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Abstract— This paper presents a method to incorporate 3D line

segments in vision based SLAM. A landmark initialization method that

relies on the Plücker coordinates to represent a 3D line is introduced:
a Gaussian sum approximates the feature initial state and is updated

as new observations are gathered by the camera. Once initialized, the

landmarks state is estimated along an EKF-based SLAM approach:
constraints associated with the Plücker representation are considered

during the update step of the Kalman filter. The whole SLAM algorithm

is validated in simulation runs and results obtained with real data are

presented.

I. INTRODUCTION

The use of vision sensors is becoming more and more popular

in the SLAM community. Indeed, the cameras can easily be

embedded on a robot, they gather a lot of useful data, and allow the

development of 3D SLAM approaches. But they do not provide the

depth information of the perceived features: this raises the need to

develop a specific feature initialization algorithm for the commonly

used extended Kalman filter framework. Vision based SLAM is

often referred to as "bearings-only SLAM" (boSLAM).

Several contributions propose different solutions for delayed

initial state estimation in bearings-only SLAM. In [1], an estimation

is computed using observations from two robot poses, and is deter-

mined to be Gaussian using the Kullback distance. The complexity

of the sampling method proposed to evaluate this distance is quite

high. In [2], a combination of a Bundle Adjustment for feature

initialization and a Kalman filter is proposed. The complexity of the

initialization step is greater than a Kalman filter but theoretically

gives more optimal results. A method based on a particle filter to

represent the initial depth of a feature is proposed in [3]. However

its application in large environments is not straightforward, as the

number of particles would become very large. In [4] the initial PDF

of a feature is approximated by a sum of Gaussians, bad members

are pruned until only a single Gaussian remains, which is then

simply added to the Kalman stochastic map.

In the Undelayed methods proposed in [5], [6], the feature initial

state is approximated with a sum of Gaussians and is explicitly

added to the state of the Kalman filter. Very recent works in [7],

[8] make use of an inverse parametrization of the depth: a landmark

is initialized considering only a single Gaussian hypothesis on the

inverse depth.

In this paper, we propose to use 3D lines as landmarks, derived

from line segments perceived in images. There are some advantages

to use 3D lines as landmarks: first, such primitives are very

numerous in structured environments (indoor or urban outdoor),

second, contrary to sparse map of points which are only useful for

localization purposes, a map of segments gives relevant information

on the structure of the environment: it is a sound basis to extract

planes for instance. Finally, edge matching can be achieved even

when important viewpoint changes occur, like in loop closing, or

when matching aerial and ground data.
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Work by Folkesson et al. published in [9] addresses the problem

of vision based SLAM with segments. In this work, an innova-

tive estimation process based on a Kalman filter is developed, it

takes advantage of partially uninitialized landmarks. An illustrative

example is given in which horizontal lines are extracted from

an image acquired by a camera looking up to the ceiling. The

lines are supposed horizontal, so the first observation gives an

estimate of their direction, but the depth is left unknown until it

can be computed by triangulation. This work does not address the

estimation of plain 3D lines.

The algorithms presented in [7], [8] for points were extended

in [10], [11] to incorporate any 3D segments in the map. These

two methods require to work at a high frame-rate (30Hz) to verify

the linearization validity of the observation function with respect

to the inverse depth parameter. This is not easily achieved on

a robot which embeds other sensors and runs several algorithms

simultaneously.

This paper focuses on the estimation problem for SLAM using

image segments, and is organized as follows: section II justifies the

choice of the Plücker coordinates to represent 3D lines. Section III

describes the process that initializes a 3D line landmark from

various image segment observations, and section IV presents how

the satisfaction of the Plücker constraint can be considered within

a classic EKF-based SLAM approach. Section V then presents the

validation of the algorithm conducted in simulation, and finally

section VI shows results obtained with real data.

II. 3D SEGMENTS FOR SLAM

A. 3D line representation

Several sets of parameters can be used to represent a 3D

line L in euclidean space. The minimal representation consists of

4 scalars: such a minimal representation is (P1, P2) where P1 =
(x1, y1, 0)

t
is the intersection of L with the plane Π1(z = 0) and

P2 = (x2, y2, 1)
t

is the intersection of L with the plane Π2(z = 1).

