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Abstract— The aim of this article is to achieve accurate visual
servoing tasks when the shape of the object being observed as
well as the final image are unknown. More precisely, we want to
control the orientation of the tangent plane at a certain point on
the object corresponding to the center of a region of interest and
to move this point to the principal point to fulfill a fixation task.
To do that, we perform a 3D reconstruction phase during the
servoing. It is based on the measurement of the 2D displacement
in the region of interest and on the measurement of the camera
velocity. Since the 2D displacement depends on the scene, we
introduce an unified motion model to deal with planar as well
with non-planar objects. Unfortunately, this model is only an
approximation. In [1], we propose to use active vision to enlarge
its domain of validity and a 3D reconstruction based on a
continuous approach. In this paper, we propose to use robust
estimation techniques and a 3D reconstruction based on discrete
approach. Experimental results compare both approaches.

I. INTRODUCTION

Visual servoing is now a widely used technique in robot
control [2]. It allows to perform robotic tasks from visual
features acquired by a camera. However, synthetizing the
control law requires usually a model of the scene observed
by the camera and also the knowledge of the desired features.
In some cases it is not possible, let us cite applications
for example in surgical domain [3] or when natural scenes
are involved [4]. Classic image-based approach [5] cannot
actually cope with such applications since the control law is
based on the knowledge of desired visual features. Let us
point out that the knowledge of the object is also needed
to compute the interaction matrix and, therefore, the control
law. It is also required for position-based approaches [6] to
compute the relative pose of the camera w.r.t. the object. To
avoid this a priori knowledge, some authors propose model-
free approaches [7], [8] but note that the desired visual
features are needed. Other works [9], [10], based on dynamic
visual features, do not require the desired image but require a
model of the object. Besides, note that, for now, these works
are only dedicated to planar objects.

This work can be seen as an improvement of our previous
work [11] where an approach restricted to planar objects
had been proposed. Here we propose an approach to cope
with planar or non-planar objects leading to an unified
displacement model. However, since this model is only an
approximation, we show how to compute it robustly. Since
the shape of the object as well as the desired image are
unknown, as in [11], a 3D reconstruction phase by dynamic
vision is needed.
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The paper is organized as follows: first, we present in
Section II a brief review on previous works relevant to 3D
reconstruction by dynamic vision. The reconstruction of the
parameters of the tangent plane is detailed in Section III
while the way to compute robustly the unified 2D displace-
ment model is presented in Section IV. Finally, experimental
results and a comparison with the approach proposed in [1]
are presented in Section V.

II. PREVIOUS WORKS

Numerous papers have been addressing the problem of
structure from motion, that is recovering both the 3D
structure of an object and the 3D motion of a moving
camera observing the considered object. Nevertheless, two
basic approaches emerge, continuous approaches and discrete
approaches. The former are based on the knowledge of the
optical flow while the latter are based on the matching of
visual features between two (or more) views. Since we are
interested in natural scenes, we consider here only point
features but we invite the interested reader to [12] where
other features are considered. In addition, we focus on dis-
crete approaches (the continuous approaches are investigated
in [1]).

Usually 3D reconstruction approaches are based on the
computation of the essential [13] or the fundamental [14]
matrices from matched points between two views. However,
some degenerate cases may occur, for example when the
scene is planar [15]. In this case, specific algorithms have
to be carried out. They are based on the computation of the
homography matrix [16]. Note that in case of non-planar
objects, an approach is proposed in [17] and [18] where an
homography is computed from a virtual plane attached to
the object. For visual servoing issues, let us point out that
the two views that have to be considered are the current and
the desired images. In this case, an important problem is to
correctly match the points between those frames that can be
very different. In addition, recall that in our case the desired
frame is unknown. Therefore, we present here a solution
based on two consecutive frames. Moreover, this approach
also simplifies the matching problem. Note that a solution
based on this way to proceed has been already proposed in
[11] but it was restricted to planar objects. We will here
extend this work.

