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Abstract— The problem of an effective coordination of mul-
tiple autonomous robots is one of the most important tasks of
the modern robotics. In turn, it is well known that the learning
to coordinate multiple autonomous agents in a multiagent
system is one of the most complex challenges of the state-of-
the-art intelligent system design. Principally, this is because
of the exponential growth of the environment’s dimensionality
with the number of learning agents. This challenge is known
as “curse of dimensionality”, and relates to the fact that
the dimensionality of the multiagent coordination problem is
exponential in the number of learning agents, because each state
of the system is a joint state of all agents and each action is a
joint action composed of actions of each agent. In this paper, we
address this problem for the restricted class of environments
known as goal-directed stochastic games with action-penalty
representation. We use a single-agent problem solution as a
heuristic approximation of the agents’ initial preferences and,
by so doing, we restrict to a great extent the space of multiagent
learning. We show theoretically the correctness of such an
initialization, and the results of experiments in a well-known
two-robot grid world problem show that there is a significant
reduction of complexity of the learning process.

I. INTRODUCTION

The problem of an effective coordination of multiple

autonomous robots is one of the most important tasks of the

modern robotics. In turn, it is well known that the learning to

coordinate multiple autonomous agents in a multiagent sys-

tem is one of the most complex challenges of the state-of-the-

art intelligent system design. Principally, this is because of

the exponential growth of the environment’s dimensionality

with the number of learning agents. This challenge is known

as “curse of dimensionality”, and relates to the fact that

the dimensionality of the multiagent coordination problem

is exponential in the number of learning agents since each

state of the system is a joint state of all agents and each

action is a joint action composed of actions of each agent.

To reduce the state space of a single-agent system a variety

of methods have been proposed. One of them is the so

called heuristic search. Essentially, heuristic search is a set of

methods based on the knowledge of a heuristic function that

can estimate the real utility of any visited state. Generally, if

that heuristic function is sufficiently informative and satisfies

certain conditions, then the algorithm using it does not need

to visit the entire state space to find the solution. Unfor-

tunately, in multiagent systems, in most cases an explicit

search in the state space is practically impossible, since the

search supposes that the properties of the environment in

each state are known to the agent. This is not the case when

there are several, possibly adversarial, agents affecting the

environment, and their policies and rationality principles are

not known to the learning agent. Thus, since the centralized

planning in that context is not always possible the agents are

usually faced with the learning or adaptation tasks, which,

as it was noted, have an exponential dimensionality.

In this paper, we address the problem of multiagent

learning complexity reduction in a specific context, namely,

in the goal-directed stochastic games with action-penalty rep-

resentation. In such context, all agents have their respective

goals and the rewards of making an action are negative

in any state except the goal state. The idea is to use a

single-agent problem solution as a heuristic approximation

of the agents’ initial preferences. Recently, it was shown

that this approach permits to restrict to a great extent the

space of multiagent learning [1]. We show theoretically the

correctness of such an initialization. To do that, we provide

the proofs of admissibility and monotonicity (consistence) of

the proposed heuristic function.

As a basis for our approach, we use the Adaptive Play

Q-learning (APQ) algorithm. The theoretical base of the

Adaptive Play was founded by Young [2] and then this

technique was extended to the multiagent learning context

with good empirical results [3]. Further in this paper, this

learning algorithm will be described in more detail.

In the sections that follow we give a detailed description

of our framework and, more precisely, the assumptions we

made about the structure of the environment and the agents’

initial knowledge. We then demonstrate the correctness of the

approximation of multiagent solution by an optimal single-

agent one in the goal-directed stochastic games with action-

penalty representation. Further, we evaluate the behavior of

our algorithm on a simple test bench: a two-robot grid world

problem. We conclude with a survey of some previous work

related to our approach and present an overview of our future

work.