Several conventions for (Π1, Π2) coexist so as to represent all

possible lines with a satisfactory numerical precision.

A more intuitive but non minimal representation of L is (A,u),

where A is any point of L, and u is a direction vector of L1. In this

representation, the choice of A is arbitrary and A is not observable

since it cannot be distinguished on the line.

An other representation often used in the vision community is

the Plücker coordinates, because it is well adapted to the projection

through a pinhole camera (an in-depth presentation of the Plücker

coordinates can be found in [12]). In this work, we use the so called

Euclidean Plücker coordinates, this is the following 6-vector:

L(6×1) =

„

n = h.n
u

«

(1)

1Notation: x means that vector x is a unit vector.
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n is the normal to the plane containing the line and the origin O

of the reference frame, h is the distance between O and the line

and u is a unit vector which represents the direction of the line.

The Plücker constraint has to be satisfied2:

n · u = 0

This ensures that the representation is geometrically consistent. Any

point P on the line satisfies the relation:

P ∧ u = n (2)

It is also interesting to note that the closest point to the origin is

given by:

PO = u ∧ n

The state vector of a line feature being defined by its Euclidean

Plücker coordinates, the observation function and the reference

frame transformation need to be defined so as to tackle the SLAM

problem.

Observation function. The projection of a 3D line L in an image

is a 2D line l which is defined by the intersection of the image

plane and the plane defined by n: the canonical representation of l
(ax + by + c = 0) is exactly n expressed in image coordinate:

l = Pl(3×3)

ˆ

1(3×3) 0(3×3)

˜

L l = (a, b, c)t
(3)

Pl is the camera projection matrix for a Plücker line, it is defined

on the basis of the camera intrinsic calibration parameters. This

representation is not unique and more work has to be done to com-

pute a correct innovation (see section IV-A). A common normalized

parametrization for 2D lines is (ρ, θ). It is trivially related to the

canonical representation l = (a, b, c)t
, by the following non-linear

expression:

(a, b, c)t/
p

a2 + b2 = (cos θ, sin θ,−ρ)t

Frame transformation. Given a reference frame transformation

(R, t)1→2, the Plücker coordinates of L in the two frames are

related by:

L1 =

»

R [t]∧R
0(3×3) R

–

L2 (4)

where [x]∧ denotes the (3 × 3) anti-symmetric matrix that corre-

sponds to the cross product: ∀y, x ∧ y = [x]∧.y.

B. About segment extremities

Only the representation of the supporting line of a segment has

been presented so far. The extremities of a segment cannot be used

in the stochastic map: their extraction from images is not stable

and depends on the viewpoint because of occlusions. Nevertheless

extremities of a segment are very useful: they can be used to find

visible segments so that only relevant features are tested during the

matching process, and segments are more informative than infinity

lines on the structure of the environment. The two extremities

P1, P2 can be stored as two abscissas s1, s2 on the 3D line, the

frame of the line being defined by the closest point to the origin

and its direction:

PO = u ∧ n P{1,2} = PO + s{1,2}u

We chose to update s1, s2 each time their new values increase

the length of the segment. That way, the estimated segment is not

sensitive to occlusions or false detection of the segment extremities.

2Notation: x · y is the dot product between x and y

III. INITIAL STATE APPROXIMATION

Several recent approaches to solve the landmark initialization

problem in boSLAM are based on the same idea: the non-Gaussian

landmark state estimate is firstly approximated with a sum of

Gaussians (or particles, which are degenerated Gaussians), then

the following observations update this PDF which will converge

to a single Gaussian. In undelayed approaches, all the Gaussians

are added to the stochastic map after the first observation. But

the state of a 3D line is defined in a space of higher dimension

than a 3D point, and therefore requires many more members to

be approximated by a Gaussian sum: for this reason, we choose a

delayed algorithm. The algorithm presented in [4] offers a delayed

method well adapted to a huge number of Gaussians. In this method,

the initial Gaussian sum is expressed in the robot frame, so that it

is not correlated with the current map. When a single Gaussian

member is selected, it is added to the map in a consistent way, and

then the past observations can be used to update the map.

