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Abstract— Modeling and scheduling of cluster tools are crit-
ical to improving the productivity and to enhancing the design
of wafer processing flows and equipment for semiconductor
manufacturing. In this paper, we extend the decomposition
methods in [1] for multi-cluster tools with buffer/process
modules (BPMs). The computation of the lower-bound cycle
time (fundamental period) is presented. Optimality conditions
and robot schedules that realize such lower-bound values are
then provided using “pull” and “swap” strategies for single-
blade and double-blade robots, respectively. The impact of
BPMs on throughput and robot schedules is studied. It is
found that such an impact depends on the BPM processing
time and the cycle times of the decomposed clusters on both
sides of BPMs. A chemical vapor deposition (CVD) tool is
used as an example of multi-cluster tools to illustrate the
proposed method, analysis, and algorithms. The numerical and
experimental results demonstrate the effectiveness and efficiency
of the algorithms.

I. INTRODUCTION

Cluster tools are widely used as semiconductor manu-
facturing equipment. In general, a cluster tool consists of
three types of modules (Fig. 1): cassette modules (CM)
store the unprocessed and processed wafers, process modules
(PM) execute semiconductor manufacturing processes, such
as chemical vapor deposition (CVD), and transfer modules
(TM), which are robot manipulators, move wafers among
process modules and between process and cassette modules.
During a semiconductor manufacturing process, wafers are
transported by robots from the cassette module, sequentially
go through various process modules, and then return to the
cassette module.

We consider an inter-connected M -cluster tool shown in
Fig. 2. A buffer module Bi between Ci and Ci+1 (Fig. 2)
is called a buffer/process module (BPM) if it also functions
as a process module with processing time tBP

i . The use of
BPMs can make a cluster tool more compact and save the tool
footprint and cost. The existence of BPMs could, however,
affect the throughput and the robot schedule because its
dual role as a process module could introduce a significant
complexity in the analysis. We discuss robot scheduling of a
multi-cluster tool with BPMs. Our goal is to find an optimal
schedule that minimizes cycle time and, therefore, maximizes
throughput.

Cassette module

Process module Transfer module

C1 C2

R

P1

P2 P3

P4

Fig. 1. A schematic of a cluster tool.

For cluster tools, robot movement and wafer processing
sequences repeat cyclically at steady state. Like most of the
literatures, we consider the cycle time for a one-wafer action
sequence as the optimization objective. A one-wafer action
sequence is defined as a sequence of robot actions which pick
and place each module exactly once [2].

In [3], [4], analytical models of steady-state throughput are
discussed for a cluster tool equipped with single-blade and
double-blade robots. A single-blade robot can usually hold
only one wafer at a time while a double-blade robot has
two independent arms and, therefore, can hold two wafers
at a time. For a single-blade robot, Perkinson et al. [3]
propose a “pull” (or so-called downhill) optimal schedule
strategy for the robot moving sequence. For a double-blade
robot, Venkatesh et al. [4] propose one optimal schedule by a
“swap” action. Dawande et al. [2] summarize the sequencing
and scheduling in robotic cells, which is similar to cluster
tools. Geismar et al. [5] extend the result in [6] and discuss
the throughput and scheduling analysis of a robotic cell with
a single-gripper robot and parallel stations. Ding et al. [7]
extend the network model in [8] for a general study of a
multi-cluster tool.

Recently, Geismar et al. [9] discussed a robotic cell with
three single-gripper robots for semiconductor manufacturing.
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Fig. 2. A schematic of an inter-connected M -cluster tool.

In [7], an integrated event graph and network model is used
to find all optimal schedules for a multi-cluster tool. In [10]
and [11], several rule- or priority-based heuristic scheduling
methods of robot actions of multi-cluster tools have been
discussed. However, there are few analyses and comparison
studies of those heuristic methods in terms of optimality. This
paper extends the robot scheduling results in Yi et al. [1]
for multi-cluster tools. The main goal of this study is to
analytically investigate the throughput and robot scheduling
of multi-cluster tools with BPMs.