II. NOTATION AND CONCEPTS

First, we consider Markov Decision Process (MDP). An

MDP is an environment which has a Markovian inter-state

transition model, additive rewards, and the state where the

agent finds itself at each moment of time is fully observable.
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More formally, an MDP is defined as a tuple, (S,A, T,R),
where S is the set of states, A is the set of actions, T is

the transition function, S ×A×S �→ [0, 1], R is the reward

function, S × A �→ R, and s0 ∈ S is the initial state. A

solution in MDPs is called policy. A policy π assigns to each

state, which is possible to be visited if the agent follows this

policy, an action to execute. If we let st be the state the agent

is in after executing π during t steps, a utility U(π(s)) of a

policy π in a state s is

U(π(s)) = E

[

∞
∑

t=0

γtR(st, π(st))|s0 = s

]

(1)

A learning task assumes that the agents do not have pre-

liminary knowledge about the environment in which they

act. A learning agent should calculate an optimal policy
⋆
π by making a number of trials, i.e., by interacting with

the environment. Q-learning [4] is a dynamic programming

method that consists in calculating the utility of an action

in a state by interacting with the environment. The goal of

Q-learning is to create a function Q : S ×A �→ R assigning

to each state-action pair a Q-value, Q(s, a), that corresponds

to the agent’s expected reward of executing an action a in

a state s and following infinitely an optimal policy starting

from the next state s′:

Q(s, a) = R(s, a) + γ
∑

s′

T (s, a, s′)max
a

Q(a, s′)

where γ ∈ (0, 1] is the discount factor used to avoid infinite

summation.

Since the transition function, T , is not known for the learn-

ing agent, Q-learning consists in estimating the real value
⋆

Q(s, a) by executing action a in state s of the environment,

observing the reward R(s, a) obtained and the system’s next

state s′, using following update rule:

Q̂(s, a) ← (1−α)Q̂(s, a)+α[R(s, a)+γ max
a

Q̂(s′, a)] (2)

where Q̂(s, a) is an estimated value of
⋆

Q(s, a) and α ∈ [0, 1]
is the learning rate. All along the learning process the agent

selects actions to execute in each state by maximizing the

Q-value in that state with some stochastic exploration which

decreases over time. The convergence of the estimated Q-

values, Q̂(s, a), to their optimal values,
⋆

Q(s, a), was proven

in [4] under the conditions that each state-action pair is

updated infinitely often, rewards are bounded and α tends

asymptotically to 0. It was then shown in [5] that Q-learning

in general case may have an exponential computational

complexity. But such a complexity may be substantially

reduced (to some small polynomial function in the size of

the state space) if an appropriate reward structure is chosen

and if Q-values are initialized with some “good” values.

An appropriate reward structure is the so-called action-

penalty representation where the agent is penalized for every

executed action in every state except the goal states. In

fact, the action-penalty representation is the most frequent

reward structure in MDPs and the problems that are solved

in such MDPs are called stochastic shortest path problems.

In turn, although the Q-learning technique has existed for

decades, the initialization of Q-values has not been explored

much in the literature, substantially because a good heuristic

approximation cannot be easily found for the problems where

environment is not known, as well as the location of the goal

states and the reward function.

In the following sections, we will show that in the mul-

tiagent case there may exist a good heuristic function to

initialize the Q-values. Before that, we need to introduce

some important game theoretic concepts and notation.

A. Game Theoretic Concepts

A (normal form) stage game is a tuple (n,A1...n, R1...n),
where n is the number of players, Aj is the strategy space of

player j, j = 1 . . . n, and the value function Rj : ×Aj �→ R

defines the utility for player j of a joint action a ∈ A =
×Aj .

A mixed strategy for player j is a distribution πj , where

π
j

aj is the probability for player j to select some action aj . A

strategy is pure if π
j

aj = 1 for some aj . A strategy profile is

a collection Π = {πj |j = 1 . . . n} of all players’ strategies.

A reduced profile for player j, Π−j = Π\{πj}, is a strategy

profile containing strategies of all players except j, and Π−j

a−j

is the probability for players k �= j to play a joint action

a
−j ∈ A

−j = ×A−j where a
−j is 〈ak|k = 1 . . . n, k �= j〉.

