
 
 

  

Abstract—An indirect Iterative Learning algorithm has 
shown to be able to update the parameters of an acceleration 
feedback controller for flexible manipulators. The fine 
estimation of the masses of a chain of mass-spring-dampers 
units allows the simultaneous tuning of both the feedback 
controller and the trajectory generation. This algorithm has 
been validated on an industrial robot arm. 
 
Index Terms - Iterative Learning Control, Flexible Arms, Path 
Planning for Manipulators, Calibration and Identification. 

I. INTRODUCTION 
ONTOUR following and the cancellation of end-point 
vibrations are two of the major objectives that motivate 
the control of lightweight manipulators. Accurate 

trajectory following is quite difficult to perform because of 
the complex dynamics (nonlinearities, coupling between 
axes) and of the lack, in practice, of the measurement of 
joint position and speed. 

The introduction of extra joint acceleration sensors allows 
to derive simple and robust control algorithms which can 
decouple the joint dynamics from most nonlinearities [1-8]. 
In particular, the acceleration feedback controller of Luo and 
Saridis [1,2] only requires the inversion of the inertia matrix. 
In practice, fine tuning is not so easy since obtaining angular 
accelerations and torque measurements require further 
computations or approximations [3]. It has also been shown 
experimentally that an increase of the sampling frequency or 
the feedback gains leads to instability. Nevertheless, when 
flexible robots with prismatic joints are considered, the 
inertia matrix becomes diagonal, accelerations 
measurements are quite easy to perform, which results in a 
simplified algorithm which has proven to provide good 
experimental results [8]. A simplified acceleration feedback 
algorithm can be derived when the model consists of 
Chained multiple mass-spring-damper (CMMSD) units 
which may represent the dynamics of an Industrial Cartesian 
robot arm. This model is derived from finite element 
methods (FEM) or Assumed modes methods (AMM) (see 
e.g. [9]), for which the modal parameters (modal masses and 
stiffness) vary with the position of the end-effector within 
the working space.  

The calibration of these position-dependent modal masses 
is essential to tune the acceleration feedback algorithm. As, 
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in practical applications, the manipulators often perform 
repetitive tasks, the introduction of Iterative Learning 
Control is rational. Indeed ILC uses information from previous 
executions of the task in order to improve performances from 
trial to trial and to reduce sequentially the tracking error 
irrespective of model non-linearities (see e.g. [10-12] and 
references therein). Such direct learning algorithms bring a 
blind feedforward compensation which allows to track 
iteratively the trajectory.  

There exists a few identification-based indirect ILC 
schemes are based on a least-square estimate of the model 
which allows the computation of the new controller 
parameters [13].  In [14,15,16], a general algorithm is given 
to derive the control of a robot with unknown parameters 
using ILC both for control and parameter update. 

This paper presents an indirect ILC algorithm for 
CMMSD systems controlled by acceleration feedback, 
which main advantage is to capture, after a few iterations, 
the real value of the position-dependent modal masses (the 
inertia matrix ) – which are exactly the key parameters 
needed for the acceleration feedback controller, using only 
simple algebraic calculations. As it will be demonstrated, it 
has the advantage over learning-based identification coupled 
with ILC, to update only the model parameters which are 
needed to tune the controller (which is thus different from an 
approach such as in [16]). Moreover, when modal masses 
are varying more quickly than the global stiffness, it will be 
shown that the control algorithm allows both to update the 
servo controller, which aims at improving the tracking 
accuracy, and to modify the trajectory planning, which helps 
to reduce vibrations. This hybrid control scheme which 
combines ILC and acceleration feedback has been tackled 
[17], only for direct ILC algorithms.  

 
In a first section, the CMMSD model will be presented. 

Secondly, an acceleration feedback of these systems will be 
derived which guaranties the exact tracking of the first mass 
irrespective of spring nonlinearities and of disturbances. The 
Iterative tuning of the acceleration feedback is presented 
next section. A general interpolation algorithm which helps 
to tune the servo parameters within the workspace and to 
update the value of the jerk is presented. Finally, the results 
are applied to an industrial pick-and-place robot. 

