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Abstract— Coupled operator-multiple vehicle systems are
modelled in a unified framework using probabilistic graphs to
yield a methodology for analyzing semi-autonomous systems.
The framework uses conditional probabilistic dependencies
between all elements, leading to a Bayesian network (BN) with
probabilistic evaluation capability. Vehicle attitude/navigation
states and target/classification states can be evaluated using
nonlinear estimators such as the EKF, Multiple Model filter,
information filter, or other approaches. Discrete operator de-
cisions are being modeled as Bayesian network blocks, with
conditional dependencies on the vehicle and tracking estimators.
Initial decision models use combinations of softmax and discrete
probability distributions.

I. INTRODUCTION

Interfacing human operators with multiple autonomous

robots engaged in tasks such as search and identify, search

and rescue, and cooperative monitoring is a challenging

problem. It is critical to the success of such missions to

develop an integrated operator-multiple robot system that is

robust and efficient in the presence of evolving uncertain

environmental parameters.

Important factors for the operator-robots interface are the

amount of information displayed, workload level, automation

of tasks which enhance overall system efficiency by taking

advantage computer execution speed and human ability for

complex tactics and strategies [9], [14]. Previous studies on

human-automation coordination have revealed both benefits

and costs of particular interfaces and designs [11], [12]. As

stated in [10]:

Overreliance, reduced situation awareness, mis-

trust, mode errors, loss of operator skill, and un-

balanced mental workload are among the costs that

have been found to be associated with particular

styles of interaction between human and automa-

tion.

The objective of this paper is to develop a modeling

methodology that encapsulates both autonomous, or semi-

autonomous platforms and operator decisions in a unifying

probabilistic framework. This framework will be useful for

analyzing how operators control/task/make decisions with

multiple robots, specifically enabling the identification of

operator decisions from data (average, confidence, depen-

dencies), and the evaluation of user interfaces, situation

awareness, fatigue, or other factors. Such a modeling ap-

proach could also be used for predicting operator decisions

and evaluate and design important concepts such interactive

decision aids and adaptive autonomy levels.

Research in decision modeling has been on-going for

many years in the Cognitive Sciences community [14].

Examples include the average time for a person to physically

select a choice with their hands, the level of short term

memory, and comparison of interfaces. These studies provide

valuable insight into how users make decisions as a function

of parameters such as stress, interface type, and time. In

these studies, however, the researchers typically constrain

many of the environmental parameters in order to reduce

the complexity of the system and adequately study a single

parameter.

Advancements in statistical estimation theory and com-

puter power has allowed for more advanced modeling tech-

niques where these constraints are relaxed; operator decision

modeling which use Markov Decision Processes (MDP’s) [7]

is a good example. The approach proposed here is to identify

decisions and environmental variables from data, and develop

a model that can be used for prediction, even in the presence

of uncertainties in the environment and across multiple users.

The RoboFlag testbed [2], [3] was designed to explore

basic operator-vehicle interactions in the context of a game of

“capture the flag.” Initial work performed a series of human

in the loop (HitL) studies [16] utilizing either the simulator

or experimental robots, and a specifically designed Playbook

with a hierarchy of cooperative control/autonomy tools. This

work showed particular trends, such as 1) multiple operators

on one terminal cooperate to improve situation awareness and

improve command selection; 2) multiple operators scored

higher in the game total than single operators; and 3) automa-

tions, such as autonomously sending vehicles home to refuel,

were used much more as the vehicle speeds and numbers

increased. The work also performed tests on the simulator

versus experimental robot, showing good correlation. The

AFRL/HE group has also implemented a series of HitL

studies using RoboFlag [5], [10], [15], examining human

performance differences and subjective ratings of mental

workload and situation awareness, and how they relate to

RoboFlag game outcomes.

This paper is structured as follows. First, the proposed

hybrid model for coupled operator-multiple robot systems is

described in Section II. This is followed by a brief overview

of Bayesian network theory and how they can be used to

probabilistically model operator decisions. The background

on the RoboFlag game simulator and experimental conditions

is covered in Section III. Some initial decision modeling

results and experimental data are presented and discussed

in Section IV. Finally, conclusions and ongoing research

directions are outlined in Section V.
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II. COUPLED OPERATOR-PLATFORM MODELS

In order to model the operator decisions, a probabilistic

model using a BN [6], [8] is used because it captures the

important elements of the problem, including: i) decisions are

modelled with probabilistic dependency on environmental

parameters, thus intuitively showing what system parameters

drive the decision making process, ii) vehicle system models

can easily be defined in this framework, such as using an

Extended Kalman Filter for vehicle navigation estimation or

an Information Filter for tracking, and iii) the model scales

well, as only dependent states are used to define the coupled

probabilities.

