
A Path-Following Approach to Stable Bipedal Walking and Zero
Moment Point Regulation

D. Djoudi, C. Chevallereau, and J.W. Grizzle

Abstract— Consider a biped evolving in the sagittal plane.
The unexpected rotation of the supporting foot can be avoided
by controlling the zero moment point or ZMP. The objective
of this study is to propose and analyze a control strategy for
simultaneously regulating the position of the ZMP and the joints
of the robot. If the tracking requirements were posed in the
time domain, the problem would be underactuated in the sense
that the number of inputs would be less than the number of
outputs. To get around this issue, the proposed controller is
based on a path-following control strategy previously developed
for dealing with the underactuation present in planar robots
without actuated ankles. In particular, the control law is defined
in such a way that only the kinematic evolution of the robot’s
state is regulated, but not its temporal evolution. The asymptotic
temporal evolution of the robot is completely defined through
a one degree of freedom subsystem of the closed-loop model.
Simple analytical conditions, which guarantee the existence of
a periodic motion and the convergence towards this motion, are
deduced.

I. INTRODUCTION

The majority of robot control policies are built around the
notion of controlling the ZMP point [8], [9]. The center of
pressure or CoP is a standard notion in mechanics that was
renamed the zero moment point or ZMP by Vukobratovic and
co-workers [11], [10]. As long as the ZMP point remains
inside the convex hull of the foot support region, CoP =
ZMP and the supporting foot does not rotate. In particular,
most of the control strategies are decomposed into a low-
level controller and a high-level controller, where the low-
level controller ensures the tracking of the reference motion
for each joint, and the high-level controller modifies the
reference motion in order to ensure that the ZMP point
remains within the convex hull of the foot support region.

The existence and stability of a periodic orbit depend
on much more than just the position of the ZMP point:
It is quite possible to have gaits where the ZMP point is
within the convex hull of the foot support region and where
the robot remains upright, but yet the gait is not periodic,
or it is periodic, but is not asymptotically stable. In many
experimental studies, how to modify the reference motion
is not explained [8], and it seems that this point has not
been studied theoretically. Obviously, the modification of the
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reference motion has an important effect on the stability of
the gait (in the sense of the convergence toward a periodic
motion) and its robustness (in the sense of the reaction of
the robot in the presence of perturbations).

Our control strategy is based on a path-following control
strategy previously developed for dealing with the under-
actuation present in planar robots without actuated ankles
[3], [4], [7], [13]. Our controller is related to the work
in [5], which extended the work of Westervelt et al. [13]
on underactuated bipedal walking to the case of a fully-
actuated robot, where the stance ankle torque was used to
regulate either the position of the stance ankle or the rate of
convergence to a periodic walking gait. In the present study,
the position of the ZMP will instead be prescribed, which is
important for robustly avoiding unexpected rotations of the
foot in the presence of perturbations.

The control law is defined in such a way that only the
geometric evolution of the robot’s joints and of the ZMP
position is controlled, but not their temporal evolution. This
strategy can be seen as an on-line modification of the joint
reference motion with respect to time in order to ensure
that the position of the ZMP will be satisfactory. The
modification of the reference motion corresponds to adjusting
the acceleration of the robot along a given path 1 in the joint
space. Assuming a perfect robot model, and without external
perturbations, the closed-loop temporal evolution of the robot
is completely defined and can be analyzed through the study
of a one degree of freedom subsystem. The Poincaré return
map can be used to study the existence and stability of
periodic motions under the proposed control law. Analytical
conditions are obtained and subsequently illustrated through
simulations.

Section II presents the dynamic model of the biped. A
planar biped is considered. Section III is devoted to the
formulation of the control strategy and to the existence of a
periodic motion. In Section IV, a complete analytical study
is proposed. Some simulation results are presented in Section
V. Section VI concludes the paper.

