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Abstract— Realization of an energy-efficient and high-speed
dynamic walking has come to be one of the main subjects
in the research area of robotic biped locomotion, and passive
dynamic walking has been widely attracted as a clue to solve
the problem. It has been empirically known that the effect
of convex curve shape of foot, which characterizes passive-
dynamic walkers, is important to increase walking speed. This
paper then investigates the driving mechanism of compass-
like biped robots and the rolling effect of semicircular feet
are mainly investigated. We first analyze the mechanism of
a planar fully-actuated compass-like biped model to clarify
the importance of ankle-joint torque introducing generalized
virtual gravity concept. In the second, a planar underactuated
biped model with semicircular feet is introduced and we show
that virtual passive dynamic walking by hip-joint torque only
can be realized based on the rolling effect. We then compare
with a flat feet model through linear approximation, and show
that the rolling effect is equivalent to its virtual ankle-joint
torque. Throughout this paper, we provide novel insights into
how ZMP-free robots can generate a dynamic bipedal gait.

I. INTRODUCTION

Passive dynamic walking (PDW) [2] has been considered
as a clue to elucidate the mechanism of energy-efficient
dynamic walking. By imitating or modifying the PDW mech-
anism, several energy-efficient dynamic bipedal walking
robots have been realized so far [7][3][4][5][9]. Major PDW-
inspired approaches to biped robot control tend to actuate a
simple legged machine gently by small power motors, and
are surely successful ways to achieve an efficient biped lo-
comotion. On the other hand, convex curve shape of the feet
also characterizes passive dynamic walkers [2], and is not a
feature of recent biped humanoid robots controlled based on
zero moment point (ZMP) [1]. The importance of such foot
shape or the rolling effect has been empirically recognized
[8][5], however, until now its theoretical investigation has
not been done.

Based on the observation, this paper studies the rolling
effect of semicircular feet on dynamic bipedal walking
through theoretical investigation and numerical analysis. We
consider the mechanism from the view point of generalized
virtual gravity concept [5] and clarify how the rolling effect
accelerates the robot’s center of mass (CoM) during stance
phase.

In this paper, we first introduce a fully-actuated compass-
like biped robot with flat feet and analyze the relation
between the CoM and the joint torques based on the inverse

F. Asano and Z.W. Luo are with Bio-Mimetic Control Research Center,
RIKEN, Nagoya 463-0003, Japan asano@bmc.riken.jp

Z.W. Luo is with the Dept. of Computer and Systems Engineer-
ing, Faculty of Engineering, Kobe University, Kobe 657-8501, Japan
luo@gold.kobe-u.ac.jp

transformation and generalized virtual gravity concept. The
importance of the ankle-joint torque is clarified. Secondly,
an underactuated compass-like biped robot with semicircular
feet and underactuated virtual passive dynamic walking by
hip-joint torque only are introduced. It is then clarified that
the dynamics of semicircular feet model can be transformed
to that of a fully-actuated model with flat feet and the rolling
effect functions as the ankle-joint torque through lineariza-
tion of the two walking systems and their comparisons. It
is theoretically shown that the rolling effect accelerates the
robot’s CoM forward as a virtual ankle-joint torque together
with the real hip-joint one during stance phase. Throughout
this paper, the authors provide novel insights for biped
walking control as ZMP-free robots.

II. MODEL AND MECHANISM OF PLANAR
FULLY-ACTUATED COMPASS-LIKE BIPED ROBOT

This paper first considers a planar fully-actuated compass-
like biped robot as shown in Fig. 1. The details of biped
model is described and the relation between the CoM and
the joint torques is investigated.

A. Mathematical model

This subsection describes the mathematical model of a
planar fully-actuated compass-like biped robot shown in Fig.
1, which consists of two leg links and three point masses
and has flat feet whose mass and thin can be neglected. The
dynamic equation is given by

M (θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = Su =

[

1 1
0 −1

][

u1

u2

]

(1)

where θ =
[

θ1 θ2

]T
is the generalized coordinate vector,

Su is the control input; u1 and u2 are the ankle-joint torque
and the hip-joint one, respectively. We assume that the stance
foot is always in contact with the ground at exactly one point
without slipping and has enough length according to the ZMP
range.

