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Abstract— The paper addresses a velocity planning problem
for autonomous vehicles. Appropriate bounds on velocities and
accelerations have to be considered in order to avoid wheels
skidding and actuators saturation. Planned profiles fulfill an
assigned travelling time, while longitudinal jerk is minimized
in order to increase the motion smoothness. In the paper it is
shown that the velocity planning problem can be formulated as
a nonlinear semi-infinite optimization to be solved in real time
by means of an appositely devised algorithm characterized by
a light computational burden.

I. INTRODUCTION

The optimal velocity planning problem has been widely

investigated in the past both in the ambit of industrial

robotics [1]–[7] and mobile robotics [8]. The literature

mainly addresses minimum-time velocity planning problems:

a time optimal trajectory is planned subject to constraints

on the maximum velocity, acceleration, and the acceleration

derivative, i.e., the jerk. Sometimes, constraints deriving from

dynamic solicitations, such as forces or torques, are also

considered. On the contrary, the optimal velocity planning

problem with assigned travelling time has been scarcely

investigated. In this case, the target is the generation of

a velocity profile which fulfills assigned kinematic and/or

dynamic constraints and guarantees, at the same time, an

exact travelling time and the minimization of an appropriate

performance index. The problem is motivated by several

applications where trajectory travelling time needs to be

imposed. This is the case, e.g., of a robot which must

intercept, or avoid, a moving object: any error in the time

scheduling will lead to miss the appointment with the moving

object or, in case of obstacle avoidance, to an undesired

collision. The optimal, assigned-time, planning problem is

clearly more complex than the minimum-time problem since

it poses feasibility issues which do not appear in the latter

one: if the imposed constraints are too restrictive, then the

solution could even not exist or the feasible region could be

hardly found.

The velocity planning problem considered in this paper can

be collocated in such a framework and is motivated by the

control strategy proposed in [9]. In that paper a smooth local

planner was proposed to move an unicycle-like mobile robot

between two arbitrary points assuming arbitrary interpolating

conditions. A three steps procedure was proposed: first a

smooth path was generated [10], then a smooth velocity

profile was evaluated and, finally, the robot command signals

C. Guarino Lo Bianco and M. Romano are with the Dip. di Ingegneria
dell’Informazione, University of Parma, Viale G.P. Usberti, 181/A, I-43100
Parma, Italy {guarino,romano}@ce.unipr.it

were computed by means of an inversion based controller

[9]. Path tracking errors, caused, e.g., by wheels skidding,

actuator saturations and non modeled phenomena, were com-

pensated by means of a periodical path replanning.

The smooth velocity planning problem has already been

analyzed and partially solved in [11], [12]. In particular,

in [12] a solution which fulfills assigned constraints on the

maximum velocity and acceleration, while minimizing the

maximum longitudinal jerk, has been proposed. The bounds

on the maximum velocity and acceleration were supposed

to be constant along the path. This is realistic only in the

case of almost rectilinear paths, otherwise the maximum

allowable velocity and acceleration must be correlated to

the path curvature. In the paper it will be shown that it is

possible to prevent the actuators saturation and the wheels

skidding phenomenon by considering such relationship. Con-

sequently, the fixed-time velocity planning problem will be

solved by means of a semi-infinite optimization algorithm

which minimizes the longitudinal jerk while considering the

existence of dynamic constraints. Since the velocity function

is periodically updated during the motion, such optimization

problem must be particularly efficient in order to provide

real-time solutions.

The paper is organized as follows. Section §2 reports some

basic notations concerning the theory of planar curves, while

the subsequent section proposes the kinematic model of an

unicycle-like robot. The proposed notation is then used in

§4 to formulate the semi-infinite optimization problem. In

§5 kinematic and dynamic bounds are converted into semi-

infinite constraints for the problem. A concise description of

the optimization algorithm is proposed in §5, while §6 shows

the results of a test case. The conclusions section ends the

paper.