Let’s consider a line observation z = (ρ, θ)t
extracted from an

image. This observation of the 3D line constraints L to lie on

the plane Π supported by the focal point of the camera and the

(ρ, θ) line of the image plane. This observation is not perfect and is

modeled using a centered Gaussian noise. The problem is to find an

analytical approximation of the PDF p(Lc), where Lc = (h.n, u)
is the 6-vector Plücker coordinates of L expressed in the camera

frame. Because of the projection function of the camera, p(Lc)
cannot be approximated using a single Gaussian.

Nevertheless, the unit vector n which is the normal vector of

Π is readily estimated and its PDF is approximated by a single

Gaussian. The projection equation of the Plücker coordinates (3)

gives:

n =
l′

‖l′‖
; l′ = Pl

−1

0

@

cos θ
sin θ
−ρ

1

A

The result of the retro-projection needs to be normalized to recover

n. Using usual uncertainties propagation calculus, the Gaussian

PDF p(n) is obtained.

There are two quantities which prevent p(Lc) from being a

Gaussian: depth and direction of the line in the plane Π. In other

words, depth and orientation cannot be approximated with a single

Gaussian, and are approximated with a Sum of Gaussians.

In order to sample p(Lc), in a relevant way, we proceed as

follows:

• a "generate" vector g is defined,

• the depth d of the line is defined along g, p(d) is sampled,

• the direction φ of the line is defined with respect to g, p(φ)
is sampled.

Depth. A relevant “depth” of line L is not trivial to define. The

natural depth is the distance of the line to the origin O of the camera

frame, this distance is represented by h (1). But depending on the

direction of the line, the distance to the segment (the visible part of

the line) can be very different from h. As a consequence, sampling

directly the parameter h is not relevant to represent the hypotheses

on the depth of the object from which the segment is extracted: we

rather consider as the “depth” the distance d from the camera to

the real object, in the direction defined by g.

To define the generate vector g, an arbitrary point M is chosen

on the segment in the image, for example the middle point of the

visible part of the segment. M is partially stochastic: it lies on the

stochastic line (ρ, θ) going through the segment, at the abscissa

sM (figure 1). sM is an arbitrary value, so it is not stochastic. g is
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Fig. 1. From left to right: (a) in the image plane, definition of the point M with (ρ, θ, sM )t. (Ox’y’) corresponds to the plane Π, in red the image plane
projection in Π and the camera aperture. (b) Projection of line L and definition of vector g. (c) The set of points Xi. (d) The set of lines Li,j .

the stochastic unit vector pointing to M, it is approximated by the

Gaussian Γ(g, Pg).

p(d) is supported by g and can now be expressed. p(d) is a

uniform distribution, its range is limited to [dmin, dmax] by an

a priori knowledge of the environment. Moreover d is a scale

invariant parameter: as suggested in [4], [6], a Gaussian sum

defined by a geometric series respects this property and is a good

approximation of p(d). Let’s call βd the rate of the geometric series,

and αd the constant ratio for the variances, p(d) is approximated

by:

p(d) ≈
X

0≤i<k1

wiΓ(di, σdi
)

d0 = dmin/(1 − αd) di = βd
i.d0 σdi

= αd.di wi = 1/kd

The sum is composed of kd Gaussians:

dkd−2 < dmax/(1 − αd) dkd−1 ≥ dmax/(1 − αd)

Figure 2-left illustrates this sum.

The above sampling defines a set of points Xi which is the basis

for the sampling of p(Lc):

Xi = di.g

Direction. For each point Xi, the set of possible lines going through

this point is sampled considering the direction φ of the line L.

Again, g is used as a reference. Any possible direction uφ for the

line L can be obtained with g by a simple rotation of φ radians

around n:

uφ = Rot(−φ.n).g

where Rot(x) is the (3×3) rotation matrix associated to the rotation

vector x. Any direction is equally likely, which means that p(φ)
is a uniform PDF. Lets chose φ ∈ [0, π[, the following Gaussian

 0  5  10  15  20  25  30  35  40  45  50

depth (meter)

 0  20  40  60  80  100  120  140  160  180

phi (degree)

