
The Effect of Semicircular Feet on Energy Dissipation by Heel-strike in
Dynamic Biped Locomotion

Fumihiko Asano and Zhi-Wei Luo

Abstract— This paper investigates the effect of semicircular
feet on dynamic bipedal walking. It has been clarified in [3]
that underactuated virtual passive dynamic walking can be
realized by using the rolling effect, which acts as the ankle-
joint torque virtually. It has been also shown that, throughout
parameter studies, the rolling effect dramatically increases the
stable domain of limit cycles. Now that the effect of semicircular
feet during stance phase has been discussed, this paper then
focuses the effect on mechanical energy dissipation by heel-
strike. It is theoretically clarified that, through modeling and
analysis of an inelastic collision, increasing walking speed is
achieved not by the rolling effect during stance phase but by
the effect of reducing mechanical energy dissipation by heel-
strike.

I. INTRODUCTION

Energy-efficient and high-speed dynamic biped locomo-
tion is a recent major subject in the research area of robotic
biped locomotion. Passive dynamic walking (PDW) [2] is
an influential candidate and many PDW-inspired control
approaches and walking machines have been proposed so
far. Semi-active dynamic walkers with small or un-powerful
actuators seem to be a natural solution as an extension
of PDW to level walking. One of the characteristic that,
however, most distinguishes passive-dynamic walkers from
recent biped humanoid robots is the feet whose shape is
circular or convex curve. The robots with such foot shape
in contact with the ground at exactly one point which is
equivalent to the zero moment point (ZMP) [1], and such
contact style is a feature of ZMP-free robots in the meaning
of motion control without using ankle-joint torque actively.

The authors have clarified that the rolling effect of semi-
circular feet can be transformed to the ankle-joint torque of
a flat feet model in the case of linearized system, and this
enables the robot to walk on level ground by only hip-joint
actuation which reproduces virtual gravity effect [3]. The
ankle-joint torque is in general most effective to accelerate
the robot’s center of mass (CoM) forward and semicircular
feet can reproduce this effect, whereby the robot can act as
a fully-actuated system virtually. This paper first introduces
two planar biped models and underactuated virtual passive
dynamic walking to show the basic rolling effect during the
stance phase.

The authors have discovered that semicircular feet are also
effective in inelastic collisions of heel-strike for improvement
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of the walking system performance in the meaning of de-
creasing the mechanical energy dissipation. In the previous
works on PDW, however, only the effect during stance phase
has been discussed or analyzed [2][3][6][7]. This paper
especially focuses the effect of semicircular feet on inelastic
collisions of heel-strike and theoretically investigates its
mechanism through mathematical modeling of the collision.
We first describe the detailed modeling of the heel-strike
following inelastic collision law, and show that there exists
a condition to make the energy dissipation be zero through
analysis based on singular value decomposition. Throughout
analyses, we show that semicircular feet with suitable foot
radius function as a shock absorber for heel-strike.

II. UNDERACTUATED VIRTUAL PASSIVE DYNAMIC
WALKING

Before discussing the main subject, this section describes
biped models with semicircular feet and underactuated vir-
tual passive dynamic walking as an introduction of the effect
of semicircular feet during the stance phase.

A. Compass-like biped model with semicircular feet

This paper treats a planar underactuated biped model with
semicircular feet as shown in Fig. 1. The robot consists
of two legs and three point masses, and has semicircular
feet whose central points are on each leg. We assume that
the stance-leg’s foot is always in contact with the ground
at exactly one point without slipping, that is, the rolling
constraint condition is guaranteed. The dynamic equation is
then derived as

M (θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = SuH =

[

1
−1

]

uH (1)

where θ =
[

θ1 θ2
]T is the generalized coordinate vector

and uH is the hip-joint torque, respectively. The details of
the terms were already explained in [3], so this paper omits
them. Let E be the robot’s total mechanical energy, its time-
derivative then satisfies the relation Ė = θ̇HuH where θH :=
θ1 − θ2 is the relative hip-joint angle.