Given a player j and a reduced profile Π−j , a strategy π̂j

is a best reply (BR) to Π−j if the expected utility of the

strategy profile Π−j ∪{π̂j} is maximal for player j. Since a

best reply may not to be unique, there is a set of best replies

of player j to a reduced profile Π−j which is denoted as

BRj(Π−j). More formally, the expected utility of a strategy

profile Π for a player j is given by:

U j(Π) =
∑

aj∈Aj

π
j

aj

∑

a−j∈A−j

R(〈aj ,a−j〉)Π−j

a−j

where Π is Π−j ∪ {πj} and R(〈aj ,a−j〉) is the value that

player j receives if the joint action a = 〈aj ,a−j〉 is played

by all players. In this case, a best reply of player j to the

reduced profile Π−j is a strategy π̂j such that:

U j(Π−j ∪ {π̂j}) ≥ U j(Π−j ∪ {πj}) ∀πj �= π̂j

Solution in the game theoretic framework is called equi-

librium. A strategy profile Π forms a Nash equilibrium if

a unilateral deviation of each player j from Π does not

increase its own expected utility, or, in other words, Π is a

Nash equilibrium if and only if for each player j its strategy

π̂j ∈ Π is a best reply to the reduced profile Π−j , that is:

π̂j ∈ BRj(Π−j) ∀j

For simplicity of presentation, in the rest of this paper we

use the term “equilibrium” to denote the Nash equilibrium.

B. Stochastic Games

Stochastic games (SGs) combine MDPs and stage games.

An SG is a tuple (n,S,A1...n, T,R1...n), where n is the

number of agents, S is the set of states s ∈ S now represented

as vectors, Aj is the set of actions aj ∈ Aj available to agent
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j, A is the joint action space A1×. . .×An, T is the transition

function: S×A× S �→ [0, 1], Rj is the reward function for

agent j: S × A �→ R and s0 ∈ S is the initial state.

Since there are multiple agents selecting actions, the

agent’s next state and rewards depend on the joint actions

of all players1. It’s easy to see that if in an SG there is

only one player then this SG becomes MDP. The goal of

each agent in an SG is to maximize its expected utility of

being in this game. In the stochastic games framework the

“expected utility” is a combination of two expectations in

the sense that the agents in an SG aim to maximize their

expected utilities over other players’ joint strategy in each

stage game (state), and their temporal utility over all future

games. Formally, for an agent j, the discounted utility U j of

a state s of an SG is defined as follows:

U j(Π(s)) = E

[

∞
∑

t=0

γtuj(Π(st))|s0 = s

]

(3)

= uj(Π(s)) + γ
∑

s′∈S

T (s, Π(s), s′)U j(Π(s′))

where uj is the “immediate” expected utility of a stage game

st for the agent j, Π is the policy of joint strategies of

players, which defines a strategy profile Π(s) for each state

s ∈ S. In SGs a policy Π is a Nash equilibrium if and only

if in each state s ∈ S the strategy profile, Π(s), forms this

kind of equilibrium.

The algorithm we use as a basis for our approach is

called Adaptive Play Q-learning (APQ) [3]. This algorithm

is based on Q-learning combined with the Adaptive Play

[2] to calculate for each player a policy of best reply to

other players’ strategies. Note that APQ was chosen solely

to demonstrate the reduction of learning complexity, since

we needed an algorithm which operates with Q-values and

converges in stochastic games (or at least in a subclass of

SGs). This choice, however, is not critical for our approach

and any other multiagent learning algorithms having these

properties may be suitable as well.

III. ADAPTIVE PLAY Q-LEARNING

Formally, each player j playing the Adaptive Play saves in

memory a history H
j
t = {a−j

t−p, . . . ,a
−j
t } of the last p joint

actions played by the other players. To select a strategy to

play at time t + 1 each player randomly and irrevocably

samples from H
j
t a set of examples of length l, Ĥ

j
t =

{a−j
k1

, . . . ,a
−j
kl

}, and calculates the empiric distribution Π̂−j

as an approximation of the real reduced profile of strategies

played by the other players, using the following:

Π̂−j

a−j =
C(a−j , Ĥ

j
t )

l

where C(a−j , Ĥ
j
t ) is the number of times that the joint ac-

tion a
−j was played by the other players according to the set

Ĥ
j
t . Given the probability distribution over the other players’

actions, Π̂−j , the player j plays its best reply, BRj(Π̂−j), to

this distribution with some exploration. If there are several

1In the SG framework the terms agent and player mean the same.

equivalent best replies, the player j randomly chooses one of

them. Young [2] proved the convergence of the Adaptive Play

to an equilibrium when played in self-play for a big class of

games such as the coordination and common interest games.