Fig. 2. Left: geometric sum of Gaussian in the range [0.5, 50] with αd =
0.25 and βd = 1.8. Right: uniform sum of Gaussians in the range [0, 180]◦

with σφ = 10◦ and kσφ
= 1.5◦

sum is proposed to approximate p(φ): each Gaussian has a standard-

deviation σφ and meets its two neighbors at −kσφ
.σφ and +kσφ

.σφ

(0 and π are also considered as neighbors).

p(φ) ≈
X

0≤j<kφ

wjΓ(φj , σφ)

φj = (1 + 2j).kσφ
.σφ wj = 1/kφ

The sum is composed of kφ Gaussians:

kφ = π/(2.kσφ
.σφ)

Approximation of p(Lc). The Plücker coordinates of a sample

Lc
i,j are now clarified: the lower part ui,j is trivially obtained

from uφj
. The upper part is obtained with equation (2):

ni,j = hi,j .n = (di.g) ∧ uφj

The following relation is true by definition of g:

n = g ∧ uφj

So we are left with the following equation derived from the cross

product:

hi,j = di sin φj

Which gives for Lc
i,j :

Lc
i,j =

„

(di sin φj).n
Rot(−φj .n).g

«

The original stochastic variables are the observation (ρ, θ)t
and

the sampling variables over depth and direction. The following

function can be formulated:

Lc
i,j = pluckerInit(ρ, θ, di, φj)

Its Jacobian is also computed so that the usual uncertainties

propagation equation can be applied to compute the covariance

matrix PLc
i,j

Finally, p(Lc) is approximated with a Gaussian sum of kd × kφ

members.

p(Lc) ≈
X

0≤i<kd
0≤j<kφ

wi,jΓ(Lc
i,j , PLc

i,j ) wi,j = 1/kdkφ

The step by step computation of this sum is illustrated in figure 1

and a three dimensions result is presented in figure 3.

Once the set of Gaussian hypotheses is defined, the likelihoods

computation and the selection process is similar to the one presented
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Fig. 3. 3D view: in green the real segment, in red the set of hypothesis.

in [4]. The best hypothesis is converted to the map frame (equa-

tion (4)) and appended to the stochastic map. Past observations are

now used to update the map.

IV. ESTIMATION PROCESS

In this work, the Kalman filter is used to estimate the 3D

stochastic map. For an in-depth presentation one can refer to [13].

This section focuses on two additional problems which have to be

solved:

• computation of the innovation in the (ρ, θ) space,

• consideration of the Plücker representation constraints.

A. Innovation

It is a key value in the Kalman update process. It is given by:

y = z − ẑ. In the case of 2D lines observations (ρ, θ), a problem

arises when the observed line and the predicted line are on both

sides of the origin of the image frame. In that case, the observation

is artificially modified and expressed with a negative ρ value so that

the innovation reflects the correct error:

y = z∗ − ẑ z∗ = (−ρ, θ ± π)t (θ ± π) ∈ [−π, π]

B. Constraints

A 3D line represented with the 6-dimension Plücker vector L =
(n, u)t must respect two constraints so that it represents a valid

line (section II-A):


||u|| = 1 (normalization)

n · u = 0 (Plücker constraint)

All the hypotheses obtained with the procedure of section III do

meet these two constraints by construction. But once an hypothesis

has been chosen and added to the stochastic map, there is no

guarantee that the Kalman updates will not break the constraints.

An interesting work on that topic can be found in [14], it is called

the “Plücker correction”. Given a 6-dimension vector which does

not satisfies the Plücker constraint, the algorithm finds the vector

which fulfills this constraint and minimizes a special correction

criterion. This method is quite complex and is not adapted to the

stochastic representation.

More simply, u can be normalized at each step of the filter,

or after each update of the line. This method has already been

successfully applied for orientation quaternion in [3]. But it is

impossible to enforce the Plücker constraint that way.

In the case of a linear Kalman filter, with a linear constraint C

applying to the state vector x (C.x = c), the solution is trivial.

The constraint is exactly enforced when updating the filter once

parameter description value

βd rate of the geometric series 1.3
αd ratio between mean and standard-

deviation
0.2

σφ standard-deviation of each hypothesis 4◦

kσφ
where 2 consecutive Gaussians meet
in a fraction of σφ

1.3

τ threshold to prune bad hypothesis 10−2

αc initial constraint noise factor 0.1
thc threshold on relative strength to trig-

ger constraint application
100

Tab. 1. Summary of the parameters of the algorithm.

with observation c, null observation noise and observation matrix

C. The state gets correlated so that subsequent updates do not break

the constraint C.