Total mechanical energy of the robot, E [J], is determined
as the sum of kinetic and potential energy and given by

E(θ, θ̇) =
1

2
θ̇

T
M (θ)θ̇ + P (θ). (2)

Its time derivative satisfies the following relation

Ė = θ̇
T
Su. (3)
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Fig. 1. Model of planar fully-actuated compass-like biped robot with flat
feet

B. Relation between center of mass and joint torques

Let rg =
[

Xg Zg

]T be the positional vector of CoM, and
its time derivative yields ṙg = Jg(θ)θ̇ where Jg(θ) ∈ R2×2

is the corresponding Jacobian matrix, which has a singularity
at θ1 = θ2. Except this condition, the following inverse
transformation from the joint torques to the translation force
at the CoM is possible.

fg = Jg(θ)−TSu (4)

We call the translation force, f g ∈ R2, generalized virtual
gravity, which represents a 2-dimensional driving force ex-
erting at the robot’s CoM. Eq. (4) can be rearranged as

f g = Jg(θ)−T

([

1
0

]

u1 +

[

1
−1

]

u2

)

=
mbu1

M∆g

[

sin θ2

cos θ2

]

−
rgu2

∆g

rg

rg

=: f 1 + f 2 (5)

where rg := |rg |, M := mH + 2m is the robot’s total mass
and

∆g := det(Jg) = −
mb(mH l + ma + ml) sin(θ1 − θ2)

M2
.

(6)

Note that Eq. (5) is written in the form consisting of two unit
vectors. Eq. (5) shows that the effect of ankle-joint torque,
f1, yields being parallel to the swing leg and that of the
hip-joint torque, f2, yields central force as shown in Fig.
2. Since fg has a singularity at θ1 = θ2, both vectors f 1

and f 2 diverges at this point and it is unsuitable to examine
the torque distribution effect based on this approach. The
ratio of |f1| to |f 2| is, however, kept finite regardless of the
singularity so long as u2 is not zero, which yields

|f1|

|f2|
=

mbu1

Mrgu2

. (7)
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Fig. 2. Relations between generalized virtual gravity vectors at CoM and
joint torques

In order to realize |f1| = |f 2|, as described in [5], magnitude
of u2 is much more required than that of u1. In other words,
u2 is more sensitive to f g than u1 in the meaning of vector
norm. In this sense u2 seems to be more advantageous than
u1 to propel the CoM forward, however, excessive use of u2

or small µ yields increasing the gravity during the first half
of cycle (See Figs. 6 and 10) and disturbing to overcome the
potential barrier at midstance.

In the next section, we propose an approach based on
orthogonal projection of f i on ṙg to avoid the singularity.

III. ANALYSIS OF VIRTUAL PASSIVE DYNAMIC
WALKING

It is known that the ankle-joint torque is relatively im-
portant and effective to drive the robot’s CoM forward. This
section investigates the mechanism of the joint torques’ effect
and clarifies the importance of the ankle-joint torque from
the generalized virtual gravity point of view.

A. Virtual passive dynamic walking

Let i be the link number (1, 2, · · ·) or the hip position
(H) in the following, and their corresponding X-positions
at each link’s CoM are denoted as Xi. Time derivative of
Xi is further denoted as Ẋi = JXi

θ̇ where JXi
∈ R1×2

is the Jacobian matrix corresponding to Xi. If we suppose
a uniform virtual gravity whose magnitude is g tan φ in X-
direction, where φ [rad] represents the virtual slope angle [3],
its equivalent transformed torque of the total virtual gravity
effect Suvg can be expressed as

Suvg =
∑

i

mig tan φJXi
(θ)T, (8)
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TABLE I
PHYSICAL PARAMETERS OF THE ROBOT

mH 10.0 kg
m 5.0 kg

l (= a + b) 1.0 m
a 0.5 m
b 0.5 m

and time derivative of E is then derived as follows.