II. ESSENTIALS ON PLANAR CURVES

The requirements for the synthesis of an optimal velocity

function v(t) directly descend from the control technique

proposed in [9]: a unicycle mobile robot must move along an

assigned planar path of length se in a given time te. The path

is represented by the image in the {x,y}-plane of a parametric

curve p(u)

p : [0,1] → R
2

u → [γ(u) δ(u)]T .
(1)

The curve is supposed to be regular, i.e., the derivative

of p(u) with respect to u is piecewise continuous, ṗ(u) ∈
Cp([0,1]), and ṗ(u) 6= 0 ,∀u ∈ [0,1]. If this condition holds,
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Fig. 1. State variables of an unicycle-like robot.

the curve length s, measured along p(u), can be expressed

by means of a function su defined as follows

su : [0,1] → R
+

u → s =
∫ u

0 ‖ṗ(τ)‖dτ
. (2)

Evidently, for any regular curve p(u), the length function

su(u) is continuous over [0,1], monotonically increasing,

and, consequently, bijective. Associated with every point

of a regular curve p(u) there is an orthonormal moving

frame {τ (u),ν(u)} that is congruent with the axes of the

{x,y}-plane and where τ (u) = ṗ(u)/‖ṗ(u)‖ denotes the unit

tangent vector of p(u). For any regular curve such that

p̈(u) ∈ Cp([0,1]), the scalar curvature κ, i.e., the reciprocal

of the osculating circle radius, is well defined. It can be

evaluated according to the Frenet formula dτ

ds
(u) = κu(u)ν(u)

(see for example [13, p. 109]), where κu(u) is the curvature

function defined as follows

κu : [0,1] → R

u → κ = κu(u) .
(3)

The scalar curvature can also be expressed as a function of

the curve length s, i.e.,

κs : [0,se] → R

s → κ = κs(s) .
(4)

Evidently, κs and κu are correlated since κs(s) = κu[s
−1
u (s)],

and, conversely, κu(u) = κs[su(u)].

III. THE VEHICLE MODEL

When the wheels slipping phenomenon is avoided, the

kinematic model of an unicycle-like vehicle can be repre-

sented as follows
ẋ = vcosθ
ẏ = vsinθ

θ̇ = ω

(5)

where x, y indicate the robot position with respect to a

stationary frame, θ is its heading angle, v is the norm of

its linear velocity and ω is its angular velocity. The robot

linear velocity is perfectly aligned with its symmetry axis

and is expressed by v = [ẋ ẏ]T . Obviously, v := ‖v‖. It can

be easily proven that there is a direct relationship between v

and ω and the wheels velocities norms vL, vR. Indeed, it is

possible to write

[

v

ω

]

=

[

1
2

1
2

1
2L

− 1
2L

][

vR

vL

]

(6)

where L is the distance between the robot midpoint and

each one of its wheels. The transformation matrix is clearly

nonsingular thus, evidently, the robot can be indifferently

driven by means of v and ω or by means of vR and vL.

The curvature of the path generated by an unicycle-like

vehicle can be evaluated as

κ =
ω

v
. (7)

Obviously, each one of the two wheels fulfills the unicycle

model so that, e.g., for the right wheel we can correctly write

ẋR = vR cosθ
ẏR = vR sinθ

θ̇ = ω

(8)

where xR, yR are the coordinates of the wheel-ground contact

point. Note that, necessarily, angular position θ and angular

velocity ω are the same of the vehicle midpoint. Due to the

analogy between (5) and (8), also for the right wheel it is

possible to write

κR =
ω

vR

(9)

Analogous expressions apply for the left wheel.

IV. PROBLEM FORMULATION

In [9] it has been pointed out that it is possible to design a

smooth robot control by assuming that longitudinal velocity

v(t) fulfills some appropriate characteristics. First of all,

it must be C1, i.e., it must be continuously differentiable.

