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Abstract— Human can pinch or grasp and manipulate an
object stably and dexterously. Accomplishment of such tasks is
contributed from human hand’s configuration, called “Fingers-
thumb opposability”. This opposability of the thumb against
other digits is specific and granted to only human among
primates. When we use a cell phone, or change a TV’s
channel using a remote controller, we grasp it by a palm
and digits other than the thumb, and push buttons using the
thumb quickly, without looking the buttons. These kinds of
thumb’s movement seem to be one of the most intelligent
movements in a human. Therefore, execution of such touching
tasks without visual or tactile sensing is called in this paper
“Blind Touching”. The goal of this research is to realize human-
like “Blind Touching” by means of a 5 D.O.F. thumb robot
model with soft and hemispherical finger-tip. To do this, we
formulate a simultaneous contact position and touching force
control by using 3-Dimensional rolling contact with the task
plane. First, dynamics of the 5 D.O.F. thumb robot model
with hemispherical soft finger-tip under rolling constraints is
derived. Then, a sensory-motor control law without vision, force
or tactile sensing is proposed. Some numerical simulations show
that the desired contact position and touching force can be
attained by the proposed control scheme. A theoretical proof
of convergence to the desired state is also presented.

I. INTRODUCTION

Dexterous movements of a human hand have attracted
much attention of many robotics researchers to develop
it in terms of both a structure and a control strategy. In
anthropology, it is said that these dexterous movements are
indebted to special configuration of human’s thumb, called
“Fingers-thumb opposition” [1]. This opposability of the
thumb is one of the unique configurations which can only be
seen in a human hand. When we use a cell phone, or change
a TV’s channel using a remote controller, we grasp it by
a palm and digits other than the thumb, and push buttons
using the thumb, without seeing themselves. These kinds of
movements can be realized by using proprioceptive informa-
tion which could have been obtained in the central nervous
system. Now, we call such movements “Blind Touching”.

As remarked above, the thumb plays a crucial role in
our everyday life. In this paper, we treat a human-like 5
D.O.F. thumb robot model with a soft hemispherical finger-
tip and show a coordinated sensory-motor control signal
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that realizes “Blind Touching”. It controls simultaneously a
contact position and touching force from the finger-tip to a
task plane by using 3-Dimensional rolling movement.

During the past three decades a number of robot hands
with single or plural fingers imitating mechanisms of human
fingers were designed and many of them were actually made
as reported in the literature [2–7]. However, there is a dearth
of papers that were concerned with human-like functions
of the thumb or index finger and, in particular, there is
little research works that attempted to design control signals
that can accomplish dynamically its desired functions. Very
recently, however, Arimoto et al. [8–10] found an interesting
class of sensory-motor coordination control schemes for
realizing precision prehension (pinching) of a rigid object in
a dynamic way by using a pair of robot fingers with multiple
joints. They showed that if the hand is preshaped to grasp
and placed in the vicinity of the object then the sensory-
motor signal realizes stable pinching without knowing object
kinematics and without using external sensings (tactile, force,
or vision). This control scheme was called “Blind Grasping”
and is now extended to applying for 3-Dimensional object
grasping and manipulation [11]. The most noteworthy clue
to the success is to have observed decisive roles of rolling
constraints between finger-ends and object surfaces, from
which tangential forces to the object surfaces arise. These
tangential constraint forces can be used for control of forces
and torques exerted to the object.

This paper also clarifies such important roles of rolling
constraint in a different situation that the finger-end is soft
and deformable and thereby an area contact arises. Therefore,
rolling contacts are expressed as a movement of the center of
contact circular area, which also induces a tangential force to
the object surface that is fixed in the task plane. We will first
derive Lagrange’s equation of motion of the 5 D.O.F. robot
thumb whose spherical soft end has such an area contact
with the task plane. Then, we will propose a sensory-motor
coordinated control signal based on the thumb’s opposability
and show that it realizes a desired hybrid position and force
control in a “Blind Touching” manner.

