
Visually-Guided Grasping while Walking

on a Humanoid Robot

Nicolas Mansard, Olivier Stasse, François Chaumette, Kazuhito Yokoi

Abstract— In this paper, we apply a general framework for
building complex whole-body control for highly redundant
robot, and we propose to implement it for visually-guided
grasping while walking on a humanoid robot. The key idea
is to divide the control into several sensor-based control tasks
that are simultaneously executed by a general structure called
stack of tasks. This structure enables a very simple access for
task sequencing, and can be used for task-level control. This
framework was applied for a visual servoing task. The robot
walks along a planed path, keeping the specified object in the
middle of its field of view and finally, when it is close enough,
the robot grasps the object while walking .

I. INTRODUCTION

In this paper, we describe a complete implementation of

a complex whole-body motion to realize a visually-guided

grasping while walking on a humanoid robot. It is based

on a general framework for building whole-body control for

highly redundant robot, that is easily modulable and can be

adapted for a vast class of robotic problems.

One of the first approach to generate full-body motion con-

sidering a human-size humanoid robot is motion planning.

Proposed by Kuffner et al. [11] it relies on a discretization

of the possible foot steps for walking, and a general path

planning algorithm for manipulation. By choosing a reason-

able number of foot placement it is possible to plan footstep

in a dynamic environment based on vision feedback [16].

In [17], a whole body motion based on a combination of

several postures is planned to reach a distant point with the

arm end-effector. Those remarkable results however did not

address the problem of manipulation while walking, and the

problem of motion generation based on sensor feedback.

In answer to this problem, we mainly focus on implement-

ing a complex sensor-based reactive full-body control on a

humanoid robot. Sensor-feedback control loop techniques,

such as visual servoing [6], [4] provide very efficient solu-

tions to control robot motions. It supplies high positioning

accuracy, good robustness to sensor noise and calibration

uncertainties, and reactivity to environment changes.

Very few work can be found for sensor-based control of

a whole-body humanoid robot. In [26] visual servoing is

used to position the leg of a HOAP-1 Fujitsu humanoid

robot. Several works have been proposed to solve a vision-

based manipulation task on humanoid torso or on non-

N. Mansard and F. Chaumette are with IRISA / INRIA Rennes, France
{Nicolas.Mansard,Francois.Chaumette}@irisa.fr

O. Stasse and K. Yokoi are with JRL ISRI/AIST-CNRS Tsukuba, Japan
{Olivier.Stasse,Kazuhito.Yokoi}@aist.go.jp

walking robot [3], [24], [13]. All these works demonstrate

the efficiency of sensor-based reactive control for developing

robust and accurate task for humanoid robots. However, none

of them was extended for full-body motion generation.

Such framework has been proposed by Sentis et al. in

[19]. It integrates task-oriented dynamic control and control

prioritization. Impressive results have been demonstrated on

simulation. Another framework has been proposed by Sian

et al. [20] which relies on the use of Kajita’s preview control

for the walking and on Resolved Momentum Control (RMC)

to make sure that the tasks demanded at the upper body

level keep the robot balance. As the final goal of this work

is to teleoperate a HRP-2 humanoid robot, real-time whole-

body motion generation with short cycle is necessary. This

framework has been proved very reliable during several days

at the AICHI 2005 universal exposition.

In this work we propose to implement visual servoing for

full-body motion generation on a humanoid robot, using a

similar framework that was already proposed and validated

for arm manipulator robot [15]. This framework is called task

sequencing. Like the frameworks presented above, it enables

simple definitions of a complex task. Using the easy access

on the low-level controller, a task-level controller has also

been designed to deal with obstacles. The general idea is

to sequence a set of tasks to extend the local convergence

domain of the reactive visual-based control schemes, through

the use of a general structure called stack of task, that ensures

the task prioritization along with the motor input continuity

at task change. This work is based on earlier works such

as switching control laws [5], [2] and task sequencing [22],

[18] that use a task-level reasoning controller to modify the

reactive-level control loop, in order to extend the conver-

gence domain and avoid obstacles. We will prove in the

following that the task sequencing framework is very suitable

for whole-body motion generation of a humanoid robot, and

that it allows to implement complex tasks such as grasping

while walking, by a simple and very efficient way.