II. ACCELERATION FEEDBACK CONTROL OF LUMPED MASS-
SPRING MODELS 

Consider a model consisting of N  chained mass-spring-
dampers presented in figure 1 (where the damping values are 
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zero), which can be put under 
the normalized form 

( ) ( ) ( )M Q x K Q x A Q x Bu η= + + + .     (1) 

( )1
T

Nx x x=  represents the position of the springs 

( ) ( )1 NM Q diag m m=  is the matrix of modal masses, 

( )
1 2

1

0 0

0 0 N N

k k
K Q

k k−
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 − 

,  where ik  is the thi  modal 

stiffness ( )
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− 
 =  
 − 

 , where ia  is the 

thi modal damping, ( )1 0 0 TB = , ( )1
T

Nη η η=  is a 
vector representing random measurement noises, 

( )1, NQ t x x  is a set of external variables. 
 

 
Fig. 1  Chained Mass-Springs-Dampers  

 
When applied to a flexible axis, 1x  accounts for the modal 

mass relative to the motor position and 2 1Nx x −  the 
position of the successive modal masses. The control 
problem consists of tracking a prescribed trajectory for the 
motor position 1x by monitoring the motor force u , without 
any knowledge on the position and speed of the modal 
masses im  but that of the motor, which is the pratical 
industrial configuration for Cartesian robots. The end-
effector position  Nx  should thus be controlled in open-loop. 

An alternative to the design of an estimator of the 
positions 2 Nx x  consists of monitoring the motor position 
with the help of acceleration measurements 2 Nx x   
(provided by accelerometers) of the modal masses. Note 
that, the acceleration signal being very noisy, it is 
unexpectable to extrapolate the velocities or position signals.  
In the remainder, 1

dx  is the reference trajectory for the 

position 1x  of the mass 1m , 1 1 1
dx x x= −  the corresponding 

tracking error.   
 
Theorem 1 
Consider a CMMSD with N  units (1), 1

dx  a reference 

trajectory, 1 1 1
dx x x= −  the tracking error. 

The controller (2)  

1 1 1 1 2 1
2

N
d

i i
i

u m x m x k x k x
=

= + + +∑ .  (2) 

guaranties that 1x converges exponentially to zero if the 

polynomial 2
1 1 2m s k s k+ +  is Hurwitz; 1 2,k k  are user-

defined parameters. 
 
Proof 
 
Summing the lines of equation (1) yields 

1 1

N N

i i i
i i

m x u η
= =

= +∑ ∑ . This equation, in this particular 

context, is independent of the spring stiffness and dampings. 
Replacing the control u  by the expression in (2) yields 

1 1 1 1 2 1
1

N

i
i

m x k x k x η
=

+ + =∑  which proves the theorem. 

  
1 2,k k  should thus be chosen such that the cut-off 

frequency of the filter 2
1 1 2m s k s k+ +  is smaller than the 

frequency of the measurement noise or that of neglected 
higher order modes. This choice of parameters 1 2,k k  has 
been discussed previously [1]. This control algorithm 
consists simply of a multiple acceleration feedback coupled 
to a PD algorithm, which is very easy to implement in an 
industrial numerical device and has shown to be quite robust 
when applied to Cartesian robots. 

III. ITERATIVE TUNING OF THE MODAL MASSES 
It has been shown in the previous paragraphs that the only 

important parameters of the acceleration feedback algorithm 
consists of the modal masses ( )im Q . In practice, in a 
flexible structure, the modal masses and stiffness depend on 
time and on the position of the manipulator within the 
working space, and are not easy to obtain accurately from a 
physical model or identification experiments.  When the 
trajectory is repeated, it is possible to update the controller 
parameters, for any chosen time t , in the following way: 

 
Theorem 2  
Consider the acceleration feedback controlled chained 

multiple mass-spring damper system (1-2), and let assume 
that, for repetitive trajectory tracking 1

dx : 
- the measurement noise η  is a white Gaussian noise 

of covariance ( )tΩ ,  
- at each time t , the variation of the modal masses 

( ) ( ) ( )( )1 k K
i i im t m t m t  - where the subscript k  

indicates the thk  iteration and K  is the number of 
iterations - can be represented by a Gaussian noise  
with zero mean and covariance ( )R t . 