In the case of an extended Kalman filter, with non-linear

constraints, the problem is much more tedious. Badly linearized

constraints can add a large base-point error and lead to divergence of

the filter. The work by De Geeter et al. in [15] presents a smoothly

constrained Kalman filter. This work covers strong and weak

nonlinear constraints. The Plücker constraint is a strong constraint

since it has to be enforced exactly. The constraint is smoothly

applied to the state vector: instead of applying the constraint once

with null noise (in the case of a strong constraint), the constraint

is applied several times with an added weakening noise.

When the line L is added to the stochastic map, its estimate L̂
respects the Plücker constraint. Then, past observations are used to

update the map. After these updates, it is likely that L̂ breaks the

Plücker constraint. At this point, L is considered to be sufficiently

updated so as to start the algorithm (this is our start criteria as

defined in [15]). The initial weakening value ξw
0 is given by:

ξw
0 = αc.CP̂LCt

Where C is the (1×6) Jacobian of the Plücker constraint computed

at L̂, and P̂L is the covariance matrix of L̂. The value of αc is

empirically chosen according to simulation tests.

The constraint updates are interlaced with the usual observation

updates. In the case of a strong constraint, constraint updates are

triggered by the test sc < thc where thc is a threshold and sc

is the relative strength defined in [15]. sc measures how well P̂L

respects the correlations induced by the Plücker constraint.

sc =
maxi C0i.P̂Lii.C0i

CP̂LCt

The weakening values of the consecutive updates are obtained with

the following formula, as suggested in [15]:

ξw
i = ξw

0 exp−nc

Where nc is the number of times the constraint has already been

applied.

V. SIMULATION TESTS

We ran the algorithm in simulation in order to tune the pa-

rameters, evaluate the constraints application and check the filter

consistency. The simulation environment contains eight segments

and the robot moves along a circle with a diameter of 10 meters.

A Gaussian noise is added to the odometry (ds, dθ)
t with σds

= 2.5 cm.m−1 and σdθ
= 1◦.m−1. A Gaussian noise with σ =

0.5 pixel is also added to the observations. This noise is added to

the detected extremities (u1, v1)
t and (u2, v2)

t of the segment and

then propagated to the line observation (ρ, θ)t. The algorithms are
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Fig. 4. Errors and 3-σ bounds of the robot pose (x, y, θ) in a simulation run, comparison with constraint disabled (red) and enabled (green).
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Fig. 5. Landmark number 4. Left: evaluation of n.u, comparison with
constraint disabled (red) and enabled (green). Right: relative strength of the
constraint.

implemented in full 3D, but in the simulation the robot is moving

on a plane.

A. Parameters definition

The parameters have all an intuitive meaning, but their effect is

not really independent. (βd, αd) and (σφ, kσφ
) define respectively

the Gaussian sums over depth d and direction φ of the approxima-

tion of the initial PDF of the 3D line:

• αd and σφ define the size of each Gaussian: the subsequent

linearization of the observation function must be valid around

each member,

• βd and kσφ
defines the density of Gaussians: each member

must not overlap too much with its neighbors so that a single

hypothesis remains after a small number of observations.

αc is the ratio which sets the initial value of the weakening

variance for the strong nonlinear Plücker constraint. This ratio is

adjusted so that constraint application has no strong effect on overall

consistency of the Kalman filter. thc is set to 100, we found this

value is enough, as advised in [15].

The set of parameters is summarized in table 1, their value have

been empirically set in simulation.

B. Consistency check

Figure 4 presents the errors and the 3-σ bounds on the robot pose

during a simulation run. This estimate is consistent all along the

loop and also when the loop is closed, which is the main source of

consistency violation in SLAM. Using the same random seed, in

order to obtain the same sequence of noise values, the simulation

was run with constraints disabled and enabled. The three plots of

figure 4 shows that no significant difference appears: the application

of the Plücker constraint does not affect the filter consistency.