The next section will recall the task sequencing frame-

work, as a generic solution for humanoid control. Section III

presents the application of this framework to the HRP-2

robot. As an application, we propose to implement a visually-

guided grasping while walking, taking into account the joint

limits of the robot. The experiments on the real robot are

finally presented in Section IV.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD9.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3041



II. GENERAL CONTROL METHOD

The general control method used to realize a full-body-

motion sensor-based task is first presented. It is easily mod-

ulable, and could be adapted very efficiently for various type

of task. The control law is computed using a general structure

called stack of tasks [14] that is able to apply simultaneously

several tasks while ordering them to avoid conflicts. This

structure enables a very easy high-level control access, by

providing a simple way to activate or inactivate any task

during the execution to modify the robot behavior.

In the following, the stack of tasks structure is recalled,

in a generic way. We will insist on the use of the stack

of task for whole-body motion generation, to automatically

compensate the motions due to the walk that could perturb

the manipulation task.

A. Stack of tasks

The stack of tasks is a structure that orders the tasks

currently active. Only the tasks in the stack are taken into

account in the control law. The task at the bottom level has

priority over all the others, and the priority decreases as the

stack level increases. The control law is computed from the

tasks in the stack, in accordance with three rules:

- any new task added in the stack does not disturb the

tasks already in the stack.

- the control law is continuous, even when a task is added

or removed from the stack.

- if possible, the additional constraints should be added

to the control law, but without disturbing the tasks in

the stack.

The control law is computed from the stack, using the

redundancy formalism introduced in [21]. The additional

constraints are added at the very top of the stack, which

means that they are taken into account only if some degrees

of freedom (DOF) remain free after applying the active

tasks. This priority order may seem illogical, considering

that the constraints are obstacles that the robot should avoid.

However, the positioning task has priority since it is the task

we want to see completed, despite the obstacles. The high-

level controller is then used to ensure that the constraints are

respected when it is obvious that the robot will violate them.

1) Ensuring the priority: Let (e1,J1) ... (en,Jn) be n
tasks. The control law computed from these n tasks should

ensure the priority, that is the task ei should not disturb the

task ej if i > j. A recursive computation of the articular

velocity is proposed in [21]:

{
q̇0 = 0
q̇i = q̇i−1 + (JiP

A
i−1)+(ėi − Jiq̇i−1), i = 1..n

(1)

where PA
i is the projector onto the null-space of the aug-

mented Jacobian JA
i = (J1, . . .Ji) and J̃i = JiP

A
i−1 is the

limited Jacobian of the task i . The robot articular velocity

realizing all the tasks in the stack is q̇ = q̇n.

2) Ensuring the continuity: ¿From (1), the control law is

obtained by imposing a reference velocity ėi for each task in

the stack. Generally, an exponential decrease is required by

imposing the first order differential equation ėi = −λiei.

However, this equation does not ensure the continuity of

the robot velocity when the stack is changed. In [14], we

proposed a solution to properly smooth the robot velocity at

the transition, by imposing a specific second order equation:

ëi + (λi + µ) ėi + (λiµ) ei = 0 (2)

where λi is the gain that tunes the convergence speed of task

ei, and µ sets the transition smoothness of the global control

law. The control law is obtained by introducing (2) in (1):
{

q̇i = q̇i−1 + (JiP
A
i−1)+(−λiei − Jiq̇i−1)

q̇ = q̇n + e−µ(t−τ)
(
ė(τ) + Λe(τ)

) (3)

where τ is the time of the last modification of the stack.

3) Adding the secondary constraints: The constraints are

added using the Gradient Projection Method [12], [10].

The constraints are described by a cost function V. The

gradient g(q) of this cost function can be considered as an

artificial force, pushing the robot away from the undesirable

configurations. It is introduced as the last task of the stack.

It has thus to be projected onto the null space of each task

into the stack. Using (3), the complete control law is finally

q̇ = q̇n + e−µ(t−τ)
(
ė(τ) + Λe(τ)

)
− κPA

n g (4)

The reader is invited to refer to [14], [15] for more details.

B. Pattern generator

We re-implemented a pattern generator similar to the one

commercially available on the HRP-2 robot, based on [7].

From the footsteps given as an input, the center of mass

(CoM) trajectory is generated using a 3D linear inverted

pendulum model of the robot whose CoM moves on a plane.