III. RECONSTRUCTION OF THE STRUCTURE

Let us consider a point P described by XP = (XP , YP ,
ZP ) in the camera frame Fc. This point is chosen so that its
projection p described by xp = (xp, yp, 1) lies in the center
of a region of interest (ROI). Let us consider also a point M
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of the object described by X = (X,Y, Z) in Fc. The tangent
plane in P expresses as follows

Z = ZP +A10(X −XP ) +A01(Y − YP ) (1)

where A10 =
∂Z

∂X

∣∣∣∣
P

and A01 =
∂Z

∂Y

∣∣∣∣
P

leading to the
normal n in P

n = (A10, A01, −1) (2)

which is required to compute the control law (see [11]).
On the other hand, we can rewrite (1) in a more compact

form
Z = A00 +A10X +A01 Y (3)

where A00 = −n>XP such that (3) can be rewritten with
respect to the normalized coordinates x as follows

1

Z
= α> x (4)

with α = (α10, α01, α00) where α10 = −A10/A00, α01 =
−A01/A00 and α00 = 1/A00 or as follows by introducing
u = x− xp and v = y − yp

1

Z
= β> u (5)

with u = (u, v, 1) and β = (β10, β01, β00) where β10 = α10,
β01 = α01 and β00 = α> xp.

Therefore, if we can measure α or β, the unit normal ñ
in P can be deduced

ñ = − α

‖ α ‖ . (6)

On the other hand, we can compute the discrete displace-
ment of a point M between two frames

Xk+1 = RkXk + tk (7)

where Rk is a rotation matrix depending on ω and tk a
translation vector depending on v and ω at time k with
v = (vx, vy, vz) and ω = (ωx, ωy, ωz) being respectively
the translational and rotational components of the camera
velocity v. Thus, if v is measured we have an estimate for
Rk and tk. On the other hand, by perspective projection we
access to an expression of the 2D displacement between k
and k + 1





xk+1 =
R11 xk +R12 yk +R13 + tx/Zk
R31 xk +R32 yk +R33 + tz/Zk

yk+1 =
R21 xk +R22 yk +R23 + ty/Zk
R31 xk +R32 yk +R33 + tz/Zk

(8)

To compute α we assume that the surface in the neighbor-
hood of P is continuous so that we can write an expression
of depths in function of image coordinates

1

Z
=

∑

p≥0, q≥0, p+q=n

αpqx
pyq (9)

where n is the degree of this polynomial.
Thereafter, if we substitute this expression in (8) we obtain

a model of the 2D displacement. Unfortunately, the shape of
this model depends on the surface being observed through

the value of n. To not depend on the object shape, a way to
proceed is to consider only a small neighborhood in p so that
the depths given by (9) coincide with the ones given by the
tangent plane (5) leading to the following 2D displacement
model




xk+1 =
R′11 uk +R′12 vk +R′13 + β>uk t

′
x

R′31 uk +R′32 vk + 1 + β>uk t′z

yk+1 =
R′21 uk +R′22 vk +R′23 + β>uk t

′
y

R′31 uk +R′32 vk + 1 + β>uk t′z

(10)

where we have introduced the matrix R′ and the vector t′ =
(t′x, t′y, t′z) defined as follows




t′ =
1

K
t

R′ =
1

K



R11 R12 R11xp +R12yp +R13

R21 R22 R21xp +R22yp +R23

R31 R32 R31xp +R32yp +R33




(11)

where K = R31xp +R32yp +R33

First, let us suppose that t′z 6= 0. In this case we can
introduce γ = t′zβ and k = t′/t′z which allow us to rewrite
(10)




xk+1 =
R′11 uk +R′12 vk +R′13 + γ>ukkx
R′31 uk +R′32 vk + 1 + γ>uk

yk+1 =
R′21 uk +R′22 vk +R′23 + γ>ukky
R′31 uk +R′32 vk + 1 + γ>uk

(12)

where we denote k = (kx, ky, 1) and γ = (γx, γy, γz).
On the other hand, since (5) is only true locally, we have

to perform a Taylor series expansion of (12) in p leading to
the following unified 2D displacement model

xk+1 = M uk (13)

where




M11 =
ζ11 + (R′11 − kxR′31)γz + (kx −R′13)γx

ξ2
z

M12 =
ζ12 + (R′12 − kxR′32)γz + (kx −R′13)γy

ξ2
z

M13 =
R′13 + (kx +R′13)γz + kxγ

2
z

ξ2
z

M21 =
ζ21 + (R′21 − kyR′31)γz + (ky −R′23)γx

ξ2
z

M22 =
ζ22 + (R′22 − kyR′32)γz + (ky −R′23)γy

ξ2
z

M23 =
R′23 + (ky +R′23)γz + kyγ

2
z

ξ2
z (14)

with ζij = R′ij −R′i3R′3j and ξz = 1 + γz .
Throughout this paper, we refer to this displacement model

(13) as the unified displacement model since it can cope with
planar or non-planar objects.

