
  

Abstract - This paper presents a new controller for 
controlling a number of feature points on a robot manipulator 
to trace desired trajectories specified on the image plane of a 
fixed camera. The controller is designed to cope with the case 
when the intrinsic and extrinsic parameters of the camera as 
well as the robot parameters are not calibrated.  The controller 
employs the depth-independent image Jacobian to map the 
errors on the image plane onto the joint space. By using the 
depth-independent image Jacobian, it is possible to linearly 
parameterize the unknown camera parameters in the closed 
loop dynamics of the system. A new algorithm is developed to 
estimate unknown parameters on-line. We have proved 
asymptotic convergence of the image errors by Lyapunov 
method with a full consideration of dynamic responses of the 
robot manipulator and demonstrated the performance by 
experiments. 
  

Index Terms - Visual Servoing , Tracking Control, Adaptive 
Control, Uncalibrated  Parameters 

I. INTRODUCTION 
MAGE-BASED visual servoing is a problem of realizing 
motion control of robots by controlling a set of feature 
points using the visual feedback from a camera, which can 

be either mounted on the end-effector [1][2] or fixed at a 
position near the robot [3]. There are two kinds of 
image-based visual servoing problems, namely regulation 
and tracking control of the feature points. In the regulation 
problem, the controller moves the feature points to desired 
positions on the image plane, while in the tracking problem 
the feature points are to trace time-varying trajectories.   

Tremendous efforts have been made to the regulation 
problem of visual servoing since late 1980’s [4][5]. However, 
works on the visual tracking problem are limited. 
Papanikolopoulos et al. [6] developed a visual tracking 
algorithm based on on-line estimation of the depth of the 
target. Hsu et al. [3] proposed an adaptive visual tracking 
controller for a planar robot manipulator. Zergeroglu et al. [7] 
designed a tracking controller for planar robots with uncertain 
parameters. Xiao et al. [8] developed a hybrid controller for 
tracing trajectory on a plane in an uncalibrated workspace 
with a fixed camera.  We developed a dynamic tracking 
controller in [9][10][11] by assuming camera parameters are 
unknown. In this paper, we will extend our work to cope with 
the case when the robot parameters are not calibrated. 

In this paper, we address the problem of controlling a 
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number of feature points on a robot manipulator to trace 
desired trajectories specified on the image plane of a fixed 
camera when the intrinsic and extrinsic parameters of the 
camera as well as the robot physical parameters are unknown. 
A new adaptive controller, taking into account the nonlinear 
robot dynamics, will be presented. The difference between 
the real and estimated projection is included in the adaptive 
law to guarantee that the estimated camera parameters will 
converge to the real one. To cope with nonlinear dependence 
of the image Jacobian on the unknown camera parameters, 
this controller employs a matrix called depth-independent 
image Jacobian which does not depend on the scale factors 
determined by the depths of feature points. A new Lyapunov 
function is employed to prove asymptotic convergence of the 
trajectory errors on the image plane. We have implemented 
the controller on a 3 degrees of freedom manipulator and 
demonstrated its good performance by experiments. 

II. KINEMATICS AND DYNAMICS 
This section reviews the kinematics and dynamics of the 

visual servoing system using an uncalibrated fixed camera. 

 
Fig. 1 A fixed camera setup for visual tracking. 

 
As shown in Fig 1, there are k feature points marked on the 

robot manipulator, which are being traced by the vision 
system. Assume that the camera intrinsic and extrinsic 
parameters as well as the robot physical parameters are not 
calibrated. The problem addressed is defined as follows: 
Problem 1: Given desired time-varying trajectories of the 
feature points on the image plane of the fixed camera, design  
proper joint inputs for the robot manipulator under the 
aforementioned assumptions such that the feature points 
asymptotically trace the desired trajectories. 