The key is to solve an inverse problem from the ZMP

reference position deduced from the footsteps. This inverse

problem is solved using a preview controller and thus implies

to know the future in the corresponding window (here 1.6

seconds). In order to take into account the real model of

the robot, Kajita proposed to use a second stage of preview

control to compensate the difference between the ZMP of

the multibody model and the ZMP of the inverted pendulum.

This second stage of preview control is extremely efficient

but adds 1.6 seconds of the future to be known, and thus in

total 3.2 seconds of the future are needed. Therefore the main

problem regarding a reactive control loop is to integrate the

immediate command generated by the task using the upper

body and the pattern generator to maintain stability.

Some solutions to this problem are the RMC [8] and the

CoM Jacobian [23]. In both cases, the main idea is to cancel

disturbances of the CoM reference trajectory by using the

remaining DOF. Full body motion generation based on RMC

has been already realized in [20] but did not integrate a task

prioritization as in this work. In previous works, we have

tested experimentally the capabilities of the pattern generator

together with the stabilizer to cope with violations of the

ThD9.3

3042



CoM’s planar motion and small disturbances of the ZMP. It

allowed us to make the first humanoid dynamically stepping

over obstacles [25]. For sake of simplicity and as a first

step we implemented a simple heuristic where the left arm

is used to compensate partially for the perturbation induced

by the stack of tasks implemented. For this reason we did

not integrate the chest as a free joint to stay in the area of

stability. Our future work will integrate COG Jacobian to use

fully the capabilities of the system.

C. Using the stack of task to compensate the inner motions

due to the walk

At each iteration, the pattern generator produces the next

reference position that should be reached by the robot. The

walking behavior can thus be written as a task function:

ewalk = qleg − qleg
∗ (5)

where qleg is the current articular position of the two legs

and qleg
∗ is the reference position produced by the pattern

generator. The jacobian Jwalk is very simply:

Jwalk =

[
Inleg 0nleg 0n−2nleg

0nleg Inleg 0n−2nleg

]
(6)

where n is the total number robot joints, and nleg = 6 is

the number of joints of each leg. As shown by (5), the

walking task uses the 12-DOF of the legs and no redundancy

is available for any other task. The other tasks can be realized

using the upper-body joints. Let us first consider a controller

whose only entries are the upper-body articular velocity ˙qup.

Let eup be a task function whose jacobian Jup
up =

∂eup

∂ ˙qup

is full rank. If the support leg moves (for example while

walking), then the task eup is perturbed. The time derivative

of the task error can thus be written:

˙eup = Jup
up ˙qup +

∂eup

∂t
(7)

where
∂eup

∂t
are all the motions that are not due to the upper

body. In the present case, this motions are equals to the

perturbation due to the support-leg motions. They can be

written
∂eup

∂t
=

∂eup

∂qleg
˙qleg. The control law that executes

the reference task motion ˙eup
∗ while compensating the leg

motions can finally be written:

˙qup = Jup
up

+(
˙eup

∗ −
∂eup

∂qleg

˙qleg

)
(8)

We suppose now that the stack state is
(

ewalk eup

)
. Let

us prove that the stack of task is able to generate exactly

the same compensation of the upper-body motion due to the

walk. The full-body jacobian Jup can be decomposed in two

parts by separating the legs from the rest of the body:

Jup =
[

Jleg
up Jup

up

]
(9)

where Jleg
up =

∂eup

∂ ˙qleg
. For the two tasks in the stack, the

control law (1) can be simply written:

q̇ = J+
walk ˙ewalk +

(
JupPwalk

)+
(

˙eup − JupJ
+
walk ˙ewalk

)

(10)

Since Jwalk =
[
I2nleg 0

]
, the projector is:

Pwalk =

[
02nleg 0

0 I

]
(11)

Eq. (10) can finally be written:

q̇ =

[
˙ewalk

0

]
+ Jup

up
+
(

˙eup − JupJ
+
walk ˙ewalk

)

=

[
˙ewalk

Jup
up

+
(

˙eup − Jup ˙qleg

)
] (12)

where ˙qleg = ˙ewalk. The second part of control vector

(which corresponds to the upper-body motion) is equal to (8).

This last result proves that the stack of task is appropriate

to generate full-body motion by automatically compensating

any motions due to the walk.

D. Execution controller

The stack of tasks provides a very simple solution to

allow control at the task level. In [15], we have proposed

a complete solution that ensures the respect of several

constraints during the execution of a non-redundant task on a

manipulator robot. Here this solution is applied for ensuring

the joint limits avoidance while walking and grasping.