Consequently, if we estimate the parameters of this motion
model (see Section IV) and if the 3D velocity is supposed to
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be known, an estimation γ̂ of γ can be obtained by solving
the following system




M11γ̂
2
z + (2M11 + kxR

′
31 −R′11)γ̂z −Kxγ̂x + Γ1 = 0

M12γ̂
2
z + (2M12 + kxR

′
32 −R′12)γ̂z −Kxγ̂y + Γ2 = 0

(M13 − kx)γ̂2
z + (2M13 − kx −R′13)γ̂z + Γ3 = 0

M21γ̂
2
z + (2M21 + kyR

′
31 −R′21)γ̂z −Kyγ̂x + Γ4 = 0

M22γ̂
2
z + (2M22 + kyR

′
32 −R′22)γ̂z −Kyγ̂y + Γ5 = 0

(M23 − ky)γ̂2
z + (2M23 − ky − w23)γ̂z + Γ6 = 0

(15)
where Kx = kx − R′13, Ky = ky − R′23 and where Γi are
the components of Γ defined as follows

Γ =




M11 − ζ11

M12 − ζ12

M13 −R′13

M21 − ζ21

M22 − ζ22

M23 −R′23



. (16)

More precisely, we rewrite (15) in a least-squares sense
(since we have 6 equations and 3 unknowns) leading finally
to a 3rd order polynomial in γ̂z .

In the case where t′z = 0 the unified displacement model
becomes much simpler




xk+1 = R′13 + t′xβ00 + (ζ11 − t′xR′31β00 + t′xβ10)uk
+ (ζ12 − t′xR′32β00 + t′xβ01) vk

yk+1 = R′23 + t′yβ00 + (ζ21 − t′yR′31β00 + t′yβ10)uk
+ (ζ22 − t′yR′32β00 + t′yβ01) vk

(17)
and leads to a linear form with respect to β

Cβ = Γ (18)

with

C =




tx 0 −txR′31

0 tx −txR′32

0 0 tx
ty 0 −tyR′31

0 ty −tyR′32

0 0 ty




(19)

leading to the following solution

β̂ =
(
C>C

)−1
C> Γ. (20)

As recovering the structure requires the knowledge of the
2D displacement between two consecutive frames, we focus
in the next section on the way to compute it.

IV. ESTIMATION OF THE FRAME-TO-FRAME
DISPLACEMENT

The classic approach [19] is based on the minimization of
the following criterion

J(µ) =
∑

m∈W
(f(m)− g(δ(m,µ))

2 (21)

where f and g denote the intensity in m of two consec-
utive frames, δ describes the unified displacement model
parametrized by the vector µ (given by (14) or (17)) and
W the windows of interest centered in p.

However, since (13) or (17) is only an approximation
of the true displacement model, if we want to obtain an
accurate value for µ we have to choose carefully the points
m involved in (21). Indeed, we want to select those which
fit the true displacement model.

In the general case of non-planar objects it is difficult
to study the difference E(u) between the approximated 2D
displacement and the true one. Therefore, we assume that
the true displacement model coincides with its second order
Taylor series expansion and compute the difference ε(u)
between this model and the unified displacement model. In
fact, we are interested to point out the locus L(u) when ε(u)
is small, since in that case E(u) will be also small. When the
3D rotations R between two consecutive frames are small,
one can show that ε(u) can be expressed as follows

ε(u) = εplanar(u) + εnon planar(u) (22)

where

εplanar(u) =
t′z (uβ10 + vβ01)