Moreover, since v(t) needs to be periodically replanned, the

C1 continuity must also be guaranteed at the replanning

times. This result can be achieved by making it possible to ar-

bitrarily impose velocities and accelerations at the boundaries

of the planning intervals. Furthermore, for evident physical

reasons, it is necessary to impose upper bounds on v(t) and

on its first derivative, i.e., the acceleration a(t). Not only,

the proposed control technique requires that v(t) > 0 for any

t ∈ (0, te), so that v(t) = 0 is only acceptable for t = 0 and

t = te. As a consequence, it is possible to assert that for any

t ∈ [0, te], the distance s from the path beginning can also be

expressed by means of a monotonic function st defined as

follows
st : [0, te] → R

+

t → s =
∫ t

0 v(τ)dτ
. (10)

Owing to the reasons highlighted in the introduction, it is

necessary to plan a v(t) such that path length se is exactly

travelled in te. Finally, since the proposed control technique

aims to generate smooth movements, v(t) is planned by

minimizing the maximum longitudinal jerk j(t). To this

purpose, the following problem was formulated and solved

in [12]

Problem 1: Let us assume that a continuously differentiable

velocity function is parametrized by means of a vector

h ∈ H ⊂ R
n, so that it can be represented as v(t;h) ∈

C1([0, te]),∀h ∈ H . Find the minimizer h∗ which solves the

following semi-infinite optimization problem

min
h∈H

{

max
t∈[0,te]

| j(t;h)|
}

(11)
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subject to

v(0,h) = v0;v(te,h) = ve;a(0,h) = a0;a(te,h) = ae; (12)

se =
∫ te

0 v(τ;h)dτ ; (13)

0 < v(t;h) ≤ ṽ , ∀t ∈ (0, te) ; (14)

−ã ≤ a(t;h) ≤ ã , ∀t ∈ [0, te] . (15)

where ṽ and ã are known velocity and acceleration bounds.

In [12] it has been shown that, by means of an appropriate

choice of the velocity function parametrization, it is possible

to convert this problem into a standard optimization problem.

In that paper, constraints ã and ṽ were supposed to be known

and constant. Such hypothesis is acceptable only in the case

of almost rectilinear paths, while it must be abandoned in the

case of generic paths.

For this reason, the optimization problem is reformulated

in this paper in order to obtain a more general solution. It will

be shown that, given any regular curve p(u), the constraints

on the maximum velocity and acceleration depend on the

point u along the curve which is being considered, so that

they will be indicated in the following as v̂(u) and â(u).
Bearing in mind this hypothesis and the monotonicity of (10),

it is possible to propose the following problem

Problem 2: Let us assume that a continuously differentiable

velocity function is parametrized by means of a vector

h ∈ H ⊂ R
n, so that it can be represented as v(t;h) ∈

C1([0, te]),∀h ∈ H . Find the minimizer h∗ which solves the

following semi-infinite optimization problem

min
h∈H

{

max
u∈[0,1]

| j(u;h)|
}

(16)

subject to

v(0,h) = v0;v(te,h) = ve;a(0,h) = a0;a(te,h) = ae; (17)

se =
∫ te

0 v(τ;h) dτ ; (18)

0 < v
{

s−1
t [su(u)];h

}

≤ v̂(u) ,∀u ∈ (0,1) ; (19)

−â(u) ≤ a
{

s−1
t [su(u)];h

}

≤ â(u) ,∀u ∈ [0,1]. (20)

The new problem cannot be reformulated as a finite

dimensional optimization, so that an appropriate algorithm

must be designed for its solution.

V. VELOCITY AND ACCELERATION CONSTRAINTS

It has been earlier pointed out that in (11)–(15) the

constraints on the maximum velocities and accelerations were

supposed to be known and constant. In the new formulation

(16)–(20), velocity and acceleration constraints depend on

the position along the curve, so that it is necessary to devise

two appropriate functions v̂(u) and â(u) on the basis of

the physical constraints which characterize the two driving

wheels. In particular, it is necessary to guarantee that both

wheels never exceed the maximum allowed velocity and

acceleration and, furthermore, any slippage with the ground

should be strictly avoided in order to improve the control

accuracy.