Denote the joint angle of the manipulator by a 1×n vector 
q(t), where n is the number of degrees of freedom. Denote the 
perspective projection matrix of the camera by 43×ℜ∈M . 
Denote the image coordinates of feature point i on the image 
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plane by T
iii vut ),()( =y  and its homogenous coordinates 

with respect to the robot base frame by a 14×  vector )(tix . 
From the robot kinematics, 

)())(()( ttt ii qqJx && =                                (1) 
where ))(( ti qJ  is the Jacobian matrix of the robot 
manipulator associated with feature point i. Under the 
perspective projection model, the coordinates are related by 

                         )(
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ci Pxy =                               (2) 

where 42×ℜ∈P  is the matrix consisting of the first two rows 
of the perspective projection matrix M; )(tzi

c  denotes the 
depth of the feature point i with respect to the camera frame: 
                             )())(( 3 ttz i

T
i

c xmq =                                      (3) 

where T
im denote the i-th row vector of the perspective 

projection matrix M. Differentiating eq. (2) gives rise to the 
velocity relationship:   
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where )(tiA  represents the following 42× matrix: 
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The matrix )(tiA  is called depth-independent interaction 
matrix in [5], and ))(()( tt ii qJA  is called depth-independent 
image Jacobian matrix. The components of the 
depth-independent interaction matrix are linear to the 
components of the perspective projection matrix.  Define by 

)(tQ  the combined depth-independent image Jacobian 
matrix: 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

))(())((
...

))(())((
))(())((

)( 222

111

tt

tt
tt

t

kkk qJyA

qJyA
qJyA

Q                         (6) 

The dimension of the matrix )(tQ  is nk ×2 , From (4) and 
(6), 
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It is well known in computer vision that the perspective 
projection matrix M has a rank of 3. Our early work [5] 
demonstrated that the depth-independent interaction matrix 

)(tiA  has a rank of 2. 
Property 1: Given the world coordinates of a sufficient 
number of feature points and their projections on the image 
plane, the perspective projection matrix M can be determined 
only up to a scale.    

From Property 1, we can fix one component of the matrix M. 
List the remaining 11 components in a vector θ , which is 
called the parameter vector:  

),,,,,,,,,,( 3332312423222114131211 mmmmmmmmmmmT =θ
Property 2: For any 14×  vector ρ , the product ρA )(ti  
can be written in the following linear form: 

   θyρDρA ))(,()( tt iii =                               (8) 
where ))(,( tii yρD is a regression matrix without depending 
on the intrinsic and extrinsic parameters of the camera.  
It is well-known that the dynamic equation of the robot 
manipulator has the form: 

τqgqqqCqHqqH =+⎥⎦
⎤
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2
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where ))(( tqH is the nn× positive-definite and symmetric 
inertia matrix. ))(),(( tt qqC &  is a skew-symmetric matrix. The 
term ))(( tqg represents the gravitational force, and τ  is the 

1×n joint input of the robot manipulator. 
The robot dynamical equation enjoys one property that will 
be of great use to us in parameter estimation: 
Property 3: The dynamics of the robots are linear in the 
physical parameters ϕ  as 
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where  ))(),(),(),(( tttt qqqqF &&&&  is the regressor matrix.  

III. ADAPTIVE IMAGE-BASED VISUAL TRACKING 
This section proposes a new controller that forces the 

feature points to trace their desired trajectories while 
estimating the unknown parameters on-line.  

A. Definition of Nominal References 
Denote the desired trajectory of the i-th feature point on the 

image plane by ))(),(),(( ttt ididid yyy &&& , where )(tidy , )(tidy&  
and )(tidy&&  represent the time-varying desired position, 
velocity and acceleration, respectively. For convenience, 
introduce the following nominal reference:  
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where )(tiy∆  is the position error of the feature point on the 
image plane: 

)()()( ttt idii yyy −=∆                              (12) 
The iλ  is a positive constant. The error of the feature point to 
the defined nominal reference is given by                                                      