B. Underactuated virtual passive dynamic walking

Asano et al. discovered that, in the case of virtual passive
dynamic walking (VPDW) on level ground [5], the following
relation holds between the mechanical energy and the X-
position of CoM:

Ė = Mg tanφẊg (2)

where Xg [m] is the X-position at CoM, M := mH + 2m
[kg] is the robot’s total mass and φ [rad] is the virtual slope
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Fig. 1. Model of planar underactuated compass-like biped robot with
semicircular feet

angle, respectively [5]. In the case with hip-joint actuation
only, Eq. (2) yields the following form:

Ė = θ̇HuH = Mg tanφẊg (3)

and the hip-joint torque uH is then determined uniquely as

uH =
Mg tanφẊg

θ̇H

. (4)

Asano et al. showed that VPDW on level ground is impos-
sible by hip-joint actuation only, whereas in the case with
semicircular feet it becomes possible because the rolling
effect dramatically increases the stable domain. We call the
generated walking style by the control input of Eq. (4)
“underactuated virtual passive dynamic walking (UVPDW)”
in the following. The property of semicircular feet is that
the rolling effect acts as the ankle-joint torque and drives
the robot’s CoM forward effectively.

By setting the origin as the contact point between the sole
and the ground when θ1 = 0, the X-position of the robot’s
CoM is determined as

Xg = R(θ1−sin θ1)+
(mH l +ma+ml) sin θ1 −mb sin θ2

M
,

(5)
and its time-derivative yields

Ẋg = Rθ̇1(1 − cos θ1)

+
(mH l+ma+ml)θ̇1 cos θ1 −mbθ̇2 cos θ2

M
. (6)

Note that the second term is the same as that of the flat feet
model, and the first term is almost 0 if θ1 is sufficiently small.
This implies that the foot radius R does not directly affect
the walking speed during the stance phase or its geometric
effect is weak. The reason why the semicircular feet increases
the walking speed does not lie in the rolling effect. We then
investigate the effect on inelastic collisions by heel-strike
deeply in the following sections.

C. Knees

By the rolling effect of semicircular feet, UVPDW is also
realized by a kneed model. Fig. 2 shows the model of a
planar kneed biped with semicircular feet, which consists
of three links and four point masses. We assume that the
knee-joint of stance leg is mechanically locked and does not
rotates during the stance phase. The dynamic equation of the
kneed biped is given by

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = SuH =





1
−1

0



uH , (7)

where θ =
[

θ1 θ2 θ3
]T. The gravity term of this kneed

model is given by

g(θ) =





− (mH l1 +m1a1 +m2l1 +m3l1) sin θ1
(m2b2 +m3l2) sin θ2

m3b3 sin θ3



 g

+





MRg sin θ1
0
0



 , (8)

and the first term of the right-hand side is the same as that of
a flat feet model. Since other terms M and Cθ̇ are equivalent
to those of a flat feet model in the meaning of a linearized
system, also in the kneed case, a semicircular feet model can
be regarded as a flat feet model with ankle-joint torque given
as −MRg sin θ1. By using this effect, the kneed biped can
also exhibit UVPDW on level ground by the hip-joint torque
in Eq. (4). Fig. 3 shows the stick diagram of UVPDW where
φ = 0.015 [rad] and R = 0.4 [m], the physical parameter
settings are omitted. Under the assumption that the knee-
joint of swing leg is mechanically locked after the collision,
at instant of heel-strike, the biped system can be treated as a
two-linked model. We investigate the detailed mechanism of
the two-linked collision model and the effect of semicircular
feet on the mechanical energy dissipation in the following.
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Fig. 2. Model of planar underactuated biped robot with semicircular feet
and knee-joint
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Fig. 3. Stick diagram for underactuated virtual passive dynamic walking
with semicircular feet and knee-joint where φ = 0.015 [rad] and R = 0.4
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Fig. 4. Foot clearance for nine values of m3 in underactuated virtual
passive dynamic walking

Fig. 4 shows the lowest point of the sole to check the foot
clearance with respect to the mass balance; various cases of
m3 is examined while maintaining m2 +m3 = 5.0 [kg]. In
general, to guarantee the foot clearance during stance phase,
the shin mass should be chosen sufficiently lighter than the
thigh. We leave a detailed discussion about this for another
opportunity, let’s focus the lecture on the inelastic collision
mechanism of heel-strike in the following sections.

III. MODELING INELASTIC COLLISION

This section describes the inelastic collision model of heel-
strike in detail.