II. THE BIPED MODEL

A. The biped

The biped under study walks in the sagittal plane identified
with a vertical x−z-plane. The robot is comprised of a torso
and two identical legs, and each leg is composed of two
links with mass and a foot. The ankles, the knees and the

1The time evolution along the path is not specified a priori. For related
work in nonlinear control, see [1] and references therein.
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hips are one-degree-of-freedom rotational frictionless joints.
The walking gait consists of single support phases where
the stance foot is flat on the ground separated by impacts,
that is, instantaneous double support phases where leg ex-
change takes place. The vector q = [q1, q2, q3, q4, q5, q6]T

of configuration variables (see Fig. 1) describes the shape
of the biped during single support. The stance ankle torque,
which is used to obtain a desired evolution of the ZMP, is
denoted Γa = Γ1. The torques are grouped into a torque
vector Γ = [Γ1,Γ2,Γ3,Γ4,Γ5,Γ6]T .
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Fig. 1. The studied biped: generalized coordinates

In the simulation, we use the biped parameters given in
[3] for all links except the feet. The mass of each foot is 1kg
and the center of mass is on the normal of the sole passing
through the ankle, 3cm below the ankle. The dimensions of
the feet are hp = 0.08m, lg = 0.06m and ld = 0.2m.

B. Dynamic model

The walking gait is composed of successive phases of
single support and instantaneous double support. A passive
impact exists at the end of the single support phase. The
legs swap their roles from one step to the next, and thus,
because the robot is symmetric, the study of a single step is
sufficient to deduce the complete behavior of the robot over
a sequence of steps on alternating legs. Only the dynamic
model for support on leg-1 and the algebraic impact model
are derived.

1) The single support phase model: The dynamic model
can be written as follows:

M(q)q̈ + h(q, q̇) = Γ, (1)

where M(q) is a (6 × 6) matrix and vector h(q, q̇) contains
the centrifugal, Coriolis and gravity forces.

2) Global equilibrium in translation : The reaction force
during the single support phase: During single support, the
position of the center of mass of the biped can be expressed
as a function of the angular coordinates vector q noted xg(q),
zg(q). When leg-1 is on the ground, a ground reaction force
R1 exists. The global equilibrium in translation of the robot
makes it possible to calculate this force. Thus we have :

m

[
ẍg

z̈g

]
+mg

[
0
1

]
= R1 (2)

Equation (2) can also be written:

m
∂xg(q)

∂q q̈ +mq̇T ∂2xg(q)
∂q2 q̇ = Rx1

m
∂zg(q)

∂q q̈ +mq̇T ∂2zg(q)
∂q2 q̇ +mg = Rz1,

(3)

where ∂2xg(q)
∂q2 and ∂2zg(q)

∂q2 are (6 × 6) matrices.
3) Global equilibrium in rotation : the ZMP position:

The robot is submitted to the reaction force exerted by the
ground in the ZMP point, and the gravity force. Since the
stance ankle A is fixed during the single support phase, the
equilibrium of the foot around the ankle can be written (see
figure 1):

σ̇A = mgxg − lRz1 − hpRx1. (4)

where σA is the angular momentum of the biped about A.
By definition the angular momentum is linear with respect
to the joint velocities and can be written:

σA = N(q)q̇ (5)

The location of the ZMP point is then defined directly by
the robot dynamics through the previous equation. Indeed,
using equations (3), (5) and (6), we have:

(N0(q) + lNl(q))q̈ + h0(q, q̇) + lhl(q, q̇) = 0, (6)

where

N0 = N(q) + mhp
∂xg(q)

∂q

Nl = m
∂zg(q)

∂q

h0 = q̇T ∂N(q)
∂q

q̇ − mgxg(q) + mhpq̇T ∂2xg(q)

∂q2 q̇

hl = mq̇T ∂2zg(q)

∂q2 q̇ + mg

Equation (5), can also be rewritten, using (2), in the form

d(σA + l(mżg) + hp(mẋg))
dt

−ml̇żg−mg(xg−l) = 0. (7)

By definition, the term σA+l(mżg)+hp(mẋg) is the angular
momentum about the ZMP point with x-coordinate l, which
is denoted here by σP . This equation, corresponding to
angular momentum balance, can be also written as

σ̇P = ml̇żg +mg(xg − l). (8)

C. The impact model

When the swing leg (i.e., leg-2) touches the ground with
a flat foot at the end of the single support phase, an impact
takes place. The velocity of foot-2 becomes zero just after the
impact. We study a gait with instantaneous double support so
that during the impact, the stance leg-1 lifts off the ground.
The robot’s configuration q is assumed to be constant during
the instant of double support, while there are jumps in the
velocities. The velocity vectors just before and just after
impact, are denoted q̇− and q̇+, respectively, where + means
after the impact and − before the impact. The impact model
can be written as [4]:

q̇+ = E(�(q)q̇−), (9)

where �(q) is a 6 × 6 matrix, and E is the permutation
matrix describing leg exchange.
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Fig. 2. The dotted lines are two motions (q1(t), q2(t)) corresponding to
the same path represented by the solid line. A path is a line in the joint space,
this line can be graduated as a function of a new variable denoted s, and then
can be expressed by (q1(s), q2(s)). This function s is defined such that the
initial configuration correspond to s = 0, the final configuration corresponds
to s = 1. Any monotonic function s(t) defines a motion corresponding to
the path q(s). For example s = t/T defines a motion of duration T .