)()()()()( ttttt iiiiriiy yyyys ∆+∆=−= λ&&&              (13) 

Note that the image errors )(tiy∆  and )(tiy&∆  are 
convergent to zero if the error vector )(tiys  is convergent to 

zero. For convenience, we define )(tyh as follows: 
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Denote the time-varying estimation of the unknown 
parameters θ  by )(ˆ tθ . Using the estimated parameters, we 
introduce the following nominal reference to map the image 
errors onto the joint space of the robot manipulator: 
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where )(ˆ t+Q  is the pseudo-inverse of the estimated matrix 

)(ˆ tQ . Assume that  nk >2 , and hence 

)(ˆ))(ˆ)(ˆ()(ˆ 1 tttt TT QQQQ −+ =                      (16) 

From eq.(16), the estimated matrix )(ˆ tQ  must be full rank in 
order to calculate the pseudo-inverse.  Then the error vector in 
the joint space is given by 

)()()( ttt rq qqs && −=                            (17) 

B. Estimation of the Unknown Parameters 
The proposed controller employs an on-line algorithm to 

estimate the unknown parameters.  
As for the unknown camera parameters, which is designed 

based on the following three points. First, the nonlinear 
regression term in the closed loop dynamics is canceled.  
Second, the rank 3 condition of the estimated projection 
matrix is satisfied so that the pseudo-inverse )(ˆ t+Q   in (16) is 
computable. Finally, we want to minimize on-line the error 
between the real image coordinates of the feature point and 
those calculated using the estimated projection matrix )(ˆ tM . 
First, to derive the regression term, we consider 
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where 3K  is a positive definite matrix. As to be shown in the 
next subsection, this product is closely related to the 
regression term in the closed-loop dynamics. Note that  
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By submitting eq. (19) into eq. (18), we have 
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From Property 2, the last term in eq. (20) can be represented 
as a linear form of the estimation errors of the parameters, and 
hence eq. (18) can be re-written as  
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Consider another term to derive regression term: 
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Next, we consider how to guarantee the existence of the 

pseudo-inverse of  )(ˆ tQ . It is important to note: 
Proposition 1: The estimated depth-independent interaction 
matrix )(ˆ tiA  is of rank 2 if )(ˆ tM  has a rank of 3. 
Proposition 2: Assume that the manipulator is not at the 
singular configuration and the end-effector is rigid. If the 
estimated projection matrix )(ˆ tM  has a rank 3, the 

pseudo-inverse of the matrix )(ˆ tQ can be always calculated.  
The proofs of the two propositions are given in [11]. To 

guarantee the matrix )(ˆ tM  has a rank of 3, we introduced the 
following the potential force ([11]):  
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Finally, we consider the error between the real image 
coordinates of the feature point and those calculated using the 
estimated projection matrix: 

)()(ˆ)()(ˆ)( ttttzt iii
c

i xPye −=                (28) 
)(tie  is called estimated projection error of the feature point, 

considering eq.(2), we can re-write the equation as follows: 
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Noting the relation (3), we have   
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From Property 2, eq. (30) can be represented in a linear form 
of the parameter estimation errors:    

    )())(),(()( tttt iii θyxWe ∆=                 (31) 
Note that the error )(tie changes with time. The matrix 

))(),(( tt ii yxW  does not depend on the parameters. 
Based on the above discussions, the following adaptive 

rule is proposed for updating the estimation of the parameters: 
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(32) 
whereΓ , 1B  and 2B  are positive-definite and diagonal gain 
matrices, and their dimensions are, respectively, 1111× , 

33× , and 1111× . Note that the first two terms are regressive 
terms and the third term represents on-line minimization of 
the estimated projection error )(te  in the gradient descending 
direction. The fourth term generates a repulsive force from 
values of the parameters that result in singular estimated 
projection matrix. 