A. Derivation of inelastic collision model and dissipated
mechanical energy

The dynamic equation can be derived following Lagrange
principle, whereas the transition equation for stance-leg ex-

change must be derived by extending the system’s coordinate
and introducing the corresponding generalized coordinate
vector. Fig. 5 shows the geometric condition at instant of
heel-strike; the two legs are symmetric. We call respectively
the forward leg “Leg 1” and the rear one “Leg 2”; Leg 1 is
the pre-stance leg and Leg 2 is the pre-swing leg. Define the
extended coordinate vector of the Leg i, qi ∈ R3, and that
of the augmented system, q ∈ R6, respectively as

qi :=





xi

zi

θi



 , q :=

[

q1

q2

]

, (9)

where xi and zi are X and Z-positions of the central point
of semicircular feet. Under the assumption that the stance
leg and the swing leg are switched instantaneously following
inelastic collision law, the pre and the post angular positions
of the original generalized coordinate satisfy the relations
θ−1 = θ+2 and θ−2 = θ+1 . Whereas in the extended coordinate
q, this change does not occur and q+ = q− = q. In the
following, the notation θi is of the extended coordinate.
Considering this relation, the inelastic collision model can
be formulated as

M̄ (q)q̇+ = M̄(q)q̇− − J I(q)TλI , (10)

where JT
I λI ∈ R4 stands for the impulsive force vector and

J I ∈ R4×6 is the Jacobian matrix which should satisfy the
condition

J I(q)q̇+ = 04×1. (11)

M̄(q) ∈ R6×6 is the inertia matrix corresponding to the
extended coordinate, q, and detailed as

M̄ (q) =

[

M1(q1) 03×3

03×3 M 2(q2)

]

,

M i(qi) =





Mi11 0 Mi13

Mi22 Mi23

Sym. Mi33



 ,

Mi11 = Mi22 =
mH

2
+m,

Mi13 =
(mH

2
(l −R) +m(a−R)

)

cos θi,

Mi23 = −
(mH

2
(l −R) +m(a−R)

)

sin θi,

Mi33 =
mH

2
(l −R)2 +m(a−R)2.

Here, note that matrix M i differs in the case of kneed model
because the stance leg has an inertia moment, I [kg·m2], and
Mi33 therefore should be

Mi33 =
mH

2
(l −R)2 +m(a−R)2 + I.

The dissipated mechanical energy, ∆Ehs [J], is defined as

∆Ehs =
1

2

(

q̇+
)T

M̄(q)q̇+ − 1

2

(

q̇−
)T

M̄(q)q̇− ≤ 0.

(12)
λI ∈ R4 is Lagrange’s undetermined multiplier vector within
the context of impulsive force, and can be derived following
Eqs. (10) and (11) as

λI = X−1

I J I q̇
−, XI := J IM̄

−1
JT

I . (13)
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By substituting this into Eq. (10), the post-impact velocity
can be obtained as

q̇+ =
(

I6 − M̄
−1

JT
I X−1

I J I

)

q̇−. (14)

In addition, the transformation from q̇+ to θ̇
+

is given by

θ̇
+

=

[

0 0 0 0 0 1
0 0 1 0 0 0

]

q̇+. (15)

Further substituting this into Eq. (12) and eliminating q̇+,
∆Ehs can be simplified as

∆Ehs = −1

2

(

q̇−
)T

JT
I X−1

I J I q̇
−. (16)

Note that ˙̄q
− is given by transforming q̇− as

q̇− =

















R 0
0 0
1 0

R+ (l −R) cos θ1 −(l −R) cos θ2
−(l −R) sin θ1 (l − R) sin θ2

0 1

















[

θ̇
−

1

θ̇
−

2

]

=: H(q)θ̇
−
. (17)

By using this relation, Eq. (16) is further simplified as
follows:

∆Ehs = −1

2

(

θ̇
−

)T

HTJT
I X−1

I J IHθ̇
−
. (18)

Let α [rad] be the half inter-leg angle at the instant and is
defined as

α :=
θ1 − θ2

2
> 0, (19)

then the joint angles in Fig. 5 can be replaced by θ1 = α
and θ2 = −α, respectively. Note that the matrices H, J I

and XI are only functions of the angular positions. The
following matrix

N := HTJT
I X−1

I J IH ∈ R2×2, (20)

is also only a function of α, and thus ∆Ehs can be expressed
as

∆Ehs = −1

2

(

θ̇
−

)T

N(α)θ̇
−
. (21)

