates the estimated

robot path, while the red line is for the odometry. A map

created by the SLAM algorithm using the FSG-supported

feature extraction and improved motion estimates is shown

in Fig. 6C. This map contains fewer line segments and there

are no segments resulting from the dynamic object.

Figure 7 shows results of an experiment, in which pa-

rameters of the Labmate odometry model have been roughly

identified by an ad-hoc experiment, leaving the systematic

errors not calibrated. The first map was built with the basic

EKF-SLAM algorithm, without use of the FSG and scan

matching. As it can be seen from Fig. 7A it contains many
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Fig. 7. Comparison of results for the experiment with poor odometry:
standard EKF-SLAM (A,B) and the improved system (C,D)

overlapping segments and is highly inconsistent. Divergence

of the EKF due to the not calibrated systematic component,

and inaccuracies in the model of the non-systematic odom-

etry errors gradually prevented correct associations between

the map and the segments from new observations, as shown

by the plot of successful feature matching ratio in Fig. 8A.

The segment-based map obtained from the scanner data

gathered with the same experimental set-up, but using the

proposed framework (Fig. 7C) is much more consistent.

The estimates of robot displacement obtained from local

scan matching prevented the EKF from large divergence in

spite of the poorly modeled vehicle odometry. The ratio of

feature matching is higher (Fig. 8A). Some segments are still

multiplied, but the overall number of features in the second

map is greatly reduced. The improvement in the quality and

geometric consistency of the resulting global map can be

best seen on the 3D views (Fig. 7B and Fig. 7D). Reduction

of the spurious features alleviates computational burden in

the EKF-SLAM algorithm, what is shown by the plot of the

map estimation time (Fig. 8B).
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VII. CONCLUSION

We have proposed a new approach to the spatial uncer-

tainty management in the feature-based EKF-SLAM for an

indoor mobile robot. The types and sources of the uncer-

tainty, that are most devastating to the EKF-SLAM perfor-

mance have been identified. To compensate this uncertainty,

new data processing modules have been introduced to the

SLAM procedure. The feature extraction module benefits

from using simultaneously both the grid-based and feature-

based mapping paradigms, that are usually used separately,

and often are contrasted in the literature [14]. The rel-

ative displacement estimation module employs local scan

matching. This procedure is used by many researchers as

an incremental self-localization method on its own, and was

combined with a particle-filter-based SLAM solution [7] in a

way similar to our idea of the alternative odometry. However,

we have shown experimentally, that the scan matching with

a physically-grounded uncertainty model improves also the

EKF-SLAM enabling better pose prediction, what in turn re-

duces the linearization errors and wrong feature associations.
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