A BN model itself is represented by a directed graph, with

each arrow indicating conditional probabilistic dependency.

An example of a single robot tracking a target using a sensor

is shown in Fig. 1. This model can be decomposed into

three distinct parts: 1) a vehicle model, which is typically

evaluated using an on-line recursive estimator for vehicle

navigation and attitude, 2) a target tracking model, which is

typically evaluated using an on-line recursive estimator for

tracking, and 3) an operator decision model. In this case, the

operator decisions are to re-task the vehicle planner to orbit a

target, travel to new target, or loiter until another command is

given. Each of these three models can be cast as a conditional

probability, as is shown in Fig. 1. For example, the vehicle

sensor output block is give as, P(Y |X) = N (Cx, Σv).
Note that the model shown in Fig. 1 is a BN with no time

dependence; a Dynamic Belief Network (DBN) model can

be developed by repeating the BN model over a series of

time slices, with an appropriate time based model [8].
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Fig. 1. Probabilistic graph model of a single operator tasking a single UAV
to track (and estimate states) of a model. Circles denote continuous vector
valued random variables, squares discrete random variables, and shaded
blocks indicated that direct measurements are available.

A. Bayesian Network Decision Model Blocks

Operator decision models are defined here using a BN with

conditional, probabilistic dependencies on environmental

variables. This is written formally as a conditional probability

P(D|X)
where D is the operators decision and X is a vector of

“parent” variables. This function is also called the likelihood

function because it denotes how likely the decision data is,

dependent on the parent variables. The work here assumes

that the operator decisions are discrete, while the parent

variables can either be discrete or continuous. Fig. 2 shows

the three versions of this decision model, where the decision

has a direct conditional probabilistic dependency on the

parent variables. The other two cases in Fig. 2 are more

complex, graphical models of the operator decisions.

XX

DD

Parents

Softmax

Discrete

XX

DD

DD

XX

D
(1)

D
(1)

D
(2)

D
(2)

Fig. 2. Bayesian Network based decision models. Left: simple model
showing only conditional probabilistic dependency on the parent state
variables. Middle and Right: more complex decision models, with hidden
random variable blocks between the discrete decision block and the parent
variable block.

While the softmax distribution has very nice properties for

decision modeling, a big disadvantage is that it requires the

decisions (and decision data) to nicely separate using hyper-

planes. Obviously this is very limiting. A solution to this

problem is to create a Bayesian network with combinations

of discrete and softmax variables. This is shown in Fig. 2

(middle and right). In this case, the BN contains the par-

ents (continuous or discrete random variables), logit/softmax

random variables (intermediate and hidden), and a discrete

random variable which acts to select which logit/softmax

variables contribute to the decision distribution.
While similar to neural network theory, the BN decision

block is developed and interpreted using only statistical
properties. Consider first using s softmax variables, defined
for the lth variable as

Plk = P
(

D
(l)

∣

∣

∣
X

)

=
e

w̃T
l

x̃k

1 +

m
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j=2

e
w̃T

j
x̃k

(1)

where w̃j = 1

σj
[wjbj ]

T and the state vector to be x̃ = [x1]T

where w is a relative weighting of the parents (||w|| = 1),

σ is the steepness of the threshold, and b is a “bias” from

zero. It is noted that given m decision variables, only m− 1
weight sets (w, σ, b) are required (one is redundant can be

arbitrarily selected).
The joint density of all variables is written as

P(D, D
1

, · · · , D
s

, X). Using Bayes Theorem, the joint den-
sity conditioned on the parent variables is written as

P
(

D, D
1

, · · · , D
s
∣

∣

∣
X

)

=
P

(

D, D
1

, · · · , D
s

, X

)

P(X)
(2)

The softmax distribution has several important properties.