II. A 5 D.O.F. THUMB ROBOT MODEL WITH
HEMISPHERICAL SOFT FINGER-TIP

This section derives a 5 D.O.F. thumb robot model with a
hemispherical soft finger-tip. It is known in physiology that
the base joint of human thumb is a saddle joint. Human can
move the contact point between the thumb and task plane by
using 3-Dimensional rolling contact. In this paper, this saddle
joint is expressed by the two rotational axes, Z-axis and Y -
axis, whose crossing point is set as the origin of the fixed
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Fig. 1. A 5 D.O.F. thumb robot with a soft hemishperic tip model
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Fig. 2. A 5 D.O.F. thumb model on xy-plane
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Fig. 3. A 5 D.O.F. thumb model on yz-plane
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Fig. 4. A 5 D.O.F. thumb model on zx-plane

inertial frame. The 5 D.O.F. thumb robot model presented
here is illustrated in Fig. 1. Assume that only rolling contacts
between the finger-tip and task plane is allowed, and any
frictions except the viscous friction arising due to finger-tip
deformation are ignored. In this model, symbol O denotes
the first and second joint center (center of the saddle joint)
of the thumb and also the origin of Cartesian coordinates,
O0 denotes the center of hemispherical soft finger-tip whose
position in Cartesian coordinates is expressed as x0 =
(x0, y0, z0), and Oc denotes the center of contact area whose
Cartesian coordinates is expressed as xc = (xc, yc, 0), and
the radius of hemispherical finger-tip is r. Other symbols,
qi(i=1∼5), lj(j=1∼4) are defined in Fig. 1. Figs. 2∼4 show
the thumb model on xy, yz and zx-plane, respectively. Also
Fig. 5 shows spherical polar coordinates on the finger-tip to
illustrate the 3-Dimensional rolling contact.

A. 3-Dimensional Rolling Constraints

Now, let us consider 3-Dimensional rolling constraints
between the finger-tip and task plane. At the beginning, we
introduce spherical polar coordinates at the center of the
finger-tip Oc as shown in Figs 2∼5. The spherical polar
coordinates on the finger-tip can be expressed by joint angle
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f
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Fig. 5. Spherical polar coordinates at the center of the finger-tip

q = (q1, q2, q3, q4, q5)T ∈ R
5 as follows:

φ = π − q3 − q4 − q5 (1)

η = q2 (2)

And the maximum displacement Δz of deformation which
arises in the center of contact area can be given as follows:

Δz = r − cos q2 {l1 + l2 cos q3

+l3 cos(q3 + q4) + l4 cos(q3 + q4 + q5)} (3)
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Rotational movement of the finger-tip around the Z-axis at
Oc called “Spinning” in this model cannot occur because
the origin of Cartesian coordinates O and the center of
area contact Oc are on the same task plane and these are
constrained by the finger links. It is known that rolling-
constraints are given by the condition that the velocity of
the center of contact area on the spherical finger-tip relative
to that on the task plane is zero during movements. Montana
[12] formulated the 3-Dimensional rolling constraints in the
case of which the rigid and free sphere object is in contact
with the task plane from the kinematic viewpoint. Unlike
the above case, in this paper, we consider the case that the
soft and deformable hemispherical finger tip, which is not
free and constrained to Cartesian coordinates by the finger
links, makes not rigid pointwise but soft area contact with
the task plane. In order to formulate these 3-Dimensional
rolling constraints with area contact from the dynamical
viewpoint, it should be noted that the rolling velocity vector
on the surface of hemispherical finger-tip should be on the
tangential plane (now, it is the task plane) at the center of
contact area. By taking into account this necessary condition,
two non-holonomic rolling constraints between the finger-tip
and the task plane are given as follows:

(r−Δz)
d
dt

{cosφ · η} = − d
dt

(Lq1) (4)