The next three properties are devoted to this target. More

precisely, the first one shows that the bounds on wheels

velocities can be converted into velocity limits for the vehicle

midpoint, while the second one evidences that this is also

true for wheels accelerations. The last property considers the

slipping avoidance problem.

In the proofs of the following properties the dependency of

the involved functions on u will be dropped for conciseness,

so that v̂(u) will be simply indicated by v̂, κu(u) by κ, and

so on.

Proposition 1: Let us indicate with vmax the maximum

allowed wheels velocity. Then, for an unicycle-like robot,

longitudinal wheels velocities, vR(u) and vL(u), satisfy with

certainty the two inequalities

|vR(u)| ≤ vmax, |vL(u)| ≤ vmax ,

if the following condition holds

|v(u)| ≤ vmax

1+ |κ(u)|L . (21)

Proof: Due to (6) and (7), it is possible to represent vR

and vL in function of the robot midpoint velocity v and the

scalar curvature κ of the path to be followed

vR = v+Lω = v(1+κL) , (22)

vL = v−Lω = v(1−κL) . (23)

If condition (21) holds, the velocity constraint is satisfied for

the right wheel since from (22) it is possible to obtain

|vR| ≤ |v|(1+ |κ|L) ≤ vmax

1+ |κ|L (1+ |κ|L) ≤ vmax .

The same conclusion can be drawn for vL by considering

(23).

Proposition 2: Let us indicate with amax the maximum

wheels acceleration. Then, for an unicycle like robot, lon-

gitudinal wheels accelerations, aR(u) and aL(u), satisfy with

certainty the two inequalities

|aR(u)| = |v̇R(u)| ≤ amax (24)

|aL(u)| = |v̇L(u)| ≤ amax (25)

if the following conditions hold

|v(u)| ≤ α

√

amax

|κ′(u)| (26)

|a(u)| ≤ amax −|κ′(u)|v2(u)

1+ |κ(u)|L (27)

where α ∈ (0,1) and κ′(u) = dκ
ds

(u)L.

Proof: In the following it will be proved that the

acceleration constraint is satisfied if inequality (27) holds.

Equation (26) guarantees that (27) is well posed. Indeed,

it is easily possible to prove that, if (26) is fulfilled, then

amax −|κ′|v2 > 0. Passages are omitted for brevity.

Let us now prove that (24) is satisfied owing to (27). By

differentiating (22) it is possible to write

aR = v̇R = v̇(1+κL)+ vκ̇L . (28)

Bearing in mind that κ can be expressed, according to (4),

as a function of s, its time derivative can be evaluated as

follows

κ̇ =
dκ

dt
=

dκ

ds

ds

dt
=

dκ

ds
v (29)
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so that aR can be rewritten as

aR = v̇(1+κL)+
dκ

ds
Lv2 = a(1+κL)+κ′v2 . (30)

The last part of the demonstration is straightforward because,

if (27) holds, from (30) we immediately get

|aR| ≤ |a|(1+ |κ|L)+
∣

∣κ′∣
∣v2 ≤ amax . (31)

With analogous reasonings it is also possible to demon-

strate that (25) is fulfilled if (27) holds. Passages are omitted

for brevity.

In order to avoid the wheel skidding phenomenon, i.e., in

order to guarantee a pure rolling motion, it is necessary to

verify that the modulus of the forces tangentially transmitted

to the ground is smaller than gravity force

Ft ≤ µ mg . (32)

Parameter µ represents the adherence coefficient between

wheel and ground.

The tangential force applied to the ground is proportional

to mass m and to the tangential acceleration. In the case of

a pure rolling wheel moving along a path with curvature κ,

it is possible to demonstrate that the tangential acceleration

is made of two components: the first one is tangent to the

path and corresponds to the longitudinal acceleration a, while

the second one, which is due to centripetal acceleration, is

orthogonal to the path. In the case of nonslipping wheels,

this second component is equal to κv2. As a consequence,

the modulus of the total force tangentially applied to the

ground can be expressed as

Ft = m
√

a2 +κ2v4 .