• optimizing the likelihood function to estimate the dis-

tribution parameters is a convex problem, which guar-

antees convergence to a global maximum

• the likelihood ratio, or how likely one decision is

compared to another, is a single hyperplane defining

a decision boundary

• the final estimates have Gaussian statistical confidence

regions, given enough data.

Ref. [1] outlines a solution procedure for this joint density

in order to find a common, conditional density. The steps

include:
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1) Using Bayes Theorem on the right side to separate out

all s the internal softmax variables random variables;

2) applying the rules of conditional independence (for the

directed graph) to the right side;

3) marginalizing out all internal softmax variable, D
l

on

the left side.

These simplifications then yield:

P (D|X) =
∑

D
1
:D

s

P
(

D|D
1

, · · · , D
s
)

·

s
∏

l=1

P
(

D
l
∣

∣

∣
X

)

(3)

Equation (3) shows that the likelihood P (D|X) can be

written as a function of the internal softmax densities, and

a discrete random variable density which selects which

softmax random variables contribute to the decision density.

Notice that this likelihood is identical to that of the original

softmax conditional probability, albeit with a more complex

functional representation. This implies that the BN decision

model block can be directly compared to other decision

model blocks of varying structure and complexity simply

by comparing their likelihood functions. Considering Fig. 2,

this implies that one can compare the likelihood functions

for each of the three examples shown in this figure. This

is a powerful result because both the structure and internal

density parameters can be optimized and compared using the

same likelihood function.

As described in [1], the BN decision block has the

following properties:

• For m − 1 convex decision clusters, the likelihood

function never has any minima;

• The asymptotic likelihood function has s! maxima, all

with identical likelihoods; and

• Parameter estimates, given sufficient data, have Gaus-

sian confidence regions as the softmax decision vari-

ables also had. Under a mild set of regularity conditions,

the MLE approaches a normal distribution Therefore,

one can develop confidence bounds about the weight

estimates (and decisions) using Gaussian theory or a

Chi-square distribution with nw degrees of freedom.

A final point is a result of the asymptotic MLE theory: Even

with multiple maxima, the regularity conditions still hold and

therefore, the Gaussian error properties hold as well.

III. ROBOFLAG GAME

A. Background

RoboFlag, is a simulation and experimental testbed [3],

[13] with autonomous, fast-moving teams of vehicles, and is

therefore an excellent system to aid in the development and

evaluation of realistic solutions for semi-autonomous control.

The objective of the RoboFlag competition [4] is to venture

into opponent territory, locate and capture the “flag,” and

return to the “home base.” Many key aspects future systems

are included in this game, including a human operator, team

dynamics, different levels of tasking, cooperative planning,

and uncertainties such as incomplete information, latency,

and an intelligent adversary.

RoboFlag exists in both hardware (real robots), and soft-

ware (a real time simulator). A software arbiter read a text

ID Probability 

Bars

Search play

User ID input

Location Uncertainty Circles

Search Robot

ID Robot

Sensing Radius

Fig. 3. RoboFlag GUI for the first set of games implemented by
AFRL/HECP.

file where game conditions, such as vehicle and sensor types,

communication cones, weather patterns, etc., can be changed

and updated. The arbiter also relays commands to the robots.

B. Description

A set of RoboFlag games was conceived to study op-

erator decision making within a search-and-identify type

of mission. Operators controlled three vehicles: two fast

moving search vehicles (SV 1, SV 2), each with the ability

to locate entities; and one slow moving ID vehicle (IDV ),

with the ability to both locate entities and identify their

type. During the mission, three entities could be encountered:

a stationary flag; a stationary red robot that can tag blue

vehicles which come in too close proximity; and a red Chaser

vehicle (CHSR), designed to chase any blue vehicle within

a particular range. Upon getting tagged, a blue team vehicle

must automatically return all the way to home base at a very

slow pace before it can return to play.

At first, when an entity is detected by the search vehicles,

its location is highly uncertain and is contained inside a

probability circle. Slowly the uncertainty radius decreases

as more localization data is collected, i.e. while target is

in sensor field-of-view. Search vehicles can cooperate and

fuse sensory information in order to improve information

collection. The ID vehicle collects identity information more

quickly if the location uncertainty is small. When users are

confident of the final entity type, the user chooses (flag or red

robot) formally using a GUI input, as shown in Fig. 3. Once

both targets have been localized and identified by the user,

he may then terminate the game by pressing the “Finish”

button and the final time gets recorded.