The remainder of this paper is organized as follows.
We present and extend the robot scheduling results for a
single-cluster tool in section II. In section III, we present
algorithms to compute the lower-bound of the minimal cycle
time and discuss the optimality conditions and optimal robot
schedules. In section IV, we analyze the buffer/process
modules (BPMs). An example of throughput analysis and
robot scheduling is investigated for a CVD tool in section V.
Finally, we summarize with concluding remarks.

II. CLUSTER TOOL CONFIGURATIONS AND

SINGLE-CLUSTER SCHEDULING

A. Cluster tool configuration

For the M -cluster tool shown in Fig. 2, we assume that
robot Ri, i = 1, · · · ,M , takes the same amount of time Ti

to pick and place a wafer and that robot transfer time Ti and
PM processing time tij are deterministic. We also consider
the assumptions that (1) all wafers follow the identical visit
flow V, (2) cassette modules always have wafers/spaces, (3)
each robot Ri is either single-bladed or double-bladed, (4)
buffer module Bi (or BPM) has either one- or two-wafer
capacity, and (5) each cluster must connect to at least one,
but at most two other clusters, and these clusters cannot form
a loop inter-connection.

We also call cluster Ci a transfer cluster if (1) Ri is a
single-blade robot, (2) there is no process module in Ci,
and (3) both side buffer modules (or BPM) have one-wafer
capacities. Due to the fact that there is not enough wafer
storage space to flexibly move wafers, we will handle transfer
clusters slightly different.

For the cyclic production pattern in which wafers are
driven by a fixed sequence of robot actions, we can only
consider the sequencing and timing of robot actions. We
can denote the robot schedule π as a doublet of its actions
ACTi and their relative starting times STi in one cycle:
π={ACTi, STi}, i = 1, 2, · · · ,m, and m is the total number
of robot actions. We define the optimal schedules as the set
of any repeated one-wafer cycle under which the throughput
of the cluster tool is maximized. It is observed that if an
optimal schedule πo maximizes the throughput μ, it must
minimize the cycle time T (π). In this paper, we adopt the
terminology “fundamental period,” denoted as FP in the
literature, for the minimal one-wafer cycle time [1], [3], [4],
namely, FP = min

π
T (π).

B. Single-cluster tool optimal schedule

1) Maximal cassette waiting time strategy: A single-
cluster tool could be running in two possible regions: process-
bound and transfer-bound regions. For a single-blade robot,
the robot “pull” strategy is optimal and for double-blade
robot, the “swap” strategy is optimal [3], [4]. Considering
a N -PM cluster tool, denote the maximum and minimum
processing time as tmax and tmin, respectively, tmax =
max1≤j≤N{tj}, tmin = min1≤j≤N{tj}. If we consider
the cassette module functions as a process module P0 with
zero processing time, i.e. t0 = 0, then we can calculate the
fundamental period FP as [1]

FP = 2rT + max
1≤j≤N

{tj , t0, 2(N + 1 − r)T}, (1)

where r = 1 if R is double-blade and r = 2 if single-blade.
When the single-cluster robot scheduling is applied to a

multi-cluster tool, it is important to analyze the robot idle
time at the inter-connected buffer modules. We need to indeed
consider how to allocate the robot idle time (or waiting time)
at the cassette modules. We define the robot cassette waiting
time, tR, as the time lag of robot R between the moments
when finishing the action “pick an unprocessed wafer from
input cassette” and starting the subsequent action “place a
processed wafer into output cassette.” It is noted that the
“pull” and “swap” robot strategies for a single-cluster tool
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are maximal cassette waiting time strategies. We can also
find alternative “pull” and “swap” strategies to minimize the
robot cassette waiting time.