Figure 5 gives details on the constraint efficiency and application

for the feature number 4. The plot of the dot product of the Plücker

constraint (left hand-side) shows that it is closer to zero when soft

constraint update is applied. The plot of the relative strength (right

hand-side) exhibits when the constraint is applied. Just after the

landmark is initialized, the relative strength of the Plücker constraint

is quite high: this is due to our initialization method which properly

propagates the correlations.

VI. EXPERIMENTS WITH REAL IMAGES

A. Image segments matching

The segments are extracted in the images according to a classi-

cal procedure: first a gradient filter is applied, then the gradient

is thresholded and the resulting binary image is structured into

contours, that links neighboring high gradient pixels. A line fitting

process is then applied, yielding an images of line segments

(figure 6).

As can be seen on figure 6, the image noise strongly influences

the segment extraction process: even for images acquired from

very close positions, some segments are not repeated, and some

are extracted with very different extremities – not to mention long

segments that are split in two shorter segments. As a consequence,

segments can hardly be matched on the basis of the coordinates of

their extremities. To ensure robust and reliable segment matches,

we rely on the Harris interest points matching algorithm presented

in [16]: to each segment are associated the closest matched interest

points, with a distance threshold very easy to specify. Segment

matches are then established according to a hypotheses generation

and confirmation paradigm. This simple process has proved to yield

outlier-free matches (figure 6), even for large viewpoint changes,

which is very helpful to associate landmarks when closing loops.

B. Results

We present results on an image sequence acquired with our

ATRV rover. The robot odometry is used to feed the prediction

step of SLAM. The robot moves along a circular trajectory with a

diameter of 5 meters. The camera is looking sidewards to the center

of the circle where two boxes have been put. In order to reconstruct

the boxes edges, only segments within the blue rectangular are

Fig. 6. Left: segments extracted in an image. Right: segments matched
based on interest points matches.
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id nx ny nz ux uy uz

1 1.597 -0.266 -0.083 0.051 -0.004 0.999
2 1.790 -0.117 0.059 -0.031 0.034 0.999
3 2.189 -0.563 -0.020 0.014 0.019 0.999
4 -0.268 -0.228 1.890 -0.662 0.749 -0.004
4’ -0.226 -0.246 1.877 -0.659 0.752 0.019

Tab. 2. Plücker coordinates of the supporting line of the five landmarks

Fig. 7. Left: an image of the sequence. Right: the 3D model from
approximately the same view point.

considered (figure 7-left). Segment 1,2 and 3 are vertical edges,

and segments 4 and 4’ actually model the same horizontal edge.

It can be verified on table 2 that segments 1,2 and 3 are close to

vertical (uz ≈ 1.0), also segments 4 and 4’ are close to horizontal

(uz ≈ 0.0), and that they have nearly the same supporting line

since there Plücker coordinates are very close. Moreover, the angle

between segment 3 and 4 which forms a corner of the right box is

88.61◦ with standard deviation of 1.75◦, which is consistent with

the expected value of 90◦.

An other 3D model is shown in the figure 7, this sequence was

taken closer to the boxes, and with bigger boxes. This model was

built along a full loop around the boxes.

VII. DISCUSSION AND FUTURE WORK

Depending on the trajectory of the robot, some landmarks are

never initialized. When using point features, these are the points

which are in front of the robot, this is why usually the camera is

configured to look sidewards. When using segment features, the

space of uninitialized landmarks is larger. When the camera is

moving within a plane, which is mostly the case in our simulations

and experiments, all the 3D segments lying in that plane cannot be

initialized. This is not a drawback of our algorithm but a geometric

fact.

In the light of simulations, it appears that the application of the

Plücker constraint is not absolutely necessary. Numerical values

of figure 5 shows that the constraint is reasonably verified. This

is certainly due to the correlations which are computed in the

initialization procedure. Nevertheless, this has to be verified in long

terms experiments. Also, the use of the SP-Map representation [17]

for the estimation process should be investigated as linearizations

of the observation function do not depend on the distance of the

segment to the origin of the reference frame.

Future efforts certainly include more work on the perception side,

especially the stability of the segment detection and extraction, and

the matching algorithm. Segments features are more invariant than

points when the viewpoint changes. This property can be very useful

for loop closing and also for multi-robots cooperative localization

and mapping.