As shown in Fig. 3, uncertainty information is displayed

as an uncertainty circle which decreases in size as more

information is collected by the search vehicle. This decrease

is approximately exponential, and mimics traditional estima-

tion/tracking software. The ID probability is given by a bar

on the right side of the GUI. Only the ID vehicle could move

the probability from its initial, a priori value.

Users had two approaches to controlling the robots: 1)

single way points by selecting a vehicle, i.e. left-clicking

on it, followed by a way point allocation, i.e. right-clicking

at the desired destination , and 2) selecting the search play

button, followed by the entry of a series of way points. In

addition, cooperation could be enabled by the user command-

ing two search vehicles to go to a single target (with the
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effect of reducing the uncertainty faster), or by reducing the

uncertainty before or while the ID vehicle was near the target.

C. Experiment

Experiments were led by Dr. Scott Galster at AFRL/HE.

Sixteen subjects were selected from the AFRL subject pool.

Data recorded included all robot telemetry, and all users

clicks (saved as “events.”). Each event was assumed to be

a user decision (even a continuation of the current user

decision).

Each subject was initially trained, and then completed a

4x4 matrix of 16 trials, where two parameters were varied:

1) Location of targets within field

2) Type of targets (i.e., 0/2,1/1 and 2/0 of tagging

robot/flag)

In addition, to facilitate decision evaluation, digital videos

were recorded for all trials. Finally, four additional trials

were added after the original 16, where users were asked

to “describe” their decisions, actions, and strategies during

the games.

IV. EXPERIMENTAL RESULTS

Figure 4 recapitulates the performance for the 16 subjects

over their 20 trials. It is hard to compare the subjects

performance between trials and amongst each other due to

the randomization of each trial’s initial conditions. However,

there appears to be a slight decrease in mean final game

time from trial #1 to trial #16 as the subjects are learning

and becoming more efficient.
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Fig. 4. Performance per trial: Final game time for all subjects at each trial
with their mean time (solid line).

As mentioned in the previous section, the workload for the

subject is increased during trials #17 to 20 as they have to

describe on the fly what they are doing while being recorded.

This translates into a slight increase in final mean time for

these trials compared to the ones just before. However, one

can still see how the subjects have learned since these trials

are repeats of trials #1 to 4.

A. Strategic Level Human Decisions

Table I describes the list of the strategic level decisions

made by the human operators when tasking the robots.

Unless a subject specifically states what his intention was

when tasking a robot, there is no direct mean to determine the

actual true decision. Instead, the strategic decisions must be

probabilistically inferred from the current state of the world

the actual tactical control input, i.e. way point assignment

when the mouse event was recorded.

TABLE I

DEFINITION OF THE HUMAN OPERATOR STRATEGIC LEVEL

DECISIONS/ACTIONS WHEN ALLOCATING TASKS TO VEHICLE.

Decisions: Definitions:

StrategicPos Strategic positioning: Positioning of an asset so it is
ready to use later, e.g. usually the first moves before
starting target search.

SaftyZone Move to Safety Zone.
ID/Localiz Positioning to ID and/or Localize one of the Targets.
ID/LocalizBothPositioning to ID and/or Localize Both Targets.
SearchTarget Searching for either or both Targets.
SearchChaser Searching for Chaser.
Escort Escort ID vehicle: Tasking a Search vehicle to either i)

move along with the ID vehicle on its way to a Target
to protect it from the Chaser, or ii) guard a position
somewhere along the ID vehicle’s path to the target to be
ready to decoy the Chaser. Note: This move is different
than ”SearchChaser” and ”Decoy” which are used to
actively find and decoy the Chaser.

Evade Evading, i.e. getting away from Chaser to prevent being
tagged.

Evade+ID/Loc Evading and IDing/Localizing Target Combination: Get-
ting away from Chaser while intently IDing and/or
Localizing one, or both, of the Targets.

Evade+Search Evading and Searching for Targets Combination: Getting
away from Chaser while intently searching for remaining
Target(s).

Decoy Attracting the Chaser away from the ID Vehicle or
keeping it distracted by intently getting chased.

Decoy+Localiz Decoying and Localizing a Target Combination: Decoy-
ing Chaser while Localizing one, or both, of the Targets.