2) Minimal cassette waiting time strategy: We can con-
sider scheduling robot R to wait as long as possible at
the process module with the minimal processing time. We
denote the robot waiting time at the PM with the minimum
processing time as tPM

idle . Let δt = tmax − tmin. Then the
maximal robot waiting time at the module with the minimum
processing time is tPM

idle = min{δt, tidle}.
We propose the following minimal cassette waiting time

“pull” and “swap” strategies that minimize tR by allocating
most of tidle to the process module with minimal processing
time: (1) Robot R’s action sequence follows the maximal
cassette waiting time “pull” and “swap” strategies, respec-
tively. (2) Single-blade robot R waits tPM

idle before moving an
unprocessed wafer into the PM with processing time tmin.
(3) Double-blade robot R places a processed wafer into the
cassette right after it picks an unprocessed wafer from the
cassette.

Using either the minimal cassette waiting time “pull”
strategy (for single-blade robot) or the “swap” strategy (for
double-blade robot), we can show that the fundamental period
FP (1) can be maintained unchanged while the robot cassette
waiting time tRmin is minimized as

tRmin =
{

0 if r = 1
max{tmin − 2(N − 1)T, 0} + 2T if r = 2.

(2)
Without confusion, we will abuse the notation tR to denote
tRmin in the rest of the paper unless explicitly indicated.

It is common that there may exist several identically
parallel PMs that perform exactly the same functionality. We
consider a single cluster tool C with N process steps. We
denote li as the number of parallel modules for process Pi,
i = 1, · · · , N . Define the least common multiple (LCM) of
li as λ = LCM(l1, · · · , lN ). We can extend the results in [5]
and re-write Eq. (1) as

FP = 2rT +

max
1≤i≤N

{
ti + 2r(1 − li)T

li
, t0, 2(N + 1 − r)T

}
.(3)

III. OPTIMAL SCHEDULING OF MULTI-CLUSTER TOOLS

A. Computation of the lower-bound fundamental period

In [1], a decomposition method to decouple the intercon-
nection among clusters is presented to analyze the steady-
state performance and robot scheduling results. The key of
the decomposition approach is to decouple the link between
clusters. As shown in Fig. 2, for Ci, we know that wafers
flow in or out of the cluster through either buffer modules
or cassette modules. Ci exchanges wafers with Ci−1 through
Bi−1, i > 1. Bi−1 plays dual roles: for Ci, Bi−1 acts like
a fictitious cassette module; for Ci−1, on the other hand, it
acts like a fictitious process module.

We can consider decoupling a multi-cluster tool into a
set of independently running single-cluster tools by treat-
ing buffer modules as either fictitious cassette modules or

fictitious process modules. We can then find the minimal
fundamental period FPd∗

i
1 for each Ci. After we obtain

the set {FPd∗
i }, i = 1, · · · ,M , we can identify the lower-

bound value as the largest FPd∗
i , which will determine FP

for the entire system.
Assume that a decoupled Ci has Ni ≥ 0 PMs and denote

the fictitious process module as the (Ni+1)th PM, denoted by
P ∗

i(Ni+1). We assume that P ∗
i(Ni+1) has a fictitious processing

time td∗i(Ni+1) and the fictitious cassette module C∗
i has a

wafer supply time td∗i0 . From Eq. (1), we can obtain FPd∗
i

as follows.

FPd∗
i =

{
4Ti + td∗i(Ni+1) + td∗i0 if Ci is a transfer cluster

2riTi + tmd
i otherwise,

(4)

where tmd
i = max

1≤j≤Ni

{tij , td∗i(Ni+1), t
d∗
i0 , 2(Ni + 2 − ri)Ti}.

Fictitious cassette C∗
i ’s supply time td∗i0 can be considered

as the minimum loading delay time of Ri−1 [1]

td∗i0 =
{

2ri−1Ti−1 Si−1 = 1
max{Ti−1 − (2ri − 1)Ti, 0} Si−1 = 2.

(5)

The value of td∗i(Ni+1) depends on the minimal loading time
delay at P ∗

i(Ni+1). Similarly, we can calculate td∗i(Ni+1) as

td∗i(Ni+1) =
{

2ri+1Ti+1 + tRi+1 Si = 1
max{Ti+1 − (2ri − 1)Ti, 0} Si = 2.