REFERENCES

[1] T. Bailey, “Constrained initialisation for Bearing-Only
SLAM,” in IEEE International Conference on Robotics

and Automation, Taipei, Taiwan, September 2003. [Online].
Available: http://www.acfr.usyd.edu.au/publications/downloads/2003/
Bailey206/bearing_only_constrained.pdf

[2] M. Deans and M. Hebert, “Experimental comparison of techniques
for localization and mapping using a bearings only sensor,”
in Proc. of the ISER ’00 Seventh International Symposium

on Experimental Robotics, December 2000. [Online]. Available:
http://www.ri.cmu.edu/pubs/pub_3453_text.html

[3] A. Davison, “Real-time simultaneous localisation and mapping with
a single camera,” in Proc. International Conference on Computer

Vision, Nice, October 2003. [Online]. Available: http://www.robots.
ox.ac.uk/ActiveVision/Papers/davison_iccv2003/davison_iccv2003.pdf

[4] T. Lemaire, S. Lacroix, and J. Solà, “A practical 3D bearing
only SLAM algorithm,” in IEEE International Conference on

Intelligent Robots and Systems, august 2005. [Online]. Available:
http://www.laas.fr/~tlemaire/publications/lemaireIROS2005.pdf

[5] N. M. Kwok, G. Dissanayake, and Q. P. Ha, “Bearing-only SLAM
using a SPRT based gaussian sum filter,” in ICRA 2005, 2005.

[6] J. Solà, M. Devy, A. Monin, and T. Lemaire, “Undelayed initialization
in bearing only SLAM,” in IEEE International Conference on

Intelligent Robots and Systems, august 2005. [Online]. Available:
http://www.laas.fr/~tlemaire/publications/solaIROS2005.pdf

[7] E. Eade and T. Drummond, “Scalable Monocular SLAM,” in CVPR,
2006.

[8] J. M. M. Montiel, J. Civera, and A. J. Davison, “Unified
inverse depth parametrization for monocular SLAM,” in RSS 2006,
2006. [Online]. Available: http://www.doc.ic.ac.uk/~ajd/Publications/
montiel_etal_rss2006.pdf

[9] J. Folkesson, P. Jensfelt, and H. Christensen, “Vision slam
in the measurement subspace,” in Intl Conf. on Robotics and
Automation, Barcelona, Spain, April 2005. [Online]. Available:
http://www.cas.kth.se/~hic/publications.html

[10] E. Eade and T. Drummond, “Edge Landmarks in Monocular SLAM,”
in BMVC, 2006. [Online]. Available: http://www.macs.hw.ac.uk/
bmvc2006/papers/412.pdf

[11] P. Smith, I. Reid, and A. Davison, “Real-time monocular SLAM
with straight lines,” in BMVC, 2006. [Online]. Available: http:
//www.macs.hw.ac.uk/bmvc2006/papers/162.pdf

[12] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518,
2004.

[13] Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles,

Techniques, and Software. Artech House, 1993.
[14] A. Bartoli, “Reconstruction et alignement en vision 3d : points,

droites, plans et caméras,” Ph.D. dissertation, GRAVIR, 2003.
[Online]. Available: http://www.lasmea.univ-bpclermont.fr/ftp/pub/
bartoli/Thesis.pdf

[15] J. D. Geeter, H. V. Brussel, J. D. Schutter, and M. Decreton, “A
smoothly constrained kalman filter,” IEEE Transactions on Pattern

Recognition and Machine Intelligence, vol. 19, pp. 1171–1177,
October 1997. [Online]. Available: http://people.mech.kuleuven.be/
~jdgeeter

[16] I.-K. Jung and S. Lacroix, “A robust interest point matching
algorithm,” in International Conference on Computer Vision,
Vancouver (Canada), jul 2001. [Online]. Available: http://www.laas.
fr/~simon/publis/JUNG-ICCV-2001.pdf

[17] J. Castellanos, J. Montiel, J. Neira, and J. Tardós, “The SPmap:
A Probabilistic Framework for Simultaneous Localization and Map
Building,” IEEE Trans. Robotics and Automation,, vol. 15, pp.
948–953, 1999. [Online]. Available: http://webdiis.unizar.es/~jdtardos/
papers/Castellanos_TRA_1999.pdf

ThD1.3

2796