ξ3
z

[
u (aβ10 − ξz) + vβ01a)

bβ10u+ v (β01b− ξz)

]

(23)
with a = t′zR′13 − t′x, b = t′zR′23 − t′y and

εnon planar(u) =
eβ(u)

ξ2
z

(t′x, t
′
y) (24)

where eβ(u) describes the second order terms of 1/Z in p

eβ(u) =
1

2
β20u

2 + β11uv +
1

2
β02v

2 (25)

such that
1

Z
= β>u + eβ(u). (26)

If we know that the camera is observing a planar object
(i.e. eβ(u) = 0), then (23) shows that the locus where ε(u) =
0 is simply the following straight line

L(u) : uβ10 + vβ01 = 0. (27)

In the general case of an unknown object, vanishing ε(u) is
more difficult since uβ10 + vβ01 is not necessary factorized
in εnon planar(u). However, in practice, ‖ εplanar(u)‖ �
‖ εnon planar(u) ‖. Thus, we have ε(u) ≈ εnon planar(u)
and ε(u) becomes proportional to eβ(u). Therefore, we are
interested to identify the locus L(u) where eβ(u) is low.

To recover L(u), we are interested in the isocontours
eβ(u) = c where c is a low value. To study them, we reduce
the quadratic form (25) by expressing it in the frame of the
eigenvectors of the matrix associated with (25). Let s1 and
s2 be the eigenvalues of this matrix, thus it is possible to
rewrite (25) in the new frame as follows

s1u
′ 2 + s2v

′ 2 − c = 0 (28)

Three cases occur, the worst case appears when (28)
describes an ellipse, i.e. when s1s2 > 0. If sign(s1s2) 6=
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sign(c), L(u) is empty since (28) describes an imaginary
ellipse. Otherwise (25) will vanish only if u = 0. However,
note that the locus around the major axis will lead to lower
errors than around the minor axis (since in that direction
eβ(u) increases faster). When the conic is an hyperbola, i.e.
when s1s2 < 0, L(u) is obtained for c = 0. In that case, the
hyperbolas degenerate into two straight lines

L(u) :
{
v′ +

√
−s1/s2u

′
}
∪
{
v′ −

√
−s1/s2u

′
}
. (29)

This case is very interesting since there is an infinite number
of couples (u, v) for which (25) vanishes even far from p.
The last case, also interesting, appears when the conic is a
parabola, i.e. whenever s1 or s2 is null since there is also
a locus where (25) vanishes even if m is far from p. This
locus is either the u′ or the v′ axis.

To illustrate these theoretical issues, a simulation has been
carried out (see Fig. 1). The object is an hyperboloid of
one sheet described by (X/R)

2 − (Y/2R)
2

+ (Z/2R)
2

= 1
with R = 5 cm. The orientation between the camera and
the tangent plane was Φ = (−22o, 25o) (respectively pitch,
yaw) 1, the depth in P was Zp = 61 cm. Fig. 1 represents
‖E(u)‖ (considered equal to ‖ε(u)‖). We clearly see on
Fig. 1 that (25) describes here hyberbolas. We also guess
the two straight lines L(u) given by (29) in Fig. 1.

Thus, except the case where (25) describes an ellipse,
we have seen that even far from the center of the ROI
there is always a locus where the error between the true
2D displacement and the approximated one is very low.
Therefore, our idea is to choose a value as higher as possible
for W according to the computation time (in order to not
penalizing the dynamics of the end-effector and the stability
of the control scheme) and to select the points m which fits
the true 2D displacement while the other are seen as outliers.

This can be done by using statistical techniques of robust
estimation like the M-estimators [20]. Such approaches have
been shown to be effective in various contexts, see for
example [21]–[23]. Other approaches can also be used like
the RANSAC algorithm or the Hough transform but since
these methods are too much time consuming they have not
been considered.

Indeed, it is commonly known that in the case of the
ordinary least-squares estimator (as for now in (21)) the
probability of occurence of corrupted data is so small that
the estimation of the parameters will be strongly affected
when they occur [24]. To cope with this problem, instead of
minimizing (21), we prefer to compute µ̂ as follows

µ̂ = arg min
µ

∑

m∈W
ρ (em) (30)

where the function ρ is interpreted as the negative logarithm
of the probability density of residuals em = rm/σ where σ
denotes the variance of residuals rm = f(m)− g(δ(m,µ))
that fits the model. Since the residuals contain outliers,
computing σ is not a simple task. To do it robustly, it is

1We are not interested in the roll angle.