Decoy+Search Decoying and Searching for Target Combination: Get-
ting away from Chaser while intently searching for the
remaining Target.

Avoid Immediate reaction to Avoid collision with either a
Target or Chaser when suddenly detected. Next move
usually consists in positioning to ID/Localize the newly
detected Target or Evade the Chaser.

SelectionError Operator Selection Mistake: Usually when the operator
tries to select an agent but clicks next to it resulting in
a wrong destination (waypoint) assignment.

Other Other unlisted decisions.

Figure 5 illustrates the actual total number of times each

of the actions described in Table I were used. Unsurprisingly,

the operators spent a lot of time searching targets and

positioning their robots either strategically for later use, or

for IDing/Localizing the targets. Another play that ended

consuming a lot of the subjects attention was the combination

of Searching for and Decoying the Chaser in order to leave

the path free for the slow ID vehicle to make its way to

IDing the targets. This required a high level of attention and

coordination on the part of the users as they had to keep a

search vehicle within the Chaser’s sensor field-of-view while

making sure not to get tagged by it. In fact the total number

of events recorded for these two plays together is larger than

any of the other events.

Tables II and III respectively show how the ID and search

vehicles’ strategic decision mode probabilities are assumed

to be conditioned on the state vectors. Each“x” in the

tables indicates that the mode in the corresponding row is

conditionally dependent on one or more of the scalar state
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Fig. 5. Frequency of human strategic decisions defined in Table I. Note that
these were compiled by human observers whose interpretations are subject
to uncertainty.

TABLE II

SEARCH VEHICLE i STRATEGIC LEVEL DECISION MATRIX: GENERAL

CONDITIONAL DEPENDENCIES ON STATE VECTORS MARKED BY “X”’S.

Decisions: Partial State Vectors

U
Strategic

SV i
XSV i XSV j XIDV XTRGT1 XTRGT2 XCHSR

StrategicPos x x x x x
SaftyZone x x x x
Localize x x x
LocalizeBoth x x x
SearchTarget x x x x
SearchChaser x x x x x
Escort x x x x x
Evade x x
Evade+Loc x x x x
Evade+Search x x x x
Decoy x x x
Decoy+Loc x x x x x
Decoy+Search x x x x x
Avoid x x x x
SelectionError x x x x x

TABLE III

ID VEHICLE STRATEGIC LEVEL DECISION MATRIX: GENERAL

CONDITIONAL DEPENDENCIES ON STATE VECTORS MARKED BY “X”’S.

Decisions: Partial State Vectors

U
Strategic

IDV
XIDV XSV i XSV j XTRGT1 XTRGT2 XCHSR

StrategicPos x x x x x
SaftyZone x x x x
ID/Localiz x x x
ID/LocalizBoth x x x
SearchTarget x x x x x
Evade x x
Evade+Loc x x x x
Evade+Search x x x x
Avoid x x x x
SelectionError x x x x x

variables of the state vector in the corresponding column. For

instance, the probability of the ID vehicle mode “Evade” is

conditioned on knowledge of the ID vehicle’s location and

the location of the chase vehicle, which are contained in the

state vectors XIDV and XCHSR, respectively. As with all

DBNs, these conditional dependence assignments are based

on designer experience. However, the definition of these state

variables is also convenient since all non-decision states are

observable and serve as the basis for all other observable

information about the state of the game that are important in

operator decision making.

However, not all vehicle decision modes are conditioned

easily on the given state variables, since some decisions may

depend on more subtle relationships between variables in the

vehicle and target states. For instance, the mode “Localize”

for each search vehicle can be assumed to be conditionally

dependent on the relative distance of each search vehicle to

the nearest target.

Initial results of decision modeling for how the 16 users

tasked the Search and ID vehicles are shown in the following

subsections based on the intuitive state dependency matrices

of Tables II and III. For instance in subsections IV-B and

IV-C the models assumes three tasks for the ID vehicle:

1) move vehicle to a loiter pattern, 2) move vehicle near

target to identify its type, and 3) move vehicle to avoid the

Chaser. Decisions of which modes to task the ID vehicle

were primarily a function of the uncertainty circle size,

probability of ID, and range to the Chaser.

B. Case 1: ID Vehicle Evade

Fig. 6 shows the simplest case of avoiding the chaser.