As explained in the previous sections, the constraints are

applied at the top of the stack. They could thus be respected

only locally, and nothing ensures that some tasks of the

stack will not violate them. To ensure that the constraints

are never violated, a task-level controller has been designed.

The controller detects the collision by a linear prediction. It

then chooses the best task to be removed according to an

optimal criteria proposed in [15]. The optimal DOF is thus

freed up, and can be used to avoid the collision.

A second controller was added to ensure the realization of

the global task when far enough from the constraints. The

second controller detects that the collision has been avoided

by a second prediction phase, and pushes back the removed

tasks in the stack as soon as possible. The reader is invited

to refer to [15] for more details.

III. APPLICATION TO GRASPING

We now present how the task sequencing framework can

be used for a specific task. We have implemented a grasping

based on visual servoing. Thanks to the stack structure that

intrinsically compensates the motion due to the walk, the

robot is able to grasp an object while walking. Thanks to

the robustness of visual servoing, it was even possible to

grasp a slowly-moving object.

A good estimate of the object position is obtained using

the two stereo cameras mounted on the robot head. The

first task is to keep the object centered in the image by

visual servoing during all the humanoid motion, to ensure

its visibility. The second task brings the robot gripper at the

object position so that it can grasp it. Finally, the joint limits

constraint is taken into account through the stack of tasks. In

the following, we will present this three tasks, along with the

high-level rules that have been used to realize the grasping

and to ensure the joint-limit avoidance.

ThD9.3

3043



The robot input controller is the full-body joint velocity:

q̇ =
(
q̇ll, q̇rl, ˙qchest, ˙qneck, ˙qrarm, ˙qlarm

)
(13)

where q̇rl, q̇ll, ˙qchest, ˙qneck, ˙qrarm and ˙qlarm are the joint

velocities of the left leg, right leg, chest, neck, right and left

arm respectively.

A. Visual servoing

A visual servoing task is based on an error ei defined as

the difference between the current value of a visual feature

si observed in the image, and its desired value s∗i [4]:

ei = si − s∗i (14)

where si is the current value of the visual features for subtask

ei and s∗i their desired value. The interaction matrix Lsi

related to si is defined so that ṡi = Lsiv, where v is the

instantaneous camera velocity. From (14), it is clear that the

interaction matrix Lsi and the task Jacobian Ji are linked by

the relation:

Ji = LsiMJq (15)

where the matrix Jq denotes the robot Jacobian (ṙ = Jqq̇)

and M is the matrix that relates the variation of the camera

velocity v to the variation of the chosen camera pose

parametrization (v = Mṙ).

B. Centering task

In order to ensure the object visibility during the servo,

and to stabilize the image motion to improve the image

processing, the image of the object is centered in one of

the camera view. The centering task is thus simply:

eG = pleft (16)

where pleft =
(
xG, yG

)
is the current position of the object

centroid in the left camera image. The interaction matrix of

eG is the well known interaction matrix of the point [4].

Finally, the full-body jacobian of the centering task is:

JqG =
[

camJsl
camJchest

camJneck 0 0
]

(17)

where camJsl,
camJchest and camJneck are the jacobians of

the support leg, the chest and the neck respectively, computed

in the left camera frame. If the right leg is on the ground,

the jacobian of the support leg is:

camJsl =
(
camTrfoot

rfootTwaistJrleg 0
)

(18)

where camTrfoot and rfootTwaist are the twist matrices

from the right foot frame (right-leg end effector) to the

camera frame and from the waist frame to the camera frame

respectively. The matrix Jrleg is the jacobian of the right leg

computed in the waist frame. The opposite construction of
camJsl is done if the right foot is in flight.

C. Grasping task

The grasping task is mainly a 3D-positioning of the right-

hand gripper at the object position. However, to ensure that

the gripper will be properly oriented when grasping, we have

chosen to dissociate the positioning task in two parts. The

first part controls the orientation of the gripper, the second

part controls the distance to the object.

poFrcam

yrh

xrh

xw

Frhand

zrh

Pref

Flcam

zw

yw

Fwaist

xw

Fig. 1. Definition of frames Frhand and Flcam.