Ė = θ̇
T
Suvg = g tanφ

∑

i

miθ̇
T
JXi

(θ)T

= g tanφ
∑

i

miẊi = Mg tan φ
d

dt

∑

i

miXi

M

= Mg tan φẊg (9)

This leads the following relation:

∂E

∂Xg

= Mg tan φ, (10)

which is the unified property of passive dynamic walking.
Following Eqs. (3) and (9), we obtain

Ė = θ̇
T
Su = Mg tanφẊg , (11)

which specifies the relation between the robot’s total mechan-
ical energy and the X-position of CoM. Since this equation
has a redundancy of the control inputs, we have to introduce
another constraint condition. Let us then consider a solution
by constant torque ratio, µ, which gives the condition of
u1 = µu2. By substituting this into Eq. (11), the solution
Su is determined as

Su =

[

µ + 1
−1

]

Mg tanφẊg

(µ + 1)θ̇1 − θ̇2

. (12)

We call this solution CTR formula [4]. Note that this solution
no longer has the meaning of a uniform virtual gravity in the
X-direction. The inverse transformation of this Su should
yield the generalized virtual gravity vector.

B. Typical behaviours of generalized virtual gravity

Fig. 3 shows the generalized virtual gravity vector along
the CoM orbit in the case of VPDW where φ = 0.02 [rad];
(a) µ = 2.5, (b) µ = 8.0. The robot’s physical parameters
are chosen as Table I. As seen from the results, the vectors
are going to diverge as the system closes with the singular
point of θ1 = θ2. As reported in [4], the walking system’s
performance in the case of µ = 8.0 is better or the walking
speed is faster than that in the case of µ = 2.5. The results
strongly appeal that the generalized virtual gravity in the case
of µ = 8.0 accelerates the CoM more effectively than that
of µ = 2.5, and this supports the Asano’s result in [4]. As
shown in Fig. 3, the generalized virtual gravity of µ = 2.5
has the unnecessary element perpendicular to ṙg more than
that of µ = 8.0, and this force element disrupts the forward
acceleration of CoM as described later.
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Fig. 3. Generalized virtual gravity vectors in virtual passive dynamic
walking with CTR formula

C. Analysis based on orthogonal projection on ṙg

The following relation is derived easily in the case of θ1 6=
θ2.

Ė = θ̇
T
Su = θ̇

T
JT

g J−T
g Su = ṙT

g f g (13)

Hence Eq. (11) can be interpreted the special case of Eq.
(13) with the generalized virtual gravity vector in the form

fg =

[

Mg tan φ

0

]

. (14)

In other words, Eq. (13) is the 2-dimensional case or the
generalized case of Eq. (11). Let pfg be the orthogonal
projection vector of f g on ṙg , considering Eq. (13), it is
given by

pfg =
ṙT

g fg

ṙ2
g

ṙg =
Ė

ṙ2
g

ṙg (15)
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Fig. 4. Time evolutions of coefficients of orthogonal projective vectors
pf1, pf2 and pfg

and this can be divided into two parts; f 1 by the ankle-joint
effect and f2 by the hip-joint effect, as follows.

pfg =
θ̇1u1 +

(

θ̇1 − θ̇2

)

u2

ṙ2
g

ṙg

=
θ̇1u1

ṙg

ṙg

ṙg

+

(

θ̇1 − θ̇2

)

u2

ṙg

ṙg

ṙg

=: pf1 + pf2 (16)

This projection enables to avoid the divergence at θ1 = θ2.
We remark that the norm ratio yields the power ratio as
follows.

|pf 1|

|pf 2|
=

∣

∣

∣
θ̇1u1

∣

∣

∣

∣

∣

∣

(

θ̇1 − θ̇2

)

u2

∣

∣

∣

(17)

We further define the coefficients of pf 1, pf2 and pfg

respectively as follows.

pf1 :=
θ̇1u1

ṙg

, pf2 :=

(

θ̇1 − θ̇2

)

u2

ṙg

, pfg :=
Ė

ṙg

(18)

Fig. 4 shows the time evolutions of pf1, pf2 and pfg in
VPDW with CTR formula where µ = 2.5 and 8.0. In VPDW
case, considering Ẋg > 0, the following inequality holds.

pfg =
Mg tan φẊg
√

Ẋ2
g + Ż2

g

≤
Mg tan φẊg

Ẋg

= Mg tanφ (19)

If Żg is 0 or sufficiently small, the equality in Eq. (19) holds.
In general, pfg ≈ Mg tan φ regardless of the system’s pa-
rameter choice because Żg is small and is strongly supported
by Fig. 4. We therefore conclude that, regardless of µ, the
vector fg has the magnitude of about Mg tanφ in the ṙg-
direction, and the reason why the walking speed is decreased
when µ is small cannot be explained by above investigation.