(r−Δz)
d
dt

{cos η · φ} = − d
dt

L (5)

where L =
√

x2
c + y2

c stands for the distance between the
center of contact area Oc and the origin of Cartesian co-
ordinates O. Eq. (4) represents the rolling constraint toward
X-axis at Oc (see Figs. 2 and 4). Similarly, eq. (5) represents
the rolling constraint toward Y -axis at Oc (see Figs. 2 and 3).
Eqs. (4) and (5) can be reformulated as Pfaffian constraints
in the following [3]:

Aq̇ = 0 (6)

where q̇ ∈ R
5 is the angular velocity vector and A ∈ R

2×5

is the constraint matrix as follows:

A=

⎛
⎜⎜⎝
(r−Δz)

(
cosφ

∂η

∂q
+η

∂(cosφ)
∂q

)T
+

(
q1

∂L

∂q
+L

∂q1

∂q

)T

(r−Δz)
(
cos η

∂φ

∂q
+φ

∂(cosη)
∂q

)T
+

(
∂L

∂q

)T
⎞
⎟⎟⎠
(7)

B. Dynamic Model of Soft Finger-Tip

We now discuss lumped-parametrization of the contact
force caused by deformation of the finger-tip material which
was introduced by Arimoto et al. [8]. The reproducing force
f(Δz) arizing in the normal direction to the task plane at
the center of contact area Oc is given as follows:

f̄(Δz) = kΔz2 (8)

where k > 0 is a stiffness parameter depending upon the
finger-tip material. In parallel to this, it is important to

introduce a lamped-parametrized viscous force in such a
form as

f(Δz, Δż) = f̄(Δz) + ξ(Δz)Δż (9)

where ξ(Δz) is a positive scalar function depending upon
Δz.

C. Dynamics of The Thumb Robot

Let us derive the dynamics of this proposed thumb model.
Total potential energy P and total kinetic energy K of the
thumb model can be given as follows:

P = PT (q) + PF (Δz) (10)

K =
1
2
q̇TH(q)q̇ (11)

where PT (q) is the potential energy with respect to the
gravitational effect for the thumb, and PF (Δz) is the elastic
potential energy generated by deformation of the finger-tip
as expressed by

PF (Δz) =
∫ Δz

0

f̄(ζ)dζ (12)

H(q) ∈ R
5×5 is the inertia matrix of the thumb. Therefore,

Lagrange’s equation of motion can be derived by applying
Hamilton’s variational principle. It is given as

∫ t1

t0

[
δ (K−P )+ATλ− 1

2
∂ξ(Δz)Δż2

∂Δż
δΔz+uTδq

]
dt=0

(13)

where λ = (λX , λY )T ∈ R
2 is the vector of Lagrange

multipliers and its physical menaning is the rolling constraint
force, and u ∈ R

5 is an input torque vector. Hence,
Lagrange’s equation is given as follows:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇

−ATλ − f
∂Δx

∂q
+ g(q) = u (14)

where S(q, q̇) ∈ R
5×5 is a skew-symmetric matrix and

g(q) ∈ R
5 is the gravitational term coming from the

potential energy PT (q) for the thumb. Now, taking inner
product of the input u with the output q̇, and integrating it
within time t ∈ [0, T ) yields

∫ t

0

q̇Tu dτ = E(t) − E(0)

+
∫ t

0

ξ(Δz(τ))Δż(τ)2dτ ≤ −E(0) (15)

where E = K + P . This inequality means that the input-
output pair satisfies passivity [13].
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III. SENSORY-MOTOR CONTROL LAW TO
REALIZE “BLIND TOUCHING”