Owing to this considerations, wheel slipping is avoided if the

following condition is satisfied

m
√

a2 +κ2v4 ≤ mµg

or, equivalently, if

a2 +κ2v4 ≤ µ2g2 .

This inequality is essential to devise proper conditions in

order to avoid the wheels skidding phenomenon in the case

of unicycle like robots.

Proposition 3: The wheels slipping phenomenon is

avoided for an unicycle like robot, i.e., the following two

inequalities are simultaneously satisfied

a2
R(u)+κ2

R(u)v4
R(u) ≤ µ2g2 , (33)

a2
L(u)+κ2

L(u)v4
L(u) ≤ µ2g2 , (34)

if its longitudinal velocity v(u) and acceleration a(u) satisfy

the following conditions

|v(u)| ≤ β

√
µg

4

√

|κ′(u)|2 +κ2(u)(1+ |κ(u)|L)2

(35)

|a(u)| ≤
√

µ2g2 −κ2(u)v4(u)(1+ |κ(u)|L)2 − v2(u) |κ′(u)|
1+ |κ(u)|L

(36)

where β ∈ (0,1) and κ′(u) = dκ
ds

(u)L.

Proof: Equation (35) ensures that the numerator of (36)

is real and positive with certainty and, consequently, (36) is

well posed. The obvious passages are omitted for brevity.

Equation (36) guarantees that (33) and (34) are verified, so

that wheels skidding is avoided.

Let now focus our attention on the acceleration constraint

(33). Bearing in mind that

κR =
ω

vR

=
ω

v+Lω
=

1
v
ω +L

=
1

1
κ +L

=
κ

1+κL

and taking into account (22) and (30), it is possible to write,

for the right wheel,

a2
R +κ2

Rv4
R = [a(1+κL)+ v2κ′]2 +

κ2

(1+κL)2
v4(1+κL)4

≤ [|a|(1+ |κ|L)+ v2
∣

∣κ′∣
∣]2 +κ2v4(1+ |κ|L)2 .

Consequently, if (36) is satisfied, it is possible to write

|a|(1+ |κ|L) ≤
√

µ2g2 −κ2v4(1+ |κ|L)2 − v2
∣

∣κ′∣
∣ (37)

and immediately conclude, with a few algebraic manipula-

tions, that condition (33) is fulfilled. Analogous considera-

tions can be used to demonstrate that (34) holds.

Inequalities (21),(26),(27),(35), and (36) can be used to

devise the constraint functions v̂(u) and â(u). In particular,

v̂(u), u ∈ [0,1] can be chosen as follows

v̂(u) := min

{

vmax

1+ |κ(u)|L ,α

√

amax

|κ′(u)| ,

β

√
µg

4

√

|κ′(u)|2 +κ2(u)(1+ |κ(u)|L)2

}

, (38)

while the following expression can be used for â(u), u ∈ [0,1]

â(u) := min

{

amax −|κ′(u)| v̂2(u)

1+ |κ(u)|L ,

√

µ2g2 −κ2(u)v̂4(u)(1+ |κ(u)|L)2 − v̂2(u) |κ′(u)|
1+ |κ(u)|L

}

.

(39)

The two terms α and β have been introduced to avoid

degenerate situations. Let us suppose that α
√

amax

|κ′(u)| is the

smallest term in (38). Then, owing to (38), it is possible to

write

α2amax − v̂2(u)
∣

∣κ′(u)
∣

∣ = 0 ,

and, since α ∈ (0,1), it is possible to conclude that, with

certainty,

amax − v̂2(u)
∣

∣κ′(u)
∣

∣ > 0 .