We now define the orthogonal vector of pfg as follows:
pf⊥

g := fg − pfg , (20)
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Fig. 5. Time evolution of norms of pf⊥g for µ = 2.5 and 8.0 in virtual
passive dynamic walking with CTR formula
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Fig. 6. Generalized virtual gravity conditions for small and large µ

and compare this magnitude with that of pf g. Note that
pf⊥

g does not contribute the mechanical energy restoration,
that is, ṙT

g
pf⊥

g = 0. Fig. 5 shows the time evolutions of
∣

∣

∣

pf⊥

g

∣

∣

∣
where µ = 2.5 and 8.0, and clearly implies that the

magnitude in the case of µ = 2.5 is larger than that of
µ = 8.0. This result implies that the walking speed decreases
when µ is small is not because it is impossible to drive
the CoM in the direction of ṙg but because there exists
a large unnecessary force in the direction perpendicular to
ṙg. Fig. 6 shows the conditions of f g and its projection
vectors for small and large µ. The magnitudes of pf g in
both cases are almost equal to Mg tan φ, whereas those of
pf⊥

g are different. In the case of small µ, it is clear that
pf⊥

g increases the gravity and disturbs propelling the CoM
forward to overcome the potential barrier at midstance.

IV. BIPED MODEL WITH SEMICIRCULAR FEET AND
UNDERACTUATED VIRTUAL PASSIVE DYNAMIC

WALKING

Now that we have discussed the mechanism of a flat feet
model, in this section, let’s investigate that of a semicircular
feet model.

A. Model with semicircular feet

Let θ =
[

θ1 θ2

]T
be the generalized coordinate vector

and uH be the hip-joint torque. The dynamic equation of the
robot is then given by

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = SuH =

[

1
−1

]

uH . (21)
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Fig. 7. Model of planar underactuated biped robot with semicircular feet

The details of the terms are as follows.

M(θ) =

[

M11 M12

M21 M22

]

, C(θ, θ̇) =

[

C11 C12

C21 C22

]

M11 = m
(

R2 + (a − R)2 + 2R(a− R) cos θ1

)

+(mH + m)
(

R2 + (l − R)2 + 2R(l − R) cos θ1

)

M12 = M21 = −mb (R cos θ2 + (l − R) cos θH)

M22 = mb2

C11 = −mR(a − R)θ̇1 sin θ1

−(mH + m)R(l − R)θ̇1 sin θ1

C12 = mbθ̇2(R sin θ2 − (l − R) sin θH)

C21 = mb(l − R)θ̇1 sin θH

C22 = 0

g(θ) =

[

− (mH l + ml + ma − MR) g sin θ1

mbg sin θ2

]

We denote the hip-joint torque and the relative hip-joint
angle respectively as uH and θH := θ1 − θ2 in the meaning
of distinguishing the underactuated model from the fully-
actuated one.

B. Underactuated virtual passive dynamic walking

Time derivative of the mechanical energy in this case
satisfies the relation Ė = θ̇HuH . Virtual passive dynamic
walking is then formulated as

Ė = θ̇HuH = Mg tan φẊg , (22)

and the hip-joint torque uH is uniquely determined as

uH =
Mg tan φẊg

θ̇H

. (23)

We call the walking style driven by only the hip-joint torque
of Eq. (23) underactuated virtual passive dynamic walking
(UVPDW) [5]. Eq. (23) has a singularity at θ̇H = 0, but this
does not make a matter because the system automatically
avoid the singular point [5]. Limit cycle walkers often exhibit
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Fig. 8. Simulation results for underactuated virtual passive dynamic
walking with semicircular feet where φ = 0.01 [rad]

swing leg retraction [6] which is a motion of the swing leg;
it moves backward just prior to the heel-strike. UVPDW
systems, however, do not exhibit the motion regardless of
the system parameter choice. The detailed mechanism should
be described in another paper. Fig. 8 shows the simulation
results for UVPDW where R = 0.5 [m] and φ = 0.01 [rad].
Other system parameters are chosen as in Table I. We can
see that from Fig. 8 (b), the condition θ̇1 > θ̇2 always holds,
and from (d) the control input uH does not diverge during
a cycle. Fig. 9 shows the stick diagrams of UVPDW where
(a) φ = 0.02 and (b) φ = 0.03 [rad]. In both cases, swing
leg retraction does not occur; the singularity is automatically
avoided.