We are now in a position to design a sensory-motor control
signal that may realize “Blind Touching”. Assume that the
observable state variables are the joint angles q and angular
velocities q̇. Also the radius r of hemispherical finger-tip
is given, and a desired contact point position on the task
plane xd = (xd, yd,−Δz) is given from the proprioceptive
information in advance. In the case of the robot thumb, Δz
can be easily calculated from eq. (3) in real-time. Here, it is
remarkable that the desired position of z-component is given
as zd = −Δz which is not a constant, but a computable
time-dependent variable. This variable finally converges to
Δzd and thereby the desired touching force fd is established,
where Δzd is the maximum displacement of the finger-tip
such that f̄(Δzd) = fd. The input signal to control the
contact point position and touching force is now defined as
follows:

u =
fd

r
J0(q)T (x0 − xd) − Cq̇ + g(q) (16)

where J0(q) ∈ R
5×3 is the Jacobian matrix concerning

the center of hemispherical soft finger-tip x0 with respect
to q, C ∈ R

5×5(> 0) is a damping matrix, and g(q) is
to compensate the gravitational effect for the thumb. Also
fd/r stands for the gain to realize a desired touching force
fd and then, this controller proposed here is similar to the
conventional task-space controller proposed by Takegaki and
Arimoto [14]. It is remarkable in eq. (16) that this control
signal can be constructed only by physical parameters of
the thumb and measured information of its joint angles and
angular velocities. Now, substituting eq. (16) into eq. (14)
yields:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ − ATλ − f

∂Δz

∂q

−fd

r
J0(q)T (x0 − xd) + Cq̇ = Δu = 0 (17)

Then, taking inner product of the input Δu with the output
q̇ yields:

d
dt

V = −q̇TCq̇ − ξ(Δz(τ))Δż(τ)2 ≤ 0 (18)

where V is a scalar function expressed by

V = K + PF (Δz)

+
fd

2r

{
(x0 − xd)2 + (y0 − yd)2

} ≥ 0 (19)

In this formulation, the following relations are used.

q̇TAT = 0 (20)

∂Δz

∂q

T

= −J0(q)Trz, (rz = (0, 0, 1)T) (21)

Δż(f̄ − fd) =
d
dt

∫ Δz−Δzd

0

{
f̄(ζ + Δzd) − fd

}
dζ

=
d
dt

PF (Δz) (22)

Eq. (18) means that the closed-loop dynamics satisfies pas-
sivety. Since the scalar function V (t) is positive definite on
the constraint manifold and satisfies eq. (18), it follows that∫ ∞

0

‖q̇T(t)Cq̇(t)‖dt < V (0) (23)

Also V (t) is non-increasing with increase of t as follows:

0 ≤ V (t) ≤ V (0) (24)

Then |x0 − xd| and |y0 − yd| must be upper-bounded by
some positive values εx and εy. Also the function PF (δz)
with respect to δz = Δz − Δzd is positive definite in a
neighborhood of δz = 0. Then δz must be upper-bounded by
some value εzM (= ΔzM −Δzd) so that PF (δzM ) ≤ V (0).
Hence ξ(Δz(τ)) is upper-bounded and thereby it follows
from eq. (18) that∫ ∞

0

|Δż(t)|2dt < +∞ (25)

Now, we assume for the time being for the sake of conve-
nience that the joint angles qi(t) (i = 1 ∼ 5) are bounded
during movements, i.e.,

|qi(t) − qi(0)| < εqi, (i = 1 ∼ 5) (26)

where εqi (i = 1 ∼ 5) are some positive values. Then the
constraint matrix A is of rank(A) = 2 during movements,
and we can obtain the constraint force vector λ analitically
as follows:

λ =
(
AH−1AT

)−1
{

AH−1

(
1
2
Ḣ + S + C

)
q̇

−Ȧq̇ − AH−1B
}

(27)

where

B =
(

fd

r

∂x

∂q

fd

r

∂y

∂q

∂Δz

∂q

) ⎛
⎝x0 − xd

y0 − yd

f̄ − fd

⎞
⎠ ∈ R

5 (28)

and in this formulation, the derivertive of eq. (6)

Aq̈ = −Ȧq̇ (29)

is used. Hence, the norm of the constraint force vector ‖λ‖
is upper-bounded as follows:

‖λ‖ ≤ ελ (30)

where ελ is some positive value. Then the norm of the
vector of angular acceleration ‖q̈‖ should be upper-bounded
as follows:

‖q̈‖ ≤ εq̈ (31)

where εq̈ is some positive value. Thus, q̇(t) ∈ L2(0,∞) and
Δż(t) ∈ L2(0,∞) should be uniformly continuous. From
this result together with eqs. (23)∼(25), we can conclude
that

q̇(t)→0 and Δż(t)→0 as t→∞ (32)
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which implies that

−ATλ − f̄
∂Δz

∂q
− fd

r
J0(q)(x0 − xd)→0 as t→∞ (33)

Since z0 = r − Δz when the finger end is in contact with
the xy-plane, it follows that

(x0 − xd)T = (x0 − xd, y0 − yd, z0 + Δz)
= (x0 − xd, y0 − yd, r) (34)

By taking into account eq. (21), eq. (33) can be rewritten as
follows:

−ATλ − B→0 as t→∞ (35)

Since each column of the following matrix

W =
(

∂Δz

∂q

∂x0

∂q

∂y0

∂q
AT

)
∈ R

5×5 (36)

are independent during movements, eq. (35) implies{
x0(t)→xd, y0(t)→yd,
f̄(t)→fd, λ(t)→0 as t → ∞ (37)

and Δz → Δzd such that f̄(Δzd) = fd. Thus, the proof
of convergence is completed. Further, all these convergences
become exponential with order of e−αt with some positive
constant α > 0. The details of the rigorous proof of
exponential convergence is omitted in this paper due to the
page limitation. Fortunately, we conclude that we do not
need to assume the uniform boundedness of joint angles
|qi(t) − qi(0)| (i = 1 ∼ 5) in the proof of this exponential
convergence.

IV. NUMERICAL SIMULATION

In this section, some results of numerical simulations are
shown. The initial condition is given in Table I, and the
desired state is shown in Table II. All the physical parameters
of the thumb used in the simulations are given in Table
III. Fig. 6 shows the 3-Dimensional graphics expressing
simulation of “Blind Touching”. In this figure, the initial

TABLE I

INITIAL CONDITION OF THE THUMB ROBOT MODEL

Variable Value

q (0.0, 0.0, 0.69, 1.58, 0.61)T [rad]

x0 (0.0, 0.06, 0.01)T [m]

f(Δz) 0.0 [N] (Δz = 0 [m])

TABLE II

DESIRED TOUCHING FORCE AND CONTACT POINT POSITION, AND

DAMPING COEFFICIENT OF THE THUMB ROBOT MODEL

Parameter Value

fd 0.2 [N]

xd (0.005, 0.062,−Δz)T [m]

C diag(0.001, 0.0009, 0.0002, 0.0001, 0.00005)

TABLE III

PHYSICAL PARAMETERS OF THE THUMB ROBOT MODEL

Physical parameter Value

1st link length l1 0.01 [m]

2nd link length l2 0.05 [m]

3rd link length l3 0.03 [m]

4th link length l4 0.02 [m]

1st link mass center lg1 0.05 [m]

2nd link mass center lg2 0.025 [m]

3rd link mass center lg3 0.015 [m]

4th link mass center lg4 0.01 [m]

1st link mass m1 0.02 [kg]

2nd link mass m2 0.02 [kg]

3rd link mass m3 0.015 [kg]

4th link mass m4 0.01 [kg]

1st link inertia I1 diag(0.17, 0.17, 0.25)×10−6 [kg·m2]

2nd link inertia I2 diag(4.17, 4.17, 0.25)×10−6 [kg·m2]

3rd link inertia I3 diag(1.13, 1.13, 0.19)×10−6 [kg·m2]

4th link inertia I4 diag(0.33, 0.33, 0.13)×10−6 [kg·m2]

Radius of finger tip r 0.01 [m]