B. Derivation of J I

This subsection describes the detailed derivation of J I .
The configuration at instant of transition is shown in Fig.
2. The velocity constraint conditions between the two legs
to connect them are derived from geometric conditions such
that the Leg 1’s hip is positioned the same as the Leg 2’s,
and they can be expressed as

x1 + (l −R) sin θ1 = x2 + (l −R) sin θ2, (22)
z1 + (l −R) cos θ1 = z2 + (l −R) cos θ2. (23)

Their time derivatives yield

ẋ+
1 + (l −R)θ̇

+

1 cos θ1 = ẋ+
2 + (l −R)θ̇

+

2 cos θ2, (24)

ż+
1 − (l −R)θ̇

+

1 sin θ1 = ż+
2 − (l −R)θ̇

+

2 sin θ2. (25)

(x2, z2)

θ1 −θ2

O

l l

Leg 1 Leg 2

X

Z

(x1, z1)

z1 = z2 = R

Fig. 5. Configuration at instant of heel-strike

Further, the rolling contact condition with the ground of the
post-impact stance-foot is given by

ẋ+
2 = Rθ̇

+

2 , (26)
ż+
2 = 0. (27)

Summarizing the above four conditions, J I yields

J I(q) =









1 0 (l −R) cos θ1 −1 0 −(l −R) cos θ2
0 1 −(l −R) sin θ1 0 −1 (l −R) sin θ2
0 0 0 1 0 −R
0 0 0 0 1 0









.

(28)

IV. ANALYSIS BASED ON SINGULAR VALUE

Although the dissipated energy could be mathematically
formulated, it is very difficult to analyze the detailed structure
of ∆Ehs in Eq. (21). One candidate to evaluate the dissipa-
tive feature is the singular values of N . The worst or the
best cases of energy dissipation can be explained from the
viewpoint of matrix norm induced by a vector 2-norm. The
matrix N is always positive semi-definite and its singular
value decomposition (SVD) has the form

N = V ΣV T, Σ =

[

σ1 0
0 σ2

]

. (29)

Note that σ1 ≥ σ2 ≥ 0; the maximum and minimum singular
values. V ∈ R2×2 is an Unitary matrix which should satisfy
V TV = V V T = I2. The following relations hold between
the induced 2-norm and the σ1:

‖N‖
2

=
∥

∥

∥
N1/2

∥

∥

∥

2

2
:= sup

θ̇− 6=0

∥

∥

∥
N 1/2θ̇

−
∥

∥

∥

2

2
∥

∥

∥
θ̇
−

∥

∥

∥

2

2

= σ1(N ), (30)

and the following equality also holds:
∥

∥

∥
N1/2θ̇

−
∥

∥

∥

2

2
∥

∥

∥
θ̇
−

∥

∥

∥

2

2

= (σ1 − σ2) cos2 ψ + σ2, (31)
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TABLE I
PHYSICAL PARAMETERS OF THE ROBOT

mH 10.0 kg
m 5.0 kg

l (= a + b) 1.0 m
a 0.5 m
b 0.5 m

where ψ ∈ R is an arbitrary parameter. Eq. (31) then leads
the following inequality:

σ2(N ) ≤

∥

∥

∥
N1/2θ̇

−
∥

∥

∥

2

2
∥

∥

∥
θ̇
−

∥

∥

∥

2

2

≤ σ1(N). (32)

Therefore, maximizing/minimizing the induced 2-norm of
N means maximizing/minimizing the magnitude of the
dissipated energy, ∆Ehs, for the given θ̇

−
.

Figs. 6 (a) and (b) show the maximum and minimum
singular values of matrix N and their contours with respect
to R and α where the physical parameters are chosen as
Table I. As Fig. 6 (a) strongly indicates, the σ1 monoton-
ically decreases with the increase in R. This implies that
semicircular feet decrease the energy dissipation in the case
with large R, which can be understood from the viewpoint
of that the walking system’s dynamics closes to a wheel’s
one. It is another problem, however, whether or not a stable
limit cycle is generated. There is a tendency that the gait
becomes unstable and diverges as R closes to the leg length
[3].

Note that, as seen in Fig. 6 (b), σ2 is always 0 when R = l

or α = 0. This means that there is a solution, θ̇
− 6= 02×1,

which achieves ∆Ehs = 0 in these cases. Let us derive its
condition in the following.