1) Gripper orientation control: The end effector of the

right hand is noted Frhand (see Fig. 1). The origin of this

frame is set at the center of the grip, and the Z-axis is set to

correspond to the opening of the gripper. To properly grasp

the object, it has to be be kept in front of the gripper opening,

that is to say on the Z-axis. We note po =
(

Xo, Yo, Zo

)

the center of the object expressed in Frhand. The orientation

task is thus:

eθ =

[
Xo

Yo

]
(19)

The interaction matrix of this task can be obtained by

derivation of eθ:

ėθ =

[
Ẋo

Ẏo

]
=

[
1 0 0
0 1 0

]
ṗo (20)

We note vrhand =
(
v,ω

)
the cartesian velocity of frame

Frhand (vrhand = rhJqq̇). The velocity of po with respect

to the arm velocity is given by:

ṗo = −v + ω × po = −v − p̃oω =
[

I3 p̃o

]
v (21)

where p̃o is the cross-product matrix of po. By introducing

(21) into (20), the interaction matrix Lθ of eθ is finally

obtained:

Lθ =

[
−1 0 0 0 −Zo Yo

0 −1 0 Zo 0 −Xo

]
(22)

The articular jacobian of eθ is the right-arm end-effector

jacobian with respect to the joints of the support leg, the

chest and the right arm. Its computation is similar to (17)

and is thus left to the reader.

2) Gripper position control: When the task eθ is active

and realized, the remaining DOF to grasp the object is

controlled by the distance between the gripper and the object.

We have chosen to use the task defined by:

e3D = prhand − po (23)

where prhand and po are computed in the same frame. The

frame Frhand has been chosen as a common frame (the error

is thus e3D = −rhandpo). The interaction matrix is thus

simply the identity matrix L3D =
[
I3 03

]
, and the articular

jacobian is the same than the articular jacobian of task eθ.

ThD9.3

3044



The task e3D is thus strongly coupled to the task eθ.

However, thanks to the priority order provided by the stack

of tasks, an artificial decoupling is imposed that ensures that

the two tasks will not conflict during the servo. For that, we

simply impose that task e3D has a lower priority than task

eθ.

3) Vertical orientation of the gripper: The tasks presented

above only constrain three of the six DOF of the gripper.

To improve the quality of the grasping, another task is

introduced to control the vertical orientation of the gripper

during the grasping. This is a first step toward grasping

complex object.

The arm end-effector frame is noted Frhand =
(xrh,yrh, zrh) (see Fig. 1). The task regulates the position

of the plane P =
(
xrh, zrh

)
to the vertical, that is to say

to the reference plane Pref =
(
xw, zrh

)
. The regulation of

the plane is equivalent to the regulation of its normal. The

normal of P is yrh. The error could thus be written:

evert = yrh − yref (24)

where yref is the normal to Pref : yref = zrh × xw. The

interaction matrix is given by [9]:

Lvert =
[

03 ỹrh

]
(25)

It has three lines, but is always of rank 2. The articular

jacobian of this task is the same than the articular jacobian

of the task eθ.

D. Joint limit avoidance

The joint-limit constraint is added at the top of the stack

using (3). The cost function for joint-limit avoidance is

defined directly in the articular space. It reaches its maximal

value near the joint limits, and it is nearly constant (so that

the gradient is nearly zero) far from the limits.

The robot lower and upper joint limits for each axis

i are denoted q̄min
i and q̄max

i . The robot configuration q

is said acceptable if, for all i, qi ∈ [q̄min
ℓi , q̄max

ℓi ], where

q̄min
ℓi = q̄min

i + ρq̄i, q̄max
ℓi = q̄max

i − ρq̄i, q̄i = q̄max
i − q̄min

i

is the length of the domain of the articulation i, and ρ is a

tuning parameter, in [0, 1/2] (typically, ρ = 0.1). q̄min
ℓi and

q̄max
ℓi are activation thresholds. In the acceptable interval, the

avoidance force should be zero. The cost function V jl is thus

given by [1]:

V jl(q) =
1

2

n∑

i=1

δi
2

∆q̄i

(26)

where

δi =





qi − q̄min
ℓi ,

qi − q̄max
ℓi ,

0,

if qi < q̄min
ℓi

if qi > q̄max
ℓi

else

E. Two high-level rules

Finally, the high-level controller is added to ensure a

good execution of the complex required behavior. Two rules

are applied to drive the high-level controller. The first one

ensures that the joint-limit constraint is preserved during the

execution. The second one ensures that the robot really tries

to grasp the object only when it is close enough.