For any particular time t, the estimate 

( ) ( ) ( )( )1

Tk k k
NM t m t m t=  of the modal masses, defined by 

the Kalman-Filter-like algorithm: 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )
1

1 1 1
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+ + +

+ +
= + −
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  (3) 
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( )
1 1

1
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k k k k
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Tk k k

P t X t X t P t
P t P t t
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+ +
+

+ +
= − + Ω

+
 (4)  

with ( ) ( )1, ,

Tk
k N kX t x x= , , 

( ) , , 1, 1, 1, 1, 2 1,
1

ˆ ˆ
N

k
i k i k k k k k k

i

H t m x m x k x k x
=

= + + +∑ . 

converges uniformly towards the average values of the 
modal masses ( )im t . 

Moreover, the tracking error ( )1
kx t  of the position of the 

mass 1m   converges asymptotically to zero as k → ∞ . 
 
Proof 
From equation (1-2), one obtains: 

1 1, 1 1 2 1
1 2

ˆ ˆ
N N

k k k k k d k k
i i i i k

i i
m x m x m x k x k x η

= =
= + + + +∑ ∑  and thus for 

every time t, 

( ) ( )( ) ( )1 1 1 1 2 1
1

ˆ ˆ 0
N

k k k k k k k
i i i

i
m t m t x m t x k x k x η

=
− + + + + =∑ . 

At time t, the algorithm behaves as if the system could be 
put under the form ( ) ( ) ( )( ) ( ) ( )TX t M t t H t tω η+ = + , 

where ,ω η  are white noises, and the vectors  , ,X M H  vary 
at every iteration. Under the assumptions above, one can 
consider that, for each time t , one can estimate the modal 
masses with the help of a Kalman filter given in equations 
(10-11) for which the “time” is the iteration number k . It is 
well known [18] that, in the case where the regression is 
linear, this Kalman Filter algorithm gives the optimal trade-
off between tracking ability and noise sensitivity, in terms of 
a minimal a posteriori parameter error covariance matrix. 
Moreover, since  

( ) ( )( ) ( )1 1 1 1 2 1
1

ˆ ˆ 0
N

i i i
i

m t m t x m t e k e k e η
=

− + + + + =∑ , if  ˆ k
im  

converges to im when k → ∞ , ( )1 1 1 1 2 1m t e k e k e+ +  also 
converges to zero as k  tends to infinity. 

IV. OPEN-LOOP CONTROL OF THE END EFFECTOR 
Theorem 2 provides an indirect learning algorithm, which 

has the main advantage over blind direct iterative learning 
control to determine the key (in the sense of control 
purposes) model parameters which will be embedded into 
the controller. It is interesting to note that the algorithm only 
estimates those model parameters which are of interest for 
the control strategy.  

 
Fig. 2  Functional representation of a machining process. 

 
The generic control structure of an industrial positioning 

system, shown in figure 2, consists of a control generator, 
which calculates the reference position of each axis by 
projection of the contour to be realized, and a control 
structure, which is linear and uncoupled axis by axis [19]. 
The feedback controller FBΣ  drives the system Σ  to the 

reference trajectory *Σ , whereas, in many traditional 
controllers, an additional feedforward term FFΣ  helps to 
improve the tracking performances. 
The acceleration feedback algorithm, which main purpose is 
to track a predefinite trajectory, is said to be a servo 
(feedback control) algorithm. However, in high-speed 
positioning systems, the mechanical or structural vibration is 
one of the most critical factors involved in deteriorating the 
machine’s contouring performances, particularly in the stop 
stage or in presence of contour discontinuities [20]. A first 
way of reducing the vibrations consists of a fine tuning of 
the servo parameters in order to reach the required precision 
with minimum sacrifice of control bandwidth, which has 
been shown to be achieved with an acceleration feedback 
algorithm [1,8]. The second way of reducing the vibrations, 
which also has a dominant action on the contouring accuracy 
consists of an adequate path planning. In most industrial 
drives, the speed scheduling is carried out, classically to the 
maximum reachable values of speed and acceleration for 
each axis. However, the use of bang-bang profiles in speed 
or acceleration always deteriorates the vibratory behaviour 
when controlling a flexible structure. A method to reduce the 
vibration in the start or stop stages for a one-axis machine 
consists of smoothing the trajectory according to the 
flexibility of the structure, i.e. by cancelling the effects of its 
dominant frequency. This can be achieved by tuning the 
value of the jerk [21] or using input shapers (see [22] and 
related references). 