Users always tasked the ID vehicle to avoid the Chaser when

the range to the Chaser was small; this decision was not a

function of the other system variables.
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Fig. 6. Decision data and decision boundaries from the RoboFlag games:
Operator tasking the ID robot to Evade Chaser.

C. Case 2: ID Vehicle ID/Localize

Fig. 7 shows that users typically tasked the ID vehicle to

move and identify the target when the ID probability was

small; the uncertainty was also usually small, but occasion-

ally users would coordinate the motion of two vehicles and

task the ID vehicle as the search vehicles were moving. The

loiter task was commonly used at the start of the game and

in mid-game as a waiting point.

D. Case 3: Multiple decisions

Figs. 8(a) to (c) are three different representations of the

same decision data for i) Strategic Positioning, ii) Search

Target, iii) Move to ID/Localize, and iv) Move to Safety

Zone. Fig. 8(a) corresponds to the actual vehicle state loca-

tion at the time of the decision while Fig. 8(b) represents

the tactical control input corresponding given that strategic

decision. Fig. 8(c) is just another way of representing the data
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Fig. 7. Decision data and decision boundaries from the RoboFlag games:
Operator tasking the ID robot to move and identify an entity, or to loiter
before being re-tasked.
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Fig. 8. Decision data from the RoboFlag games: (a) tasked vehicle sate
location at mouse event; (b) way point location assigned to vehicle, and (c)
relative destination assigned to vehicle.

of Fig. 8(b). This shows that it is often possible to distinguish

more easily certain decisions depending on which states their

are projected.

E. Case 4: Evade vs. Decoy decisions

Figs. 9(a) to (c) represent the same projections as de-

scribed in Subsection IV-D for the Evade and Decoy deci-

sions. Although both decision occurs for similar state loca-
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Fig. 9. Decision data from the RoboFlag games: (a) tasked vehicle sate
location at mouse event; (b) way point location assigned to vehicle, and (c)
relative destination assigned to vehicle.

tion (Fig.9(a)) their tactical outputs are very distinguishable

when compared in Figs. 9(b) and 9(c). Evade tend to send

the vehicle back into the safe zone while Decoy tend to

move around in the the enemy zone ”making circles” around

the Chaser clearly illustrated by the radial relative moves in

Fig. 9(c).

F. Case 5: Target identification decisions

Fig. 10 illustrates the operators target identification deci-

sions. Basically when a subject felt he had acquired enough

information about a target type corresponding to a high

ID probability he would submit his identification input.

Most subjects waited until they had reached at least 80%

of probability of the target being either a robot or a flag.

However, in some cases, the subject became frustrated by

getting his ID vehicle tagged multiple times and decided to

ID the target even without information rather than having

to wait for the vehicle to become available again. Note that

no data point are in the upper right corner of Fig 10 above

the dash dotted sensing boundary. This boundary correspond
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Fig. 10. Decision data and decision boundaries from the RoboFlag games:
The Data points represents the information available to the users when
they ID’ed the Targets with sensing boundary (dash dotted line) and type
uncertainty threshold (horizontal dashed line).

to the combined rate of reduction of location and ID type

uncertainties when the ID vehicle is positioned in close

proximity to the target. Therefore the only parameter directly

affecting the decision in this case is the ID probability.

V. CONCLUSIONS AND ONGOING WORK

A modeling methodology for coupled operator-multiple

vehicle systems is proposed using a unified framework in a

probabilistic graph setting. The framework uses conditional

probabilistic dependencies between all elements, leading to

a Bayesian network with probabilistic evaluation capabil-

ity. Vehicle attitude/navigation states and target/classification

states can be evaluated using nonlinear estimators such as

the EKF, Multiple Model filter, information filter, or other

approaches. Discrete operator decisions are being modeled

as Bayesian network blocks, with conditional dependencies

on the vehicle and tracking estimators. Initial decision mod-

els use combinations of softmax and discrete probability

distributions. Maximum likelihood estimation is used to

estimate the structure and internal distribution parameters of

the model. Maintaining statistical formalism with the graph

and estimation tools will enables a probabilistic model with

confidence bounds to be developed.

The ongoing research effort aims at:

• Higher order decision models such as when decisions

are clustered in two distinct subspaces will be explored.

Approaches include clustering of decision data and

mixtures of Gaussians.