1) Balance versus joint limits avoidance: As explained

upper, we have chosen not to control explicitly the balance of

the robot due to the upper body motions. Indeed, the lower-

body controller has been experimentally proved to be robust

enough to ensure the robot balance under the constraint that

the chest joints are used as little as possible. However, these

joints are necessary to bring some redundancy to the upper-

body tasks. In particular, the chest joints are necessary to

enlarge the neck joint domain, that is very short by itself.

We thus define a last task echest that constrains the chest

joints to stay at its zero position. By introducing this task in

the lower part of the stack, we ensure that none of the upper-

body tasks will use the chest joints in the general case.

The high-level controller recalled in II-D is then used to

ensure the neck-joint-limit avoidance, and the visibility task

execution. When the neck joints are going to collide their

limits, the task echest is automatically removed from the

stack. This gives the necessary redundancy for joint-limit

avoidance and task execution. When no collision is detected,

the task echest is pushed back, which ensures that the chest

joints are used as little as possible.

This task echest is a very ad hoc (but very efficient) way

to ensure the robot balance. In the near future, we plan to

generalize this solution by implementing a real CoM control,

as done for example in [20].

2) Grasping only when close enough: This second rule

is added to limit the time where the arm is fully extended.

Indeed, this position is better to be avoided, because of the

singular arm configuration, and also because of the distur-

bance caused to the robot balance. Let do be the distance

from the shoulder to the object (do = ||rsMcampo||, where
rsMcam is the homogeneous matrix passing from the camera

frame to the right shoulder frame. When the object is too far

(do > dmax, where dmax is the length of the arm), then the

task e3D is removed from the stack. To avoid any oscillation

when do is close to dmax, the task e3D is pushed back

when do is below 80% dmax. This simple rule enables the

robot to prepare the grasping when it is far from the object,

by regulating the task eθ to 0, without penalizing the arm

manipulability or the robot balance.

IV. EXPERIMENTS AND RESULTS

The robot used for the experiments is a HRP-2 humanoid

robot. The control loop runs at 200Hz. The camera feedback

runs at 30Hz. A Kalman filter is used to synchronize the

two process loops. The presented experiment is a typical

execution of the complete application. An object is placed in

the workspace, and is moved randomly. The robot is walking

along a planned trajectory that passes close to the object.

While walking, the robot has to grasp the object.

The experiment is summed up in Fig. 2 to 7. The robot

starts walking at iteration 2300. It arrives close enough

from the object at Event (1) (see Fig. 2). The task e3D

is then added in the stack, and is quickly completed. At

iteration 3800, the object is in the hand, and the robot closes

its griper. All the tasks are finally removed from the stack

to finish the execution, as soon as the torque sensors detects

ThD9.3

3045



that the gripper is closed on the object. The camera sensors

feedbacks are given in Fig. 3 and 4. The object moves during

the robot displacement, but thanks to the closed-loop control,

the error eG is properly regulated and the object is kept close

to the image center (see Fig. 3). Similarly, the task eθ is

properly regulated to 0. The last component of e3D has a

very high value at the beginning of the servo and decreases

while the robot moves forward. From Event (2), the task

e3D is added in the stack, and then quickly decreases to

zero, while the hand moves to grasp the object. The task

e3D is kept then to zero while the gripper grasps the object.

The joint velocities are given in Fig. 5. During the robot

approach, until Event (1), the joint velocities are small and

very oscillatory, since it is only a compensation of the

walking motion and of the ball motion. At Event (1), the

robot accelerates to realize very quickly the task e3D and

to catch the ball. The velocities then decrease since they

correspond once more to a compensation motion. The values

are higher than at the beginning of the walk, since the object

is much closer, and the walk perturbation have thus much

more effect on the object motion in the image.

Finally, a brief overview of the experiment is given in the

two last figures. Fig. 6 gives an overview of the robot motion

taken from an external camera. Fig. 7 gives the corresponding

snapshots taken from one of the embedded stereo camera.