As for the robot dynamics parameters, we design the 
following adaptive rule: 
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C. Controller Design 
Based on the nominal references and the adaptive rule in 

the previous section, we propose the following controller: 
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) 
where )3,2,1( =iiK are positive-definite gain matrices. The 
first terms use the estimated robot physical parameters to 
cancel the inertia forces, the nonlinear centrifugal and 
Coriolis forces, and the gravitational force. The second term 
represents a feedback in the joint space. The last term is the 
image error feedback.   

It is important to note that by using the depth-independent 
interaction matrix in [5], the depth factor )(/1 qzc does not 
appear in control law. From Property 3, the robot dynamics 
can be revised as 
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By substituting the control law into the robot dynamics, we 
obtain the following closed loop dynamics: 
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where )()(ˆ)( ttt ϕϕϕ −=∆  is the robot physical parameters 
estimation errors. 

D. Stability Analysis 
We here analyze the stability of the robot manipulator 

under the control of the proposed controller and adaptive 
algorithm. For simplicity, we assume that the feature points 
are visible during the motion so that their depths with respect 
to the camera frame are always positive.  Following is the 
main result of this paper: 
Theorem 1: Under the control of controller (34) and the 
adaptive rule (32)(33), the feature points are convergent on 
the image plane in the following way:  
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Proof: Introduce the following non-negative function: 
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(38) 
Multiplying the )(tTq& from the left to the closed loop 
dynamics (36) results in 
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From equation (18), we have 
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By multiplying the )(tTθ∆  from the left to the adaptive 
rule of camera parameters (32), we obtain 
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By multiplying the )(tTϕ∆  from the left to the adaptive 
rule of robot physical parameters (33), we obtain 

)())(),(),(),(()()()( 4 tttttttt q
TT sqqqqFK &&&&& ϕϕϕ ∆−=∆∆   (42) 

By combining the equations (39)-(42), we have, 
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(43) 
We properly select a gain 2K  such that  

IK
Γ

≥
)0(

2
Vσξ                                 (43) 

where ξ  is the maximum eigenvalue of gain matrix 2B  and 
σ is a positive constant greater than 1. The gain 3K is so 
selected that  

IK α=3                                        (45) 
where I is the identity matrix. From (43), the )(tV& is 
non-positive and the function V(t)  never increases its value so 
that it is upper bounded.  From the definition (38), bounded 
V(t) directly implies that the joint velocity, the image errors, 
and the estimation errors are all bounded. Then, we can claim 
the boundedness of the )(tqs&  from the closed-loop dynamics 

(36) and that of  )(ˆ tθ&  from the adaptive algorithm (32). 
Therefore, the joint velocity )(tq& and the estimated 
parameters are uniformly continuous. Therefore, from the 
Barbalat’s Lemma, we can conclude that 

0hKQ =∞→ )()(ˆlim 3 tt y
T

t                         (46) 

0s =∞→ )(lim tqt                                  (47) 

0θyxW =∆∞→ )(ˆ))(),((lim ttt iit                  (48) 
From (48), in computer vision, it is well known that seven 
non-coplanar positions of a feature point can be used to 
determine the perspective projection matrix up to a scale. 
Therefore, the estimated camera parameters will be 
convergent to the true values up to a scale.  

Generally speaking, it is not possible to conclude the 
convergence of the feature points to the desired trajectories 
from eq. (46). The image errors are convergent to zero only 
when the number of the joints of the manipulator is larger 
than or equal to the dimension 2k of the image errors, i.e., 

nk ≤2 .  
We further consider the condition for the convergence of 

the image error )(tiy∆  when nk ≥2 . Note that all the feature 
points are on the rigid end-effector. Denote the position and 
orientation of the end-effector with respect to the robot base 
frame by a homogeneous transformation matrix )(teT , which 
changes with time during motion. The homogenous 
coordinates of the feature point i is given by  

                           i
e

ei tt xTx )()( =                             (49) 
where i

e x  denotes the position of the feature point with 
respect to the end-effector frame. Note that  i

e x   is a constant 
vector. Then, the image coordinates can be related as follows: 

         i
e

e
i

e
e

Ti t
t

t xPT
xTm

y )(
)(

1)(
3

=             (50) 