APQ [3] is a simple extension of Young’s Adaptive Play to

the multi-state SG context. To do that, the usual single-agent

Q-learning update rule (2) was modified to consider multiple

agents as follows:

Q̂j(s,a) ← (1 − α)Q̂j(s,a) + α[Rj(s,a)

+ γ max
aj∈πj(s′)

U j(Π̂(s′) ∪ {πj(s′)})]

where j is an agent, a is a joint action played by the agents

in state s ∈ S, Q̂j(s,a) is the current value for player j of

playing the joint action a in state s, Rj(s,a) is the immediate

reward the player j receives if the joint action a is played

in the state s and πj(s′) are all possible pure strategies that

are available for player j.

Having this notation in mind we are now ready to present

our approach to the complexity reduction of Q-learning in

the stochastic games context.

IV. Q-VALUES INITIALIZATION

In our approach we made several important assumptions

about the model of the environment. The first assumption

is that SGs where agents are intended to act are goal

directed with action-penalty representation, i.e. all agents

are penalized for any executed action in any state except

the goal states. We also assume that multiagent environment

applies additional restrictions on the reward and transition

functions of the underlying MDP. That is the multiagent

penalties for all state-action pairs may be only higher than

the corresponding single-agent values and the multiagent

transitions in the direction of optimal single-agent actions

may be only more uncertain. More formally, we assume that

Rj(s,a) ≤ Rj(sj , aj)

∀s = 〈sj , s−j〉, a = 〈aj ,a−j〉
(4)

where s is a multiagent state, a is a joint action, sj and aj

correspond to j’s position in s and action in a, Rj(s,a) is

the reward of j when a is played in s and Rj(sj , aj) is the

corresponding single-agent reward. In turn, given the same

rewards in multiagent and single-agent cases the multiagent

transition function is related to the single-agent one by

affecting the utilities as follows:

U j(Π(s)) ≤ U j(
⋆
πj(sj)) ∀Π,∀s (5)

where s = 〈sj , s−j〉, U j(Π(s)) is defined using equation (3)

and U j(
⋆
πj(sj)) is defined using equation (1). As is easy to

see, the multiagent solution in that case is an appropriate

relaxation of the multiagent learning problem, by speaking

the language of the heuristic search terminology.

As mentioned above, in MDPs it is not evident how to find

an informative heuristic function to initialize Q-values with

the purpose of reducing the time of the learning. But in many

cases in SGs there is such a function: a single-agent solution

of the underlying MDP. An MDP may be solved with a
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variety of techniques (value iteration, reinforcement learning,

heuristic search, etc). All these techniques are well known

and we leave their description outside this paper. Besides, as

soon as the single-agent environment model is much simpler

than the multiagent one, we suppose that all agents are able

to calculate an optimal single-agent policy before starting to

learn in multiagent context.

In order to ensure the tractability of the Q-learning algo-

rithm the Q-values of all state-action pairs must be initialized

with some monotonic and admissible function [5]. Let’s now

define admissibility and monotonicity of Q-values for goal-

directed learning.

Definition 1 (monotonicity): Let G denote the set of the

goal states, G ⊆ S. Q-value Q̂(s, a) is said to be monotonic

for the goal directed Q-learning with action-penalty repre-

sentation if and only if ∀s, a

0
R(s, a) + Es′ [U(

⋆
π(s′))]

}

≤ Q̂(s, a) ≤ 0

{

if s ∈ G
if s �∈ G

Obviously, the monotonicity property of Q-values corre-

sponds to the consistence of the heuristic function in the

heuristic search terminology and means that the triangle

inequality holds.