(6)

B. Optimality conditions of the lower-bound fundamental
period

The lower-bound fundamental period FP computed in the
previous section might not be realized due to the fact that
we use a minimal time interaction between adjacent clusters
in the computations. Therefore, it is natural to ask what are
the optimality conditions under which the computed FP is
feasible, and how can an optimal robot schedule under these
conditions be found. We have the following results 2.

Proposition 1: For an M -cluster tool, the computed fun-
damental period FP in the previous section is feasible if for
each cluster Ck, k > 1, the minimal robot cassette waiting
time tRk satisfies the following condition

tRk ≤
{

FP − 2rk−1Tk−1 − 2Tk if Sk−1 = 1
2FP − 2rk−1Tk−1 − 2Tk if Sk−1 = 2.

(7)

C. Robot scheduling

The following is a “no waiting” schedule that has been
implemented to achieve FP: once the wafer has been placed
into the process module, the process can start right away.
For such a schedule, each process starting time is completely
dependent on the robot action starting time. For robot Ri and
decoupled Ci, we denote its schedule as πi. After a proper
timing shift of πi’s starting time by the inter-connection
relationships, they can be fitted into a multi-cluster schedule
π with fundamental period FP. Algorithm 1 describes an

1We use the superscript “*” to denote the variables associated with
fictitious modules.

2Due to the page limit, we neglect all propositions’ proofs in this paper.

WeC10.1

987



algorithm to find optimal robot schedule. In Algorithm 1,
mi denotes the the number of robot Ri actions of decoupled
Ci.

Algorithm 1: A “no-wait” optimal robot scheduling.
Input : Cluster tool configuration, wafer flow V, and

fundamental period FPm

Output: Scheduling π for V
Obtain the decomposed schedule πi = {ACT j

i , ST j
i },

j = 1, · · · ,mi, for cluster Ci, i = 1, · · · ,M , using (a)
“swap” strategy (ri = 1) or (b) the minimal cassette
waiting time “pull” strategy (ri = 2).
Initialize system schedule as π ← π1.
for i = 2 to M do

Search for ACT s
i−1 ∈ πi−1 that picks wafers from

Bi−1/BPi−1. Mark ACT s
i−1 starting time as

ST s
i−1.

T shift
i ← ST s

i−1 − 2Ti.
for j = 1 to mi do

Update ST j
i ← ST j

i + T shift
i .

end
π ← π + πi.

end

IV. BUFFER/PROCESS MODULES (BPMS)

We consider that there is a BPM BPk between Ck and
Ck+1,1 ≤ k ≤ M−2, (Fig. 3). BPk has either a one- or two-
wafer capacity. We denote the incoming BPM (wafer flow
from Ck to Ck+1) as BPk1 and the outgoing BPM (wafer
flow from Ck+1 to Ck) as BPk2, respectively. If BPk has a
one-wafer capacity, Sk = 1, then BPk1 and BPk2 share the
same physical buffer device. If BPk has a two-wafer capacity,
Sk = 2, BPk1 and BPk2 are independent buffer devices. For
presentation simplicity, we use Fig. 3 to represent both cases.
Let tBP

k1 and tBP
k2 be the processing time of BPk1 and BPk2,

respectively.

Ck

BPk1

BPk2

Ck+1

Rk Rk+1

ACTk1I ACTk1O

ACTk2IACTk2O

Fig. 3. A combined buffer/process module (BPM) with a two-wafer
capacity.

We define the following notations T s
k = Tk+Tk+1, TB

k =
tRk+1 + tTk , and tTk = 2(rk − 1)Tk, where tRk is the minimal
robot cassette waiting time for the decoupled cluster Ck. We
can first compute the fundamental period by the decompo-
sition algorithm in section III assuming that there were no
BPM within the cluster tool, namely tBP

k1 = tBP
k2 = 0. We

denote such a calculation as FP0. Depending on the BPM
wafer capacity and processing times tBP

k1 and tBP
k2 , we can

obtain the following results.
Proposition 2: For an M -cluster tool with a BPM BPk

between clusters Ck and Ck+1, the fundamental period FP
of the cluster tool can be calculated as