Stiffness coefficient k 2.0 × 105 [N/m2]

Damping scalar function ξ 8.0 × 103 × (2rΔz − Δz2)π

pose and the final one are shown. The red circle area on the
xy-plane is the contact area induced by deformation of the
finger-tip. The blue line in the xy-plane is the trajectory of
the center of contact area on the task plane. We see from
this figure that by rolling the finger-tip of the thumb moves
toward the desired position xd, the center of contact area xc

converges to the xd. Fig. 7 shows the transient responses of
the rolling constraint forces λX , λY and the touching force
f . We see from this figure that both rolling constraint forces
converge to zero. The settling time of λX is 0.4 [sec], and
that of λY is 0.6 [sec]. It means that the rolling movement is

Fig. 6. 3-Dimensional graphics of the simulation of “Blind Touching”
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Fig. 8. Transient response of position xc of the center of contact area

terminated at the xd. Also the touching force f converges to
the desired force fd = 0.2 [N] within 0.3 [sec]. Fig. 8 shows
the transient response of position of the center of contact
area xc. We see from this figure that xc and yc converge
to the desired values xd and yd, respectively. The settling
time of the x-component is 0.4 [sec], and that of the y-
component is 0.6 [sec]. In contrast, zc does not converge
to zd = −Δz because this steady-state error generates the
touching force f . To keep zc at zero, the finger-tip should
not be detached from the task space during movement. Fig. 9
shows the trajectory of position of the center of contact area
xc in the task plane. By rolling the finger-tip on the task
plane, the center of contact area converges to the desired
position.

Figs. 10∼12 show the simulation results when the desired
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Fig. 9. Trajectory of position xc of the center of contact area on the
xy-plane

position is given as one of the time-dependent value. The
time-dependent desired contact point given here is shown in
Table. IV. It is seen from Fig. 10 that even though the desired
position is time-dependent, the touching force converges to
the desired value quickly. Also the rolling constraint forces
λX and λY converge to zero. Figs. 11 and 12 show that the
position of the center of contact area converges to the desired
position, obviously.

V. CONCLUSION

This paper discussed possibility of “Blind Touching” by
using a 5 D.O.F. thumb robot model. The results of numerical
simulations suggest that “Blind Touching” proposed in this
paper can be realized by using a sensory-motor coordinated
signal that is constructed on the basis of the kinematic
information of the thumb itself, and measured data of joint
angles and angular velocities without using any external
visual, force or tactile sensing.

In the future work, we shall consider the situation of
non-contact phase between the finger-tip and the task plane,
and then, consider a control strategy in order to cope with
transition from the non-contact phase to the contact phase.

TABLE IV

TIME-DEPENDENT DESIRED CONTACT POINT xd

Time t [sec] xd [m]

0.0 ∼ 1.0 (0.002, 0.060,−Δz)T

1.0 ∼ 2.0 (0.002, 0.062,−Δz)T

2.0 ∼ 3.0 (−0.002, 0.062,−Δz)T

3.0 ∼ 4.0 (−0.002, 0.058,−Δz)T

4.0 ∼ 5.0 (0.002, 0.058,−Δz)T

5.0 ∼ 6.0 (0.002, 0.060,−Δz)T

6.0 ∼ 8.0 (0.0, 0.060,−Δz)T
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touching force f in the case of time-dependent desired contact position xd
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Fig. 11. Transient responses of position xc of the center of contact area
in the case of time-dependent desired contact position xd

At present, we have already obtained interesting preliminary
results on smooth transition from the non-contact phase to the
contact one by regulating gains fd and ci of C. The details
will be presented at the conference. Also we will extend this
approach to the arbitrary surfaces such as a cylinder, and so
on. Further, applications to more practical situations should
be discussed, that is, one of haptic devices to operate a cell
phone, remote controller, hand-held music boxes, or human-
machine interface like a game controller, and so on in place
of the human thumb.
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