Definition 2 (admissibility): Q-value Q̂(s, a) is said to be

admissible for the goal directed Q-learning with action-

penalty representation if and only if

0
⋆

Q(s, a)

}

≤ Q̂(s, a) ≤ 0

{

if s ∈ G
if s �∈ G

where
⋆

Q(s, a) is the real Q-value.

In turn, admissibility means that for all state-action pairs

−Q̂(s, a) never overestimates −
⋆

Q(s, a). It may be easily

verified that uniformly initialized (e.g. zero-initialized) Q-

values are monotonic and admissible.

According to our approach multiagent Q-values are ini-

tialized by using precalculated single-agent state utilities and

single-agent transition function as follows:

Q̂j(s, 〈aj ,a−j〉) ←
⋆

Qj(sj , aj) ∀a−j (6)

where s is a multiagent state, sj is the j’s component of

the vector s (in other words, sj is the agent j’s state in

the corresponding single-agent world) and
⋆

Qj(sj , aj) is an

optimal single-agent Q-value that is calculated from the

single-agent solution and the model as follows:
⋆

Qj(sj , aj) = R(sj , aj) + γ
∑

s′j

T
j
s,a,s′U(

⋆
πj(s′j)) (7)

where T
j
s,a,s′ denotes T (sj , aj , s′j), the single-agent transi-

tion function, and U(
⋆
πj(sj)) is the utility of the single-agent

state sj according to the optimal policy
⋆
πj .

Let’s now show that in the goal directed stochastic games

with action-penalty representation, Q-values initialized with

a single-agent solution are admissible and monotonic. To do

that, let’s prove the following theorem.

Theorem 1: If in a goal directed stochastic game with

action-penalty representation, Q-values Q̂(s,a) are initial-

ized using the utilities of the corresponding single-agent

state-action pairs according to equation (6), then these Q-

values are admissible and monotonic.

The proof of the above Theorem results from the following

two Lemmas.

Lemma 1: If in a goal directed stochastic game with

action-penalty representation, Q-values of agent j, Q̂j(s,a),
are initialized according to equation (6), then these Q-values

are monotonic.

Proof: Let G be the set of multiagent goal states.

Obviously, if s ∈ G hence Q̂j(s,a) = 0 ∀a. Therefore,

we must show that if s �∈ G then 0 ≥ Q̂j(s,a) ≥ Rj(s,a)+

Es′

[

U j(Π(s))
]

. For that let’s show that 0 ≥
⋆

Qj(sj , aj) ≥
Rj(s,a) + Es′

[

U j(Π(s))
]

. In fact, since the rewards are

negative in all states except the goal states, therefore 0 ≥
⋆

Qj(sj , aj). As soon as, according to equation (7), Q-values
⋆

Qj(sj , aj) are defined as Rj(sj , aj)+Es′j

[

U j(
⋆
πj(s′j))

]

and

since inequalities (4) and (5) hold, hence 0 ≥
⋆

Qj(sj , aj) ≥
Rj(s,a) + Es′

[

U j(Π(s))
]

Lemma 2: If in a goal directed stochastic game with

action-penalty representation, Q-values of agent j, Q̂j(s,a),
are initialized according to equation (6), then these Q-values

are admissible.

Proof: Let G be the set of multiagent goal states.

Evidently, if s ∈ G therefore Q̂j(s,a) = 0 ∀a. Hence,

we must demonstrate that if s �∈ G then 0 ≥ Q̂(s,a) ≥
⋆

Qj(s,a). To do that let’s demonstrate that 0 ≥
⋆

Qj(sj , aj) ≥
⋆

Qj(s,a). Since the rewards are negative in all states ex-

cept the goal states, therefore 0 ≥
⋆

Qj(sj , aj). Since, (i)

according to equation (7), Q-values
⋆

Qj(sj , aj) are defined

as Rj(sj , aj) + Es′j

[

U j(
⋆
πj(s′j))