V. CONCLUSION

In this paper, we have presented a general method to obtain

complex full-body motion on humanoid robots. We propose

to use a generic structure called stack of tasks, already

validated for robot arm, in order to generate a full-body

motion computed from several sensor-based subtasks. Using

this structure, it is then very easy to sequence the subtasks

to control the execution and obtain a complex behavior. We

applied this solution for a grasping task while walking. The

complete application was very easy to write, thanks to the use

of the stack of task framework. It was then experimentally

validated on the HRP-2 robot. The robot was able to grasp

an object close to its walking trajectory without stopping.

As said in the text, our future work is mainly to in-

tegrate the classical solutions to ensure the upper-body

robot balance. This is necessary since the robot balance is

currently ensured only practically by the stabilizer that is

robust enough to damp the upper-body motions. We are also

focusing on introducing in the stack all necessary constraints

to realize a manipulation task in realistic environment, such

as obstacle or self-collision avoidance.

ACKNOWLEDGMENT

The authors would like to thank the JSPS Summer Pro-

gram for partial funding of this work.

REFERENCES

[1] F. Chaumette and E. Marchand. A redundancy-based iterative scheme
for avoiding joint limits: Application to visual servoing. IEEE Trans.

on Robotics and Automation, 17(5):719–730, October 2001.

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

grip

e3d

evert

etheta

eG

walk

Iteration

(1) (2) (3)

Fig. 2. Experiment B: Activation of the task in the stack during servo. At
the beginning of the servo, the tasks ewalk, eG, evert and eθ are in the
stack. At Event (1) (Iteration 3650), the task e3d is put in the stack to grasp
the object. The object is in the gripper from Event (2) (Iteration 3800). The
gripper closure starts. All the tasks are removed from the stack as soon as
the gripper is close on the object, at Event (3) (Iteration 4000).

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

−400

−200

0

200

400

600

800

1000

Iterations

P
o

s
it
io

n
 a

n
d

 v
e

lo
c
it
ie

s
 (

p
ix

e
l 
a

n
d

 p
ix

e
l/
s
)

 

 

x

y
v

x

v
y

Fig. 3. Experiment B: Position and velocity of the object in the image,
obtained after Kalman filtering. The filter is able to properly filter the object
inner motion by integrating the robot joint velocities. The ball is kept at the
center of the field of view (320, 240).

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

P
o

si
ti

o
n

 a
n

d
 V

el
o

ci
ti

es
 (

m
 a

n
d

 m
/s

)

 

 

x

y

z
v

x

v
y

v
z

Fig. 4. Experiment B: Position and velocity of the object in the gripper
frame, obtained after Kalman filtering. The two components x and y are
regulated to 0 thanks to the task eθ . The last component z slowly decreases
to 0 while walking, and is finally regulated to 0 from iteration 3700 when
the task e3D is introduced in the stack.

2400 2600 2800 3000 3200 3400 3600 3800 4000 4200
−1.5

−1

−0.5

0

0.5

1

Iterations

V
al

u
es

 

 

chest1

chest2

head1

head2

arm1

arm2

arm3

arm4

arm5

arm6

Fig. 5. Experiment B: Joint velocities. To improve the readability, only
the joints of the chest, the head and the arm are given.

ThD9.3

3046



(iter 2800) (iter 3600) (iter 3700) (iter 3800) (iter 4200)

Fig. 6. Experiment B: Key images of the grasping sequence.

(iter 2800) (iter 3600) (iter 3700) (iter 3800) (iter 4200)

Fig. 7. Experiment B: Key images of the grasping sequence, taken from the embedded (left) camera, and are used during the servo to track the object.

[2] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino. A switching
control law for keeping features in the field of view in eye-in-hand
visual servoing. In IEEE Int. Conf. on Robotics and Automation

(ICRA’03), pages 3929–3934, Taipei, Taiwan, September 2003.

[3] J. Coelho, J. Piater, and R. Grupen. Developing haptic and visual
perceptual categories for reaching and grasping with a humanoid robot.
Robotics and Autonomous Systems, 37(2-3):195–217, November 2001.

[4] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Trans. on Robotics and Automation,
8(3):313–326, June 1992.

[5] N. R. Gans and S. A. Hutchinson. An experimental study of
hybrid switched approaches to visual servoing. In IEEE Int. Conf.

on Robotics and Automation (ICRA’03), pages 3061–3068, Taipei,
Taiwan, September 2003.

[6] S. Hutchinson, G. Hager, and P. Corke. A tutorial on visual servo
control. IEEE Trans. on Robotics and Automation, 12(5):651–670,
October 1996.