806040200-20-40-60-80

80
60
40
20
0
-20
-40
-60
-80

     2.5
       2
     1.5
       1
     0.7
     0.5
     0.3
     0.1

Fig. 1. ‖E(u)‖ vs. u (in pixels).

usually done by computing the Median Absolute Deviation
(MAD) [25].

Solving (30) can be done by using the so-called Itera-
tively Reweighted Least-Squares algorithm (IRLS) [20] that
moves the M-estimation problem to a weighted least-squares
algorithm ∑

m

ρ (em) =
1

2

∑

m

wme
2
m (31)

with wm = ψ(em)/em (see [20]) where ψ(x) = ∂ρ(x)/∂x
is called the influence function [24].

Various influence functions are reported in the literature.
We used the Tuckey’s biweight function as proposed in [20].
Indeed, since this function vanishes when gross errors appear,
it ensures that (30) will be not affected by such errors.

V. EXPERIMENTAL RESULTS

In order to validate our algorithm, we present here some
experimental results. We first compare the benefit of using
or not robust statistics, then, we compare the continuous
approach (presented in [1]) with the discrete one and, finally,
the use of active vision (also presented in [1]) with the use
of robust statistics.

The experimental system consists of a 6 dof robot with
an eye-in-hand CCD camera. Note that the transformation
matrix between the end-effector and the camera has been
calibrated. In contrast, the intrinsic parameters of the camera
are roughly known. The point p has been chosen from the
initial image by the Harris detector and has been tracked by
using the algorithm described in [26]. The way to evaluate
the orientation Φ (respectively pitch, yaw and roll) between
the camera frame and a frame attached to the tangent plane
in P has been detailed in [1]. We introduce the following
notations concerning the superscript of Φ: i for the initial
pose, d for the desired one and m for the measured one.
The control law is synthetized from α and is detailed in
[11], its goal is to reach the desired orientation (expressed
under the form κθ, where κ represents the unit rotation axis
vector and θ the rotation angle around this axis) at a given
depth Z∗P and to move the point p to the principal point.
To do that, we have introduced a task function e that we
regulate to zero.

Since the object is motionless, one can improve the
accuracy on α. Indeed, in a fixed frame, one can express
a value αf that can be filtered since a fixed value has to be
obtained. Thereafter, this value is expressed in the camera
frame to be used in the control law. Moreover, proceeding
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this way allows to know when αf is stable enough to be used
in the control law (typically 7 acquisitions are sufficient).
Thus, a preliminary phase is required. Since β̂ is initially
not known, only constant translations are considered (with
vz = 0, see [1]). They are chosen so that p will move towards
the principal point. Finally, the camera motion consists of
three phases, a first phase at constant velocity, a second phase
when both reconstruction and servoing are performed, and a
last phase where only the servoing operates. This last phase
occurs when the mean of the 2D displacement in the second
phase is lower than 1/4 pixel.

A. Comparison between using or not using robust estimation
The first experiment concerns a sphere of radius 7 cm

and consists in positioning the camera parallel to the tangent
plane in P so that Z∗P = 65 cm. Fig. 2 describes the behavior
of the algorithm when using the discrete approach. Fig. 2a
depicts the components of the camera velocity to reach
the desired pose; Fig. 2b the norm of the task function e;
Fig. 2c the magnitude of the rotation θ to reach the desired
orientation; Fig. 2d the behavior of α (filtered and non-
filtered) expressed in a fixed frame. Finally, the initial and
final images are reported respectively on Fig. 2e-f (the 4
white dots are used to compute mΦ off-line). First, Fig. 2b
confirms that the control law converges since ‖ e ‖ tends
towards zero. One can also remark on Fig. 2a the three
phases of the algorithm, the last phase begins near 20 s when
the 2D motion is lower than 1/4 pixel. For this experiment
we had iΦ = (−17◦, −17.2◦, −1.9◦) and iZP = 71.5 cm.
The orientation after servoing was mΦ = (0.4◦, 0.4◦) when
using robust estimation (recall that we are not interested in
the last component of Φ). Without using robust estimation,
a higher orientation error has been obtained since we had
mΦ = (−4.8◦, 2.8◦). The benefit of using robust estimation
is clear.