It has been shown, that, when a flexible structure which 
can be represented by an oscillator with a pulsation mω ,  the 
maximum vibration vibε  can be expressed as: 

( )( )2 sinc / /vib m
m

A A J Tε π
ω

= , (5) 

where A  is the maximum acceleration and J  is the 
constant jerk value. The natural frequency of such a two-
mass spring oscillator, is given by: 

ω / 1 /m load load mK M M M= + ,  
where  K  is the spring stiffness and ,m loadM M  are the 

motor and load masses. 
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From equation (5), it was straightforward to conclude that 

the value of the maximum jerk value, which would minimize 
the vibratory amplitudes of the system with the minimum 
sacrifice of rapidity, would be: 

 / mJ A T≈ .  (6) 
 
Note that the damping ratio value has little influence 

provided that its value is sufficiently small (> 0.2) [21]. 
 
Once the maximum jerk value is correctly tuned, motion 

error on axial movements is considerably reduced. Since the 
stiffness K  of a two-mass spring damper which was able to 
represent the vibratory behavior of a Cartesian robot, was 
shown to vary less than the value of the corresponding 
modal masses, and is assumed to be known, the following 
algorithm can be proposed 

 
Jerk Tuning Algorithm 
 
Step1 Perform acceleration feedback control (2) of the 

mass-spring-damper system (1) 
Step2 Update modal masses with equations (3-4) and 

determine their mean value at stop stage 
Step 3 Update the jerk value using (5-6)  
Step 4 Go to Step 1 (new trajectory) 
 
In the neighborhood of the stop point, for which residual 

vibrations remain, the system can be considered as linear, 
and thus jerk or input shaping can be designed. Hence, the 
proposed method consists of embedding modal parameters 
which are updated by learning from the servo algorithm, into 
the trajectory planning algorithm. In practice, ILC requires 
that the reference trajectory remains the same during the 
iterations, whereas the new algorithm updates this trajectory 
every run, which will deteriorate the learning performances. 
However, for a small local modification of the trajectory, the 
model parameters are simply changing locally and slowly 
and results from the literature show that the gain in 
vibrations, given by equation (5), is very significant and that 
a good tuning of the jerk value can outperform the 
aforementioned drawbacks due to trajectory modification. 
The use of indirect learning can thus achieve the 
simultaneous tuning of path planning and servo parameters. 

V. EXPERIMENTAL VALIDATION 
The experimental validations are carried out on a 3-axes 

robot (figure 3). It has been equipped with a real-time 
“dSPACE 1103” control card. The available measurements 
on the motor part come from the actuator axis encoders, an 
accelerometer located on the end-effector gives the load 
acceleration. A laser sensor (measuring distance: 50 mm / 
measuring range: 20 mm) directly gives the load position 
and is only used for experimental verification (note that the 
cost of this sensor  is prohibitive for industrial use). 

  

  
Fig. 3 Overview of the first test-setup prototype (stroke [mm]: X-1000 Y-
400 Z-800, maximum feedrate: 120 m.min-1, maximum acceleration: 4 
m.s2). 
 