This implies that the first term in (39) is strictly greater than

zero. The same conclusion can be drawn for β and the second

term of (39). Practically, α and β are used to exclude the

existence of path positions where the robot cannot accelerate

because â(u) = 0. Coefficients α and β represent a trade-off

between velocity and acceleration constraints: the more α
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and β will be small, the more stringent the velocity constraint

and loose the acceleration constraint will be. The selection of

α and β influences the optimization problem constraints and,

consequently, has an impact on the problem minimizer. When

the jerk minimization is not particularly critical, a constant

value for α and β can be chosen in the range [0.5,0.7]. A

more sophisticated approach can be used in order to obtain

better performance indexes, i.e., smaller jerks. It requires to

augment the dimension of vector h by adding two more

elements: α and β. In this way, α and β will be directly

selected by the minimization program itself while minimizing

the maximum jerk.

VI. THE OPTIMIZATION ALGORITHM

The optimization algorithm must basically satisfy two

characteristics: it must be fast and it must guarantee that,

at any iteration, a feasible solution is always available. It is

executed in real-time, so that execution time must be mod-

erate: this is the reason of the first requirement. The second

requirement is also relevant because it guarantees that, even

if the velocity updating time is reached before the algorithm

has converged to the minimizer, a suboptimal, but feasible,

solution is available, so that the robot control is not lost. For

this reason, the algorithm immediately finds an initial feasible

solution and, then, starts searching the minimizer by passing

through a sequence of feasible solutions.

The used algorithm is derived from the one originally

proposed in [12] to solve (11)–(15). It is based on an interior

point method: first a generic feasible solution is found,

then the performance index is improved by searching better

solutions in the interior of the feasibility domain. During

the first phase, the velocity and acceleration constraints are

converted into constant, worst-case constraints by evaluating

ṽ := min
u∈[0,1]

{v̂(u)} , (40)

ã := min
u∈[0,1]

{â(u)} . (41)

In this way, the procedure proposed in [12] to find the initial

feasible solution for (11)–(15) can also be used, without any

adaptation, for problem (16)–(20).

The procedure used in the second phase has been appo-

sitely written for the new problem. The search strategy is

the same already proposed in [11], but the routines used to

check the solution feasibility have been rewritten in order to

take into account that velocity and acceleration constraints

are not constant along the path. In particular, as it is usually

done in the case of semi-infinite optimization problems,

both constraints have been discretized and evaluated for a

finite number of path points. The algorithm convergence rate

strongly depends on the number of selected points, while is

scarcely affected by the path shape. The control technique

that we are currently developing considers smooth, short-

distance paths, so that the semi-infinite constraints need to

be checked in a small number of points: normally ten points

are sufficient. Nevertheless, in order to test the algorithm

efficiency, this number has been raised to fifty in the example

case proposed in the next section.
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Fig. 2. The cubic spiral curve used for the example case.
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VII. AN EXAMPLE CASE

Assume that a path has been planned between two points

pA := [xA yA]T and pB := [xB yB]T in the cartesian space.

Moreover, assume that in pA and pB the assigned interpolat-

ing conditions, i.e., tangent angles θA and θB, curvatures κA

and κB, and curvatures derivatives κ′
A and κ′

B, are compatible

with cubic spirals [14]. The path shown in Fig. 2, obtained

by means of the interpolating conditions reported in Table I,

has been used for the test case. Its total length is se = 2 m.

As known, curvature κ has a parabolic trend along cubic

spirals, thus maximum allowable velocity and acceleration

cannot be constant along the path but, on the contrary, they

must decrease as κ increases.

Velocity function v(t) must guarantee that travelling time

is exactly te = 5 s. Moreover, it must satisfy the following in-

terpolating conditions: v(0) = 0.4 m/s, v(te) = 0.2 m/s, a(0) =
0.08 m/s2, and a(te) = 0.0 m/s2. The same parametrization

used in [12] is adopted for v(t). It is made of five parabolas

planned such to guarantee that boundary conditions are

fulfilled and v(t) ∈C1([0, te]). It is parametrized by means of

vector h := [t1 t2 t4 t5 v̄1 v̄2 v̄3]
T , where t1, t2, t4, and t5 are the

partial travelling times, while v̄1, v̄2, and v̄3 are the velocities

at the transit points (see also Fig. 4).