• If Sk = 1

FP =
{

FP0 if tBP
k1 + tBP

k2 ≤ FP0 − 2T s
k − TB

k

tBP
k1 + tBP

k2 + TB
k + 2T s

k , otherwise.
(8)

• If Sk = 2

FP =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

FP0 if (tBP
k1 , tBP

k2 ) ∈
4⋃

i=1

Ti

max
{
tBP
k1 , tBP

k2

}
+ T s

k if (tBP
k1 , tBP

k2 ) ∈
6⋃

i=5

Ti

tBP
k1 +tBP

k2 +T B
k

2 + T s
k , if (tBP

k1 , tBP
k2 ) ∈ T7,

(9)
where T1-T7 are defined as Eqs. (17a)-(17g) on the next page
(and graphically shown in the tBP

k1 -tBP
k2 plane in Fig. 4).

Moreover, the “pull” strategy for single-blade robots and
the “swap” strategy for double-blade robots can be used to
achieve FP calculated above.

1

2

3

4

7
6

5

O

tBP
k1

tBP
k2

|tBP
k2 − tBP

k1 | = T B
k

tBP
k1 + tBP

k2 = 2(FP0 − T s
k ) − T B

k

FP0 − T s
k

F
P

0 −
T

sk

FP0 − T s
k − T B

k

F
P

0
−

T
s k

−
T

B k

Fig. 4. FP calculation for different BPM process times tBP
k1 and tBP

k2 if
Sk = 2.

The BPM analysis can be integrated into the fundamental
period computation algorithms discussed in the previous
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T1 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
ki ≤ FP0 − T s

k − TB
k , i = 1, 2

}
, (17a)

T2 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
k1 ≤ FP0 − T s

k − TB
k , and FP0 − T s

k − TB
k ≤ tBP

k2 ≤ FP0 − T s
k

}
, (17b)

T3 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
k2 ≤ FP0 − T s

k − TB
k , and FP0 − T s

k − TB
k ≤ tBP

k1 ≤ FP0 − T s
k

}
, (17c)

T4 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣FP0 − T s
k − TB

k ≤ tBP
ki ≤ FP0 − T s

k , i = 1, 2, and tBP
k1 + tBP

k2 ≤ 2(FP0 − T s
k ) − TB

k

}
,(17d)

T5 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
k1 > FP0 − T s

k , and tBP
k1 − tBP

k2 ≥ TB
k

}
, (17e)

T6 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
k2 > FP0 − T s

k , and tBP
k2 − tBP

k1 ≥ TB
k

}
, (17f)

T7 =
{

(tBP
k1 , tBP

k2 ) ∈ R
2
+

∣∣tBP
k1 + tBP

k2 > 2(FP0 − T s
k ) − TB

k , and
∣∣tBP

k2 − tBP
k1

∣∣ < TB
k

}
. (17g)

section. Suppose there exist Q BPMs within the M -cluster
tool, where Q ≤ M − 1, and we denote the BPM indexing
set as Q. We can calculate the fundamental period of the
cluster tool with BPMs based on Proposition 2. Algorithm 2
describes such a modified fundamental period calculation.

Algorithm 2: FP calculation of a cluster tool with
BPMs.

Input : Cluster tool configuration and wafer flow V
Output: Fundamental period FP for V
Calculate FP0 assuming tBP

ij = 0, i ∈ Q, j = 1, 2
for i ∈ Q do

Calculate FPi for each BPM BPi using Eqs. (8)
or (9).

end
FP ← max

i∈Q
{FPi}.

For robot scheduling with BPMs, it is proper to schedule
in the way such that BPk2 process ends right before action
“Rk picking wafer from BPk2” starts, and BPk1 process
starts right right after action “Rk placing wafer into BPk1”
ends. Then in Algorithm 1, we can modify the calculation
T shift

i ← ST s
i−1 − 2Ti − tBP

(i−1)2.

V. EXPERIMENTAL EXAMPLES

In this section, we demonstrate how to apply the proposed
methodology to semiconductor manufacturing practice and
show one example that has been used at Intel Corporation.