]

and as long as (ii) by

definition
⋆

Qj(s,a) = Rj(s,a) + Es′

[

U j(Π(s′))
]

and since

(iii) inequalities (4) and (5) hold, hence, it follows that
⋆

Qj(sj , aj) ≥
⋆

Qj(s,a)
From the Theorem 1 and by being based on the theoretical

results by Koenig and Simmons [5] one can expect that in the

multiagent case, if a Q-learning based learning algorithm is

used and if it is initialized using an approximative function

which has both admissibility and monotonicity properties,

the complexity of the learning process will be reduced as

compared to zero-initialized (uninformed) case. In the next

section, we provide the results of the experiments, produced

on several examples of the two-robot grid world problem,

which justify this statement. The experiments show also to

what extent the learning complexity may be reduced.

V. EXPERIMENTS

To do our experiments, we programmed a two-robot grid

world environment. It may be depicted as presented in Fig.

1. There are two robots on the grid. Each robot j has a set

of four available actions, Aj = {N, S, W, E}. These actions

have stochastic effect. If an action taken is successful, robot

changes its position on the grid to the intended cell, otherwise

its position remains unchanged. Each action has a negative

reward, or penalty, associated with it. In our example we use

the reward of −0.04 for any action in any cell except the goal

cell where the rewards of all actions are 0. In the case of

ThA3.5

1752



collision, no transition is made and both robots obtain the

value of −0.1. Thus, robots are interested in attainment of

their respective goals by making a minimal number of actions

and avoiding collisions. It is easy to see that there are six

optimal single-agent trajectories for each robot. In the mul-

tiagent case, however, some of these trajectories when used

simultaneously can provoke a collision. Hence, a solution of

this stochastic game is an equilibrium of two optimal single-

agent trajectories when all robots reach their respective goals

without collision. Obviously, such an equilibrium is not

unique. Thus, this is a goal directed coordination stochastic

game with action-penalty representation and, hence, in self-

play, APQ initialized with monotonic and admissible Q-

values is expected to converge to an equilibrium.

6 7 8

3 4 5

0 1 2

1 2

2 1

Fig. 1. A fragment of the two-robot grid world environment containing
the start and goal positions of agents. The total number of cells in the grid
may be arbitrarily big.

We tested our algorithm on this example in a zero-

initialized (called “uninformed”) case and in a case (called

“informed”) when Q-values were initialized using single-

agent solution, calculated via a simple value iteration. The

tests were conducted on a machine with two processors of

2.6 GHz each and 4 GB of RAM. The grids we considered

contained 5 × 5 and 23 × 23 cells, the both with the same

start and goal positions.

Our experiments showed that in the 5 × 5 environment,

uninformed agents (Q
j
0(s,a) = 0, ∀a, s) explored all pos-

sible 600 states and converged to an equilibrium solution

after 450, 000 trials, while informed agents explored about

of 570 states and converged to an equilibrium as early as after

250, 000 trials. The convergence curves of the informed and

uninformed learning processes in the 5× 5 environment are

presented in Fig. 3(a).

However more impressive were the results obtained for

the bigger environment, 23 × 23 cells: after 400, 000 trials,

uninformed agents explored almost all possible states (∼
250, 000) and did not find any equilibrium solution, while

informed agents were able to converge to an equilibrium

solution after this number of learning trials and explored

merely about of 10, 000 states (∼ 4%).

It is significant that in order to observe the behavior of

our algorithm with the different initial values of the learning

rate, α0, and to find an optimal one, if such exists, we ran

the algorithm with α0 varying within the range [0.1, 0.9].
Interestingly that the number of states explored during the

learning process grown uniformly with the growth of α0,

but the number of trials, required to discover an optimal

solution, decreased to some minimum value up to α0 ≈ 0.6,

and started to grow rapidly thereupon (Fig. 3(b)). Therefore,

there is an optimal value of α0, with which the number of

trials required to explore a solution is minimal.