If the condition θ̇H > 0 holds, the maximum efficiency
condition also holds. The energy-efficiency is evaluated by
specific resistance defined as

Specific resistance =
p

Mgv
, (24)

which means energy consumption per distance traveled per
kilogram mass per gravity. p is the consumed input power,
v is the walking speed, and are respectively defined as

p :=
1

T

∫ T−

0+

∣

∣

∣
θ̇HuH

∣

∣

∣
dt, (25)
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Fig. 9. Stick diagrams for underactuated virtual passive dynamic walking
with semicircular feet
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Fig. 10. Generalized virtual gravity in underactuated virtual passive
dynamic walking with semicircular feet

v :=
1

T

∫ T−

0+

Ẋg dt =
∆Xg

T
. (26)

Following these equations, the maximum efficiency condition
is derived as

p

Mgv
:=

∫ T−

0+

∣

∣

∣
θ̇HuH

∣

∣

∣
dt

Mg∆Xg

≥

∫ T−

0+ θ̇HuH dt

Mg∆Xg

=
∆E

Mg∆Xg

(27)
where ∆E := E(T−) − E(0+). Because of θ̇H > 0 and
uH > 0, the equality in Eq. (27) holds and the maximum
efficiency is achieved. Since ∆E = Mg tan φ∆Xg holds in
the case of VPDW, the minimum specific resistance yields
tan φ; UVPDW always achieves it.

C. On generalized virtual gravity

Let the contact point of the sole with the ground when
θ1 = 0 be the central point of the X-Z coordinate, general
X-position of the contact point yields Rθ1. The point in

this model is equivalent to the ZMP. The generalized virtual
gravity vector of uH yields

fg = Jg(θ)−T

[

1
−1

]

uH =
uH

∆g

([

Rθ1

0

]

− rg

)

(28)

and is found to be the vector from the contact point to the
CoM. As shown in Fig. 10, it acts as a centripetal force (left)
or a centrifugal force (right).

Although there is an unreasonableness that the robot must
be driven by only the central force during the cycle, the
rolling effect overcomes it. In the next section, we deeply
investigate the mechanism.

V. INVESTIGATING ROLLING EFFECT THROUGH
COMPARISON WITH VIRTUAL FLAT FEET MODEL

This section investigates the rolling effect through lin-
earization and comparison of the semicircular feet model
with the flat feet one.

A. Linearization and comparison of two models

Linearizing the semicircular feet model around the equi-
librium point, θ = θ̇ = 02×1, the inertia matrix yields

M0 =

[

mH l2 + ma2 + ml2 −mbl

−mbl mb2

]

, (29)

and this does not have any terms concerning the foot radius,
R. The linearization of the nonlinear vector, Cθ̇, on the other
hand, yields 02×1, and is equivalent to the flat feet model’s
result. The matrix M and the vector Cθ̇ of the two models
are equivalent in the sense of linearized system. The gravity
term g(θ) has a difference. That of the semicircular feet
model can be divided into the following two terms.

g(θ) =

[

− (mH l + ml + ma) g sin θ1

mbg sin θ2

]

+

[

MRg sin θ1

0

]

(30)

The first term of the right-hand side is the same as the gravity
term of the flat feet model. The semicircular feet model is
therefore equivalent to the flat feet one with the ankle-joint
torque which is given as −MRg sin θ1 in the meaning of
linearized system. The virtual ankle-joint torque accelerates
the CoM forward when θ1 < 0, whereas it decelerates in the
case of θ1 > 0. The real hip-joint torque then accelerates the
CoM forward effectively together with the virtual ankle-joint
torque or the rolling effect. This driving mechanism is shown
in Fig. 11; the CoM of the virtual flat feet model is suitably
accelerated forward by the hip-joint torque reproducing the
virtual gravity effect and the virtual ankle-joint torque.