• Recursive models which add time dependency and

maintain statistical rigor will be developed. Approaches

include a log-likelihood receding horizon, underbound-

ing the likelihood for potential inference methods, and

neural network tools with a statistical evaluation at the

output.

• Models for prediction are being developed because of

the statistical rigor of the BN and optimization of the

likelihood. Confidence estimates using Gaussian tails

or Chi-square hypothesis testing allow the model to

be used predictively, with the weight error models as

dependent parameters.

• Structural Learning will attempt to find the best fit with

minimal conditional dependencies in the BN model.

Approaches include using the Bayesian Information

Criterion and likelihood ranking.

Finally, two RoboFlag tests will be implemented. The first

will study the use of cooperative vehicle decision aids, and

the second will study adaptive tasking [9], where the game

will switch between manual and decision aids with varying

levels of autonomy in order to maximize performance.

ACKNOWLEDGEMENTS

This work is partly supported by the Air Force Office of

Scientific Research (AFOSR), USAF, under contract number

FA9550-05-1-0118. The views and conclusions contained

herein are those of the authors and should not be inter-

preted as necessarily representing the official policies or

endorsements, either expressed or implied, of AFOSR or the

U.S. Government.

REFERENCES

[1] M. Campbell, S. Sukkarieh, and A.H. Goktogan. Operator decision
modeling in cooperative uav systems. In Proceedings of The AIAA

Guidance, Navigation, and Control Conference (GNC’06), Keystone,
CO, August 2006.

[2] Mark Campbell, Raffaello D’Andrea, David Schneider, Atif Chaudhry,
Steve Waydo, Jeff Sullivan, Jesse Veverka, and Atif Klochko. Roboflag
games using systems based, hierarchical control. In American Control

Conference, Denver, CO, 2003.
[3] R. D’Andrea and M. Babish. The roboflag testbed. In American

Control Conference, Denver, CO, 2003.
[4] R. D’Andrea and R. Murray. The roboflag competition. In American

Control Conference, Denver, CO, 2003.
[5] Scott M. Galster and R. S. Bolia. Decision quality and mission

effectiveness in a simulated command and control environment. In
Second Human Performance, Situation Awareness, and Automation

Conference, 2004.
[6] D. Heckerman. A tutorial on learning with bayesian networks.

Technical report, Microsoft Corporation, 1995. MSR-TR-95-06.
[7] Alex Kirlik. Modeling strategic behavior in human-automation inter-

action: Why an ”aid” can (and should) go unsused. Human Factors,
35(2):221–42, 1993.

[8] K. Murphy. Dynamic Bayesian Networks: Representation, Inference

and Learning. PhD thesis, UC Berkeley, 2002.
[9] R. Parasuraman. Effects of adaptive function allocation on human

performance. In D.J. Garland and J.A. Wise, editors, Human Factors

and Advanced Aviation Technologies. ERAU, Daytona Beach, FL,
1993.

[10] R. Parasuraman, S. Galster, and C. Miller. Human control of multiple
robots in the roboflag simulation environment. In IEEE International

Conference on Systems, Man, and Cybernetics, Washington DC, 2003.
[11] R. Parasuraman and V.A. Riley. Humans and automation: Use, misuse,

disuse, abuse. Human Factors, 39:230–253, 1997.
[12] N.B. Sarter, D. Woods, and C. Billings. Automation surprises. In

G. Salvendy, editor, Handbook of Human Factors and Ergonomics.
Wiley, New York, NY, 1997.

[13] D. Schneider, M. Campbell, S. Galster, A. Klochko, and J. Veverka.
The roboflag test system for decentralized autonomous and semi-
autonomous cooperative multi-agent systems research. submitted IEEE

Transactions on Control Systems Technology, 2006.
[14] Thomas B. Sheridan. Telerobotics, Automation, and Supervisory

Control. MIT Press, Cambridge, MA, 1992.
[15] P.N. Squire, S.M. Galster, and R. Parasuraman. The effects of levels

of automation in the human control of multiple robots in the roboflag
simulation environment. In Second Human Performance, Situation

Awareness, and Automation Conference, 2004.
[16] J. Veverka and M. Campbell. Experimental study of information

load on operators in semi-autonomous systems. In AIAA Guidance,

Navigation and Control Conference, Austin TX, 2003.

FrD5.1

4379