By substituting this equation into eq. (46), all the image 
coordinates are replaced by )(teT . Note that )(teT  can be 
parameterized by 6 unknowns, i.e. three translational and 
three rotational variables. When the manipulator has more 
than six degrees of freedom and the manipulator Jacobian 
matrix is not singular, eq. (46) implies the existence of more 
than six nonlinear equations. When the nonlinear equations 
admit only one solution of the position and orientation of the 
rigid end-effector, only one set of image coordinates 

))(),...,(),(( 21 ttt kyyy  satisfy the equation. Since 0y =∆ )(ti  
for all i are obviously a solution of the equation (46), we can 
conclude the convergence of the image errors of the feature 
points to zero. If the six nonlinear equations admit more than 
one solution, the image errors may not be convergent to zero. 

IV. EXPERIMENTS 
To verify the performance of the proposed controller, we 

have implemented the controller in a 3 DOF robot 
manipulator in the Chinese University of Hong Kong. Figure 
2 shows the experiment setup system. The robot manipulator 
designed by the Networked Sensors and Robotics Laboratory 
has three revolute joints driven by Maxon brushed DC motors. 
High-precision encoders with a resolution of 2000 pulses/turn 
are used to measure the joint angles. The joint velocities are 
obtained by differentiating the joint angles.  A Ptgrey camera 
connecting to an IEEE 1394 card installed in a PC with Intel 
Pentium IV CPU acquires the video signal with 120fps frame 
rate. This PC processes the image and extracts the image 
features. The sampling time used in the experiments is 13 ms. 

We mark a feature point on the end-effector of the robot 
manipulator. The desired trajectory of the feature point is to 
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trace the following circular trajectory: 

pixel
190+(0.2t)cos60-

265+sin(0.2t)60
)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×
×

=tdy  

The control gains used are 0002.0=Γ , 101 =K , 
0001.02 =K , 00075.03 =K , 1.01 =B  and 0001.02 =B . 

The initial estimation of the camera extrinsic parameters is 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−

=

1000
15.0010

1.0100
6.0001

T̂ . The real values of the intrinsic 

parameters are 1806=ua pixels, 1812=va pixels, 
2820 =u pixels and 2490 =v pixels. The initial estimations 

are 2000)0(ˆ =ua pixels, 2000)0(ˆ =va pixels, 
300)(ˆ0 =tu pixels and 300)0(ˆ0 =v pixels. The initial 

estimations of the robot physical parameters are: 

T)0061.00259.00004.0

002.00001.00012.00005.00035.00005.0
0027.00009.00005.000032.000022.0()0(ˆ

−
−=ϕ

The trajectory of the feature point and the position errors on 
the image plane are shown in Figure 3, which confirmed 
expected asymptotic convergence of the trajectory error to the 
zero under the control of the proposed method. 

V. CONCLUSIONS 
This paper proposed a new adaptive controller for 

trajectory tracking of a number of feature points on a robot 
manipulator using an uncalibrated fixed camera. The 
controller employs the pseudo inverse of the 
depth-independent interaction matrix to map the image errors 
onto the joint space of the manipulator.  A potential function 
is introduced to guarantee the existence of the pseudo inverse 
of the estimated depth-independent interaction matrix. A 
novel adaptive algorithm has been developed to estimate the 
unknown camera and robot physical parameters. It is 
rigorously proved by the Lyapunov method based on the 
nonlinear robot dynamics that the trajectories of the feature 
points are asymptotically convergent to the desired ones. 
Experimental results validated the proposed method. 

 

 
Fig. 2 The experiment setup 

 
(a) 

 
(b) 

Fig. 3 Experimental results: (a) the desired and real 
trajectories on the image plane. (b) the position errors on the 
image plane  
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