Thin film tools are widely used in semiconductor man-
ufacturing to deposit metals onto a silicon wafer surface
using either chemical vapor deposition (CVD), physical vapor
deposition (PVD), sputter, etc. Fig. 5 shows a layout of
an ALD/CVD cluster tool. This is a two-cluster tool. The
service cluster C1 includes a double-blade robot R1, cassettes
C11 and C12, and four process modules (chambers): parallel
process modules P i

11 and P i
12, i = 1, 2. The processing

cluster C2 includes a double-blade robot R2 and three process
modules (chambers) with P 1

22 and P 2
22 are parallel modules.

BP11 and BP12 are BPMs. All processing wafers follow the
visit route (the split arrows indicate the flow at parallel PMs)

C11

C12

P 1
11 P 1

12

P 2
12P 2

11

P 1
22

P 2
22

P21BP11

BP12

R1

R1

R1

R1

R1R2R2

R2

Cassette module

Transfer module

Process module

C11 C12

P 1
11

P 1
12 P 2

12

P 2
11

P 1
22

P 2
22

P21

BP11 BP12

R1

R2

C1

C2

Fig. 5. A schematic layout of a CVD cluster tool.

TABLE I

PROCESS AND TRANSFER TIME (IN SEC.) OF THE CVD CLUSTER TOOL

T1 T2 t11 t12 tBP
11 tBP

12 t21 t22

10.9 10.5 78.7 144.3 0 68.6 64.4 230.6

The CVD cluster tool can be decomposed into two single
clusters, C1 and C2, as shown in Fig. 5. We can directly
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apply the decomposition technique discussed in section III
to this two-cluster tool. We have to use Eq. (3) for parallel
process modules in both clusters C1 and C2. For C1 and C2,
the redundant level is l11 = l12 = 2, and from Eqs. (3)-(4),
we have FPd∗

1 = 83.05 sec. FPd∗
2 = 125.8 sec. We can

calculate the FP0 of the two-cluster CVD cluster tool as
FP0 = max{FPd∗

1 ,FPd∗
2 } = 125.8 sec.

For BPMs BP11 and BP12, we find that

max{tBP
11 , tBP

12 }+T1 +T2 = 90 < FP0 = 125.8 sec. (18)

Therefore, by Eq. (9), BPMs BP11 and BP12 do not have
any impact on the entire cluster tool throughput. Therefore,
the fundamental period for the cluster tool is

FP = FP0 = 125.8 sec. . (19)

From Proposition 1, we know that the computed FP
for the CVD cluster tool is achievable. To illustrate the
optimal schedule, we label all robot actions as in Table II.
Following Algorithm 1, we compute the robot schedules3 as
shown in Table II, which complies with the calculated FP.
We further use an event-graph/network based method [7] to
verify the optimal scheduling for the CVD cluster tool. The
simulation gives the same results. The production at one Intel
Corporation fab achieved a throughput of 28.6 wafers per
hour (125.8 sec. cycle time per wafer) at the steady state.
The production results further validate the analytical and
simulation studies.

VI. CONCLUSION

In this paper, we extended a decomposition method to
analyze the steady-state throughput and robot scheduling of
a multi-cluster tool with buffer/process modules for semicon-
ductor manufacturing. We first extended the existing single-
cluster scheduling results with robot minimal cassette waiting
time “pull” and “swap” strategies for single- and double-
blade robots. Based on these extensions, we discussed the
lower-bound of the fundamental period of multi-cluster tools
and optimality conditions under which such a lower-bound
cycle time is feasible. Algorithms to compute the maximum
throughput and to schedule the robots were proposed and an-
alyzed. The impact of the combined buffer/process modules
(BPMs) on cluster tool throughput and scheduling depends on
the BPM processing time and decomposed cluster cycle times
on both sides of BPMs. The proposed analytical and compu-
tational approach provided an efficient systematic method to
study the throughput and scheduling of multi-cluster tools.
An example of a CVD cluster tool at Intel Corporation was
used to illustrate the proposed decomposition methods.
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