The algorithm first evaluates v̂(u) and â(u) by means

of (38) and (39). To this purpose, it has been assumed

that vmax = 0.6, amax = 0.4, L = 0.3, α = 0.65, β = 0.65,

µ = 1.0, and g = 9.8, while κ(u) and κ′(u) have been obtained

using the cubic spirals equations. Successively, the algorithm

evaluates ṽ = 0.4615 and ã = 0.2585 according to (40) and

(41). As previously mentioned, these two values are used

during the first phase in order to find an initial feasible

solution by means of the procedure proposed in [12]. Fig. 3

shows ṽ and ã (dash-dotted lines), and the initial feasible
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Fig. 3. Velocity, acceleration and jerk shapes for the initial and final solutions.

TABLE I

THE INTERPOLATING CONDITIONS FOR THE CUBIC SPLINE CURVE.

xA yA xB yB θA θB κA κB κ′
A κ′

B

0.0 0.0 1.938 0.324 0.0 0.667 0.0 1.0 0.0 1.0

TABLE II

INITIAL GUESS ĥ AND FINAL MINIMIZER h∗
OF THE OPTIMIZATION

PROBLEM.

t1 t2 t4 t5 v̄1 v̄2 v̄3 jmax

ĥ 1.0 1.0 1.0 1.0 0.449 0.458 0.458 0.2577

h∗ 0.6 0.03 2.65 1.67 0.460 0.464 0.470 0.1162

solution (dotted lines): note that, as required, v(u) < ṽ and

|a(u)| < ã, ∀u ∈ [0,1]. The maximum jerk is jmax = 0.2577.

Then, the second phase starts. During this phase the actual

velocity and acceleration constraints, evaluated by means of

(38) and (39), are used while seeking the optimal (minimum

jerk) solution.

The final result is shown in Fig. 3 by means of solid lines.

The velocity v̂(u) and acceleration â(u) constraints have been

fulfilled, while maximum jerk has been reduced to jmax =
0.1162. Vector ĥ, corresponding to the first step solution,

and h∗, corresponding to the final minimizer, are reported in

Tab. II.

The optimization algorithm has been executed on a PC

Pentium 4, 3.2 GHz, Windows XP OS. It is worth noting that,

in the case of the proposed example, the algorithm has con-

verged in 2.625e-2 s. Similar convergence times have been

obtained with other curves and interpolating conditions, thus

proving the algorithm applicability in real-time frameworks.

VIII. CONCLUSIONS

The paper has shown how the velocity planning problem

for mobile robots can be formulated and solved as a semi-

infinite optimization problem. A realistic planning prob-

lem has been considered: planned velocity fulfills assigned

kinematic and dynamic constraints which derive from the

robot and the path characteristics, while longitudinal jerk

is minimized. Differently from other approaches, travelling

time is assigned: conditions are provided which guarantee

the existence of a feasible solution. The proposed approach,

owing to its moderate computational burden and its capability

to reach the minimizer through a sequence of suboptimal,

but feasible, solutions, is suited to be used in real time

applications where the algorithm robustness represents a

fundamental issue.

REFERENCES

[1] C.-S. Lin, P.-R. Chang, and J. Luh, “Formulation and optimization of
cubic polynomial joint trajectories for industrial robots,” IEEE Trans.

Automatic Control, vol. AC-28, no. 12, pp. 1066–1074, 1983.
[2] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control

of robotic manipulators along specified paths,” International Journal

of Robotics Research, vol. 4, no. 3, pp. 554–561, 1985.
[3] K. G. Shin and N. D. McKay, “Minimum-time control of robotic

manipulators with geometric path constriants,” IEEE Transactions on

Automatic Control, vol. AC-30, no. 6, pp. 531–541, 1985.
[4] A. De Luca, L. Lanari, and G. Oriolo, “A sensitivity approach to

optimal spline robot trajectories,” Automatica, vol. 27, no. 3, pp. 535–
539, 1991.
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