III. THE CONTROL STRATEGY

The desired walking gait is assumed to be composed only
of single support phases where the stance foot is flat on the
ground and stationary (i.e., it does not slip). While a flat-
footed gait is not a necessary condition for walking, and as
shown in [5], rotation about the toe can be easily included
in the analysis of the control strategy, we focus our attention
on fully-actuated phases. Direct control of the position of
the ZMP point will prevent unwanted foot rotation, and
thus a desired evolution, ld, is prescribed [?]. As shown
in the previous section, the position of the ZMP is directly
connected to the acceleration of the robot’s motion. It is
therefore impossible to prescribe independently a desired
evolution of the joints, qd(t), and of the position of the ZMP,
ld(t). With respect to such a task, the biped can be seen as
an underactuated system. Thus as in [4], the objective of the
control law presented in this section is not to track a (time-
based) reference motion for q and l, but only the associated
path in joint space. A reference motion differs from a path
by the fact that a motion is a temporal evolution along a
path. A joint path is the projection of a joint motion in the
joint space. The difference between a motion and a path is
illustrated in Fig. 2 for a two-joints robot.

Only tracking of the desired path is sought, and a time-
scaling control law as in [6] is used. A reference joint and
ZMP paths qd(s) and ld(s) are assumed to be known as a
function of a scalar path parameter s, which plays the role
of a normalized virtual time. The desired gait of the robot
corresponds to specification of s as an increasing function
of time, s(t).

A. Requirements for a Feasible Reference Path

The reference path qd(s), ld(s) is designed in order to
be compatible with a periodic solution of the biped model.
The legs swap their roles from one step to the next, so
the reference path can be defined for one step only. For
the first step, the scalar path parameter s increases strictly

monotonically with respect to time from 0 to 1 and impact
takes place at s = 1. The evolution of s along the step k is
denoted sk(t).

The single support phase corresponds to 0 < s < 1. Due
to the leg exchange at impact, the vectors qd(0) and qd(1),
describing respectively the initial and final desired positions
of the biped, must be such that qd(1) = E(qd(0)).

The initial and final velocity of the biped are connected
by the impact model and leg exchange (10). The reference
path is designed so that if the reference path is exactly
tracked before the impact (but the robot state is not necessary
on the periodic motion), then the reference path will be
exactly tracked after the impact. Just before the k + 1-st
impact, on the reference path, the vector of joint velocities
is q̇− = dqd(1)

ds ṡk(1). The reference path is designed such
that, after the impact, the reference path is also perfectly
tracked: q̇+ = dqd(0)

ds ṡk+1(0). Since the impact model (10)
connects the velociticies before and after impact we must
have

dqd(0)
ds

ṡk+1(0) = E�(qd(1))
dqd(1)
ds

ṡk(1). (10)

When qd(1) and dqd(1)
ds are known, there is an infinite

number of possible choices for dqd(0)
ds . The set of solutions

can be parametrized by a scalar α as

dqd(0)
ds

= E�(qd(1))
dqd(1)
ds

α, (11)

yielding ṡk+1(0) = ṡk(1)
α .

B. Definition of the control law

The control law is selected to ensure that the joint co-
ordinates follow the joint reference path, qd(s), and that
the position of the ZMP is ld(s). The torque acts on the
second derivative of q and directly on l. It follows from the
definition of the joint reference path that the desired velocity
and acceleration of the joint variables are:

q̇d(t) = dqd(s(t))
ds ṡ

q̈d(t) = dqd(s(t))
ds s̈+ d2qd(s(t))

ds2 ṡ2
(12)

The function s(t) needs to be a strictly increasing function
of t, but since the control objective is only to track a
reference path, the evolution s(t) is otherwise free and
the second derivative s̈ can be treated as a “supplementary
control input”. This allows the control law to be designed
for a system with equal number of inputs and outputs: The
control inputs are the six torques Γj , j = 1, . . . , 6, plus s̈, and
the chosen outputs are the six components of q(t)−qd(s(t))
and l(t) − ld(s(t)).