B. Comparison between the continuous and the discrete
approach

Instead of using (13), it is possible to derive a continuous
affine motion model which leads to a linear formulation for
β̂ as detailed in [1]. Both approaches need the knowledge
of the frame-to-frame displacement, i.e. the matrix Mc). We
computed this matrix as described in Section IV.

In comparison, we performed the same task as described
in Section V-A when using the continuous approach. We
obtained worse results since we had mΦ = (−1.9◦, 1.3◦).
This can be easy explained by the acquisition rate which in
the case of using robust estimation is low (due to the com-
putation duration of the MAD). Therefore, the assumption of
instantaneous displacement as required to derive a continuous
approach is no more valid.

C. Comparison between the use of active vision and the use
of robust estimation

Using a continuous or a discrete approach leads in both
cases to an approximated 2D motion model. Whereas we
have used here a robust estimation technique to enlarge
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Fig. 2. 1st experiment (x axes in seconds). dΦ = 0. (a) Kinematic screw
(m/s or rad./s). (b) Error defined as ‖ e ‖. (c) Magnitude of the rotation θ
(deg.) (d) Vector α in a fixed frame (filtered and non-filtered). (e) Initial
image. (f) Final image.

the domain of validity of the 2D motion model, in [1] we
have used active vision to do it. Remark that, since using
active vision is not time consuming, we have used in [1] a
continuous approach. Thereafter, we compare here the use
of active vision coupled to a continuous approach with the
use of robust estimation coupled to a discrete approach.

We performed again the same experiment as in Section
V-A but when using active vision. In this case, we obtained
also a very low positioning error since we had mΦ = (−0.1◦,
0.5◦).

The second experiment has been carried out on the same
sphere with dΦ = (20◦, 20◦) (see Fig. 3). Fig. 3 depicts the
same parameters as in Fig. 2 and confirms that the control
law converges without any problem. The initial orientation
was iΦ = (4.2◦,−5.2◦, 3.2◦) and we had iZP = 70.9 cm. We
obtained mΦ = (19.5◦, 20.3◦). As can be seen, this result
is very good. Unfortunately, in the case of active vision, we
obtained bad results, the orientation error was around 4◦.

When dealing with desired orientation Φ 6= 0 using
robust estimation leads clearly to lower positioning errors
than when using active vision. The main drawback of using
robust estimation is that this technique is time consuming
(the update rate is around 400 ms) and therefore penalizes
the dynamic behavior of the robot. In contrast, a higher
update rate is obtained (around 280 ms) when using active
vision. Consequently, higher 3D velocities can be achieved.
In addition, in the case of a less complex object, like a
cylinder for example, good results can be obtained even when
Φ 6= 0 (see [1]).
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Fig. 3. 2nd experiment. dΦ = (20◦, 20◦).

VI. CONCLUSION

We have presented in this paper a way to achieve visual
servoing tasks when the desired visual features and the shape
of the object being observed are unknown. To do that, we
recover the parameters of the tangent plane at a certain point
of an unknown object that are introduced in a control law
to perform a positioning task. Our approach is based on the
computation of the 2D displacement between two consecu-
tive frames contrary to other approaches where the current
and the desired frames are required. These approaches lead,
therefore, to a more complex matching process without a
priori knowledge of the scene. Our technique does not require
the desired image and consequently enlarges the application
domain of visual servoing to natural scenes. More precisely,
our algorithm is based on an unified 2D displacement model
to cope as well with planar as with non-planar objects.
However, since this model is an approximation of the true 2D
displacement we have introduced robust statistics to enlarge
its validity domain. Experimental results have shown that
accurate positioning can be achieved. However, because a
low update rate is obtained (around 400 ms with a Pentium 4
at 2 Ghz) only slow camera motion can be considered, this
is the main drawback of this approach.
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