Finally, to show that the multiagent solution may differ

substantially from the initial heuristic (i.e., from the pair of

optimal single-agent trajectories calculated via value iteration

by each agent), we investigated the following interesting

case. We set the reward of −0.15 for both agents if they

reached their respective goals non-synchronously. (Notice,

that in this case, a pair of two single-agent solutions cannot

in general be an appropriate multiagent solution because of

the action failures and the mistiming they can provoke). We

observed that in the case of occasional mistiming, if there

was no wall near the goal cell (Fig. 2 (a)), the agents did not

attempt to synchronize, because it would require one agent to

stop and “wait” another one, but there was no action “wait”

in the agents’ set of actions. However, if there was a wall

nearby (Fig. 2 (b)), the agent that was ahead decided to hit

the wall once to stay put and “wait” another agent for one

step.

(a) there is no wall

(b) there is a wall

Fig. 2. Mistiming case equilibria. The left and right images are a cases
where the agents 1 and 2 respectively are retarded.

VI. RELATED WORK

To our knowledge, the question of initial approximation of

Q-values in the multiagent learning context was not widely

explored in the literature. In the single-agent case there

is a remarkable example of study of the complexity of

single-agent Q-learning with a comparison of heuristically

initialized and zero-initialized cases by Koenig and Sim-

mons [5]. As regards the learning component, the extensive

studies have been made. Relatively to our approach, Sen

et al. [6] and Tan [7] studied an application of single-

agent Q-learning to multiagent tasks without taking into

account the opponents’ strategies. They showed that if the

other agents’ policies are stationary then the learning agent

will converge to some stationary policy as well. Claus

and Boutilier [8] studied the case of coordination repeated
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Fig. 3. (a) reflects the dynamics of learning in the grid 5 × 5. The curves show the average length of a learning trial as a function of the number of
trials. The arrow points to a trial, starting with which the informed agents found a solution, but the uninformed ones did not. (b) represents the number of
states explored and the trial, in which an equilibrium was found, as a functions of the initial value of α.

games with the opponent modeling via fictitious play. They

showed empirically the convergence of Q-learning in that

case. Gies and Chaib-draa [3] studied an application of the

Adaptive Play to the uninformed multiagent Q-learning in

coordination stochastic game context and showed empirically

that the agents’ policies converged to an equilibrium in pure

strategies. Hu and Wellman [9], as well as Littman [10],

proposed their approaches, which, in each state, explicitly

calculate a Nash equilibrium of the matrix games composed

of the Q-values in these states. However, all these methods

suffer the low scalability, as well as other multiagent learning

methods that restrict neither state space nor joint-action space

of the problem during the learning process.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach to multiagent

learning, which uses an initial heuristic approximation of

agents’ preferences. In our approach, an optimal single-

agent solution was used as such a heuristic. We showed

that the initialization of multiagent Q-values using a precal-

culated single-agent solution permits significantly reducing

the complexity of the learning process. We also showed that

such an initialization is admissible and monotonic for the

problems that can be modeled as a goal-directed stochastic

game with action-penalty representation. By producing a set

of empirical tests on the multiagent coordination problem

we showed that the uninformed multiagent learning quickly

becomes intractable, while the informed, heuristically initial-

ized, algorithm remains tractable with growth of state space

while being weakly sensible to that growth due to the strict

focusing on the relevant states only.

It is important to note that the real life robotic tasks

are concerned with a set of particularities, such as noisy

sensors, continuous state space and inter-state transitions,

limited observability of the other robots’ actions, and so on.

The stochastic game framework, just as it is, is not able to

represent these particularities. While understanding a limited

applicability of the learning algorithms created for the SGs,

the principles proposed in this paper are, in our opinion, of a

great interest for the robotics and, we believe, can be adopted

to the more complex environments.

In our future work we intend to extend the applicability

of our approach to the general form stochastic games. For

that, a suitable relaxation should be derived from the general

multiagent model in such a way that a solution of such a

relaxed model was an admissible and monotonic approxima-

tion of the original model and was easier to be calculated

as compared to the solution of the original problem. The

advantages and limitations of practical applications of this

approach to real life problems should also to be investigated.
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