When the horizontal axis is only moving, it will be 
considered that the axis stiffness remains almost constant  

50.95 10  N.mK = . The validation was undertaken for a 
displacement on the X axis, with 2x  varying from

02 0x =  to 

2 900 mmx = , and 2 0 mmy =  with a height 315 mmz = .  
The feedrate profile is a classical jerk-limited bang-bang, 

i.e. the acceleration exhibits a trapezoidal profile, as seen in 
figure 4 (when the jerk equals zero, the trajectory reduces to 
a bang-bang in acceleration).  For comparison purposes, the 
axis was controlled with a PI-cascaded-loop for which the 
parameters were -1 -114 s ,  2 A.rd.s ,p vk k= =   where ,  p vk k  
stand for the position and speed loop gains. 
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Fig. 4 Reference Trajectory Dotted: acceleration, Bold: Position 

 
In a first time, a trajectory with a bang-bang in 

acceleration is considered, and the initial parameters of the 
acceleration feedback algorithm are set to 1 100m Kg= , 

2 10m Kg= . A study of the root locus has shown that an 
underestimation of the modal masses leads to stable 
acceleration feedback controllers. The estimation of local 
masses from equation (4) is given in figure 5, and one can 
see that the iterative algorithm converges very fast. 
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Fig. 5 Iterative evolution of the stop-point  

estimated modal masses,  1m , 2m  

 
One can observe from Figure 6 that the acceleration 
feedback with inappropriate initial parameters is faster than 
the conventional controller, but, however, exhibits a higher 
overshoot. Note that, the industrial working requires that this 
overshoot should not exceed 0.2 mm, and that the rise time 
is defined as the time for which the motor position stays 
within 0.2 mm around its reference. The iteratively tuned 
algorithm converges very quickly and ensures a better 
vibratory behavior and improves the rise time by 20 %! Note 
that the vibrations do not completely vanish, due to 
unmodelled nonlinear dynamics such as dry friction. 

0.8 1 1.2 1.4 1.6 1.8
0.899

0.8995

0.9

0.9005

0.901

Time (s)

M
ot

or
 P

os
iti

on
 (m

)

 
Fig. 6 Motor position 

Conventional Control (…) 
Acceleration feedback with initial parameters (- -) 
Acceleration feedback tuned after 3 iterations (-) 
 
Figure 6 represents the position of the load for cascaded-PI-
loops with and without an adequate jerk value (which was 
found from frequency analysis and using equation 6), which 
emphasize the importance of an adequate path planning.  
Indeed, the manipulator is slower, but this is widely 
compensated by the improved level of vibrations, as the 
cycle time is given when the trajectory remains within 2 mm 
around the reference. 
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Fig. 7 Position of the load with cascaded loop with (bold) 

 and without (dotted) jerk 
 
The combination of iterative acceleration feedback and jerk 
tuning was tackled considering a constant stiffness  

50.95 10  N.mK =  and setting an initial jerk of 365J ms−=  
derived from equation (5-6), when the modal masses are set 
to their initial value 1 2100 , 10m Kg m Kg= = . Figure 8 
shows how a wrong initial jerk value can deteriorate the 
vibratory performances. When, after 3 iterations, the modal 
masses are correctly estimated, the final jerk value will be 
correctly tuned, i.e. 334J ms−= . The vibratory behavior is 
very good and respects the desired industrial performances. 
Moreover, the accurate tracking ensures an improvement of 
the cycle time by more than 10 % with respect to the 
industrial jerk-powered algorithm.  
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Fig. 8 Position of the load with acceleration feedback  

after iterative jerk and servo (bold) and with initial guess (dotted)  
 

VI. CONCLUSION 
The control of industrial Cartesian robots arms, which can 

be represented by a chain of mass-spring-dampers units, is 
quite difficult because of the lack of end-point position and 
speed sensors. An acceleration feedback algorithm allows an 
exact tracking of the first modal mass which represents the 
motor part, when the values of the modal masses are known. 
It has been shown that, when the trajectory is repeated, an 
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indirect Iterative Learning Control scheme allows the tuning 
of the acceleration feedback algorithm while estimating the 
value of its key parameters. The estimates of the modal 
masses can be used to modify the shape of the reference 
trajectory, by updating the value of the jerk or input shapers 
parameters, which results into a good improvement of the 
vibratory behavior. The algorithm has been validated on an 
industrial pick-and-place robot. 
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