[7] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In International Conference on Robotics

And Automation, Taipei Taiwan, pages 1620–1626, September 2003.

[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa. Resolved momentum control: Humanoid motion
planning based on the linear and angular momentum. In Proceedings

of the 2003 IEEE/RSJ International Conference on Intelligent Robots

and Systems, IROS, Las Vegas, Nevada, pages 1644–1650. IEEE, 2003.

[9] D. Khadraoui, G. Motyl, P. Martinet, J. Gallice, and F. Chaumette.
Visual servoing in robotics scheme using a camera/laser-stripesensor.
IEEE Trans. on Robotics and Automation, 12(5):743–750, October
1996.

[10] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. Journal of Robotics Research, 5(1):90–98, Spring 1986.

[11] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion
planning for humanoids robots. In Proceeding of the 11th International

Symposium of Robotics Research, ISRR, 2003.

[12] A. Liegeois. Automatic supervisory control of the configuration and
behavior of multibody mechanisms. IEEE Trans. on Systems, Man

and Cybernetics, 7(12):868–871, December 1977.

[13] M. Lopes and J. Santos-Victor. Visual learning by imitation with motor
representations. IEEE Transactions on Systems, Man and Cybernetics,
35(3):438–449, June 2005.

[14] N. Mansard and F. Chaumette. Tasks sequencing for visual servoing.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’04),
pages 992–997, Sendai, Japan, November 2004.

[15] N. Mansard and F. Chaumette. Task sequencing for sensor-based
control. IEEE Trans. on Robotics and Automation, 2006. To appear.

[16] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade. Vision-guided
humanoid footstep planning for dynamic environments. In Proc.

IEEE/RAS Int. Conf. on Humanoid Robotics (Humanoids’05), pages
pages 13–18, 2005.

[17] K. Nishiwaki, M. Kuga, S. Kagami, M. Inaba, and H. Inoue. Whole-
body cooperative balanced motion generation for reaching. In 2004

4th IEEE/RAS International Conference on Humanoid Robots, pages
672–689, Los Angeles, USA, November 2004.

[18] L. Peterson, D. Austin, and D. Kragic. High-level control of a mobile
manipulator for door opening. In IEEE Int. Conf. on Robotics and

Automation (ICRA’03), pages 2333–2338, Taipei, Taiwan, September
2003.

[19] L. Sentis and O. Khatib. A whole-body control framework for
humanoids operating in human environments. In IEEE Int. Conf.

on Robotics and Automation (ICRA’06), pages 2641–2648, Orlando,
USA, May 2006.

[20] N. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K Tanie. A switching
command-based whole-body operation method for humanoid robots.
IEEE/ASME Transactions on Mechatronics, 10(5):546–559, 2005.

[21] B. Siciliano and J-J. Slotine. A general framework for managing
multiple tasks in highly redundant robotic systems. In IEEE Int. Conf.

on Advanced Robotics (ICAR’91), pages 1211–1216, Pisa, Italy, June
1991.

[22] P. Soueres, V. Cadenat, and M. Djeddou. Dynamical sequence of
multi-sensor based tasks for mobile robots navigation. In 7th Symp.

on Robot Control (SYROCO’03), pages 423–428, Wroclaw, Poland,
September 2003.

[23] T. Sugihara and Y. Nakamura. Whole-body cooperative balancing
of humanoid robot using cog jacobian. In Proceedings of the 2002

IEEE/RSJ International Conference on Intelligent Robots and Systems,

EPFL, Lausanne, Switzerland, pages 2575–2580, October 2002.
[24] G. Taylor and L. Kleeman. Flexible self-calibrated visual servoing for

a humanoid robot. In Proceedings of the Australian Conference on

Robotics and Automation (ACRA2001), pages 79–84, 2001.
[25] B. Verrelst, K. Yokoi, O. Stasse, H. Arisumi, and B. Vanderborght.

Mobility of humanoids robots: Stepping over large obstacles dynami-
cally. In International Conference on Mechatronics and Automation,

ICMA, LuoYang - Henan, China, pages 1072–1079, June 2006. Best
Conference Paper Award.

[26] K. Yamamura and N. Maru. Positionning control of the leg of the
humanoid robot by linear visual servoing. In IEEE International

Conference on Humanoids Robot, 2004.

ThD9.3

3047