This can be explained from angular momentum point of
view. Time derivative of angular momentum, L, in the case
with free ankle joint, should satisfy L̇ = MgXg. The gravity
effect then decreases the angular momentum when Xg < 0
and increases it when Xg > 0. The robot is accelerated
automatically when Xg > 0 without any joint actuations
and in this phase, after overcoming the potential barrier, the
external driving force is not necessary. We thus need to exert
some torques to drive the CoM forward during the first-half
of cycle to overcome the potential barrier at midstance.
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Note that the mechanical energy change done by the
virtual ankle-joint torque is 0 because the following relation
holds.

∫ T−

0+

θ̇1 (−MRg sin θ1) dt = MRg

∫ T−

0+

d cos θ1

dt
dt

= MRg
(

cos
(

θ1(T
−)

)

− cos
(

θ1(0
+)

))

= 0 (31)

Thus the mechanical energy restoration during the stance
phase is executed by only the real hip-joint torque. Note
that we use the relation θ1(0

+) = −θ1(T
−) in the above

calculation.

B. Typical gait of virtual flat feet model

In order to confirm the above results, we perform a nu-
merical simulation of UVPDW using a virtual flat feet model
with the virtual ankle-joint torque; a nonlinear fully-actuated
flat feet model of Eq. (1) with the hip-joint torque of Eq. (23)
and the virtual ankle-joint torque of −MRg sin θ1. Note that
we use the heel-strike’s inelastic collision model not of the
flat feet model but of the semicircular feet one because there
is a serious difference for the mechanical energy dissipation.
The semicircular feet decrease the energy dissipation but this
paper does not discuss the detailed mechanism. We leave a
detailed discussion about this for another opportunity. Fig.
12 shows the simulation results. The condition is the same as
that of Fig. 8, and we can see that a similar gait is generated.

The total mechanical energy at t = t1 (0+ ≤ t1 ≤ T−)
shown in Fig. 12 (c) is virtually calculated by

E(t1) = E(0+) +

∫ t1

0+

θ̇HuH dt (32)

considering only the power input by the hip-joint torque. We
can see that the mechanical energy exhibits the same orbit
as the normal VPDW. Fig. 12 (e) shows the virtual ankle-
joint torque and changes from positive to negative; this leads
that the virtual ZMP travels in the virtual sole monotonically
forward.
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Fig. 12. Simulation results for equivalent underactuated virtual passive
dynamic walking of virtual flat feet model where φ = 0.01 [rad]

C. Effect of foot radius on walking speed

The X-position at CoM is given by

Xg = R(θ1−sin θ1)+
(mH l + ma + ml) sin θ1 − mb sin θ2

M
,

(33)
and its time derivative yields

Ẋg = Rθ̇1(1 − cos θ1)

+
(mH l + ma + ml)θ̇1 cos θ1 − mbθ̇2 cos θ2

M
.

(34)

Note that cos θ1 ≈ 1 when θ1 is sufficiently small and thus
the first term of the right hand side of Eq. (34) is almost
0. We then find Ẋg is not affected by R directly. Although
the foot radius R appears as the virtual ankle-joint torque
to drive the CoM, it does not increase the CoM velocity
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Ẋg directly. The authors consider that the reason why the
semicircular feet increase the walking speed lies in the heel-
strike mechanism.

VI. CONCLUSIONS

This paper investigated the mechanisms of planar
compass-like biped robots with flat or semicircular feet based
on the concept of generalized virtual gravity. The relation of
a flat feet model between the CoM and the joint torques was
firstly investigated and the importance of ankle-joint torque
was theoretically clarified. It was numerically shown that
UVPDW can be realized in the case with semicircular feet,
and the relation between the rolling effect and the ankle-joint
torque was clarified. In the second, a virtual flat feet model
is introduced and the possibility is examined. The authors
believe that walkers with semicircular feet should be treated
not as a “synthetic wheel” McGeer considered but as a virtual
fully-actuated system whose ankle-joint torque is determined
uniquely by the foot radius R, the robot’s total mass M and
the stance-leg angle θ1. This further implies that the optimal
convex curve shape of feet can be designed if the optimal
ankle-joint torque is determined. Further investigation is
necessary.
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