Where R = l, matrix N has the form

N = NR=l

[

1 −1
−1 1

]

, Σ =

[

σ1 0
0 0

]

,

V =

[

−1/
√

2 −1/
√

2

1/
√

2 −1/
√

2

]

, (33)

where

NR=l =
N1

N2

> 0, (34)

N1 = 2mb2l2 (mH +m−m cos(2α)) , (35)
N2 = 2mH l

2 + 3ml2 + 2mb2 − 4mbl cosα

−ml2 cos(2α). (36)

We can then solve the condition for ∆Ehs = 0. Substituting
Eq. (33) into Eq. (21) gives

∆Ehs = −1

2

∥

∥

∥
Σ

1/2V Tθ̇
−

∥

∥

∥

2

= −1

2

∥

∥

∥

∥

∥

[√
σ1 0
0 0

][

−1/
√

2 1/
√

2

−1/
√

2 −1/
√

2

]

[

θ̇
−

1

θ̇
−

2

]∥

∥

∥

∥

∥

2

= −1

4
σ1

(

θ̇
−

1 − θ̇
−

2

)2

. (37)
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Fig. 6. Singular values of matrix N and their contours with respect to R

and α

Here, note that ∆Ehs can also be derived following Eq. (21)
as

∆Ehs = −1

2
NR=l

(

θ̇
−

1 − θ̇
−

2

)2

, (38)

and 2NR=l = σ1 can be found. From Eqs. (37) and (38), we
can conclude that the condition for ∆Ehs = 0 is θ̇

−

1 = θ̇
−

2 ;
the energy dissipation can be reduced to zero by controlling
the pre-impact relative angular velocity of the hip-joint, 0
[rad/s], regardless of the physical parameter choice of the
walking system.

McGeer studied this topic in his original work in 1990
[2], introducing a “synthetic wheel” with a mass-less leg.
He pointed out that a synthetic wheel can walk on level
ground without any power supply by choosingR = l because
support by the stance leg can roll seamlessly from one
rim to the next. This is strongly supported by Eq. (35)
because N becomes a zero matrix if m = 0. In addition,
he remarked that the wheel should have a large point mass
at the hip position, otherwise the swing-leg motion would
disrupt the steady rolling. Considering real legged robots, this
assumption is very hard to realize and we must conclude that
the synthetic wheel is an extreme example and unrealistic.

Where α = 0, matrix N can also be simplified and has
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the form

N = Nα=0

[

1 −1
−1 1

]

, (39)

where

Nα=0 =
mHmb

2l2

mH l2 +ma2
≥ 0. (40)

Since matrix N has the same form as R = l in this case, the
condition for ∆Ehs = 0 is θ̇

−

1 = θ̇
−

2 . Condition α = 0 seems
unrealistic and is not considered to be a suitable transition
shape to generate a stable limit cycle.

Above analyses show that the optimal foot radius is R = l
in the meaning of minimizing the maximum singular value
of N . In the real legged robot design, however, we should
choose a proper radius because the large R causes very long
feet even if a high-speed walking would be realized.

V. CONCLUSIONS

This paper investigated the effect of semicircular feet on
reducing mechanical energy dissipation by inelastic colli-
sions of heel-strike. It has been clarified that, throughout
analysis based on SVD, there is a tendency to decrease
energy dissipation with the increase in the foot radius R and
there is a condition to make the energy dissipation be zero
when R = l; this result supports McGeer’s original study of
the synthetic wheel.

We can summarize the effect of semicircular feet on
dynamic bipedal walking as follows.

• During the stance phase, semicircular feet provide the
rolling effect which is equivalent to the ankle-joint
torque.

• At instant of inelastic collisions of heel-strike, semicir-
cular feet reduce the mechanical energy dissipation.

Multiple effects of both achieves an energy-efficient and
high-speed dynamic biped locomotion. Optimal foot shape
design of the convex curve is a subject left in future work.
The mechanism to increase the stable domain of limit cycles
is also an important problem to be theoretically clarified.

Traditionally, there has been a tendency to adopt flat feet
in a biped humanoid robot design. The semicircular feet
attached on the stance-leg, however, function as the ankle-
joint torque during the stance phase virtually and as a shock
absorber for heel-strike. The walking system’s performance
is as a result improved and the difficulty comes from the
ZMP constraint also disappears. This fact suggests that it is
necessary to reconsider biped robot mechanism with flat feet
or ZMP-based approach.
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