The control law is based on computed torque, which is
quite commonly used in robotics, with a small modification
to ensure finite-time convergence to the desired paths. The
finite-time feedback function proposed in [2], [7] is used. The
joint tracking errors are defined with respect to trajectories
satisfying (13)

eq(t) = qd(s(t)) − q(t)
ėq(t) = dqd(s(t))

ds ṡ− q̇(t).
(13)
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The desired behavior of the configuration variables in
closed loop is

q̈ = q̈d + ψ(q, q̇, s, ṡ, ) (14)

where ψ(q, q̇, s, ṡ, ) from [2], [7] is the term that imposes(
q(t) − qd(s(t))

) → 0 in finite time; in fact, it can be chosen
to be less than the time duration of a step. Taking into
account the expression for the reference motion, equation
(15) can be rewritten as:

q̈ =
dqd(s)
ds

s̈+ v(s, ṡ, q, q̇), (15)

with v(s, ṡ, q, q̇) = d2qd(s)
ds2 ṡ2 + ψ. For the position of the

ZMP, the desired closed-loop behavior is:

l(t) = ld(s(t))

Combining expression (16) with the dynamic model (1)
of the robot and the relation (7) for the ZMP determines the
feedback controller. Thus the control law must be such that

M(q)(dqd(s)
ds s̈+ v) + h(q, q̇) = Γ

(N0(q) + ld(s)Nl(q))(
dqd(s)

ds s̈+ v)
+h0(q, q̇) + ld(s)hl(q, q̇) = 0.

(16)

It follows that, in order to obtain the desired closed-loop
behavior, it is necessary and sufficient to choose

s̈ = −(N0(q)+ld(s)Nl(q))v−h0(q,q̇)−ld(s)hl(q,q̇)

(N0(q)+ld(s)Nl(q))
dqd(s)

ds

Γ = M(q)(dqd(s)
ds

s̈ + v) + h(q, q̇).

(17)

As long as (N0(q) + ld(s)Nl(q))
dqd(s)

ds �= 0, the control
law (18) is well defined, and, by (15), ensures that, q(t)
converges to qd(s(t)) in finite time, and that l(t) = ld(s(t)).

IV. STABILITY STUDY

Since the occurrence of an impact depends only on the
configuration of the robot and not its velocity, and due to
the characteristics of the joint reference path (section III-A),
each step begins with s = 0 and finishes with s = 1. Since
the control law is designed to converge before the end of the
first step, after that, perfect tracking is obtained and therefore

q(t) = qd(s(t))
q̇(t) = dqd(s)

ds ṡ(t)
q̈(t) = dqd(s)

ds s̈(t) + d2qd(s)
ds2 ṡ(t)2

l(t) = ld(s(t)).

(18)

These equations define the zero dynamics manifold corre-
sponding to the proposed control law. On the zero dynamics
manifold, the evolution of ṡ during one step can be deter-
mined by integration of the dynamic equation corresponding
to the global equilibrium in rotation (9).

A. Evolution of the angular momentum for one step

On the zero dynamics, equation (9) becomes :

σ̇P = m
dld(s)

ds

∂zg(qd(s))

∂q

dqd(s)

ds
ṡ2 + mg(xg(qd(s)) − ld(s)) (19)

and
σP (s, ṡ) = I(s)ṡ (20)

with

I(s) =

„
N(qd(s)) + mld(s)

∂zg(qd(s))

∂q
+ mhp

∂xg(qd(s))

∂q

«
dqd(s)

ds
.

(21)

Equations (20,21) can be combined to express the derivative
of the angular momentum with respect to s.

Just as in [13, Prop. 1], it can be shown that uniqueness of
solutions of (20,21) implies that if the robot completes a step,
that is, if there exists a solution beginning with s(0) = 0,
ṡ(0) > 0 and ending with s(tf ) = 1, ṡ(tf ) > 0, then for
t ∈ [0, tf ], ṡ(t) > 0. Using this fact, equations (20,21) can
be combined to express:

dσP

ds = mdld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds

σP

I(s)

+mg(xg(qd(s) − ld(s)) I(s)
σP

.
(22)

Applying the change of variable, ζ(s) = 1
2σ

2
P , this equation

becomes:
dζ

ds
= 2κ(s)ζ +mgI(s)(xg(qd(s) − ld(s)). (23)

with κ(s) = m
I(s)2

dld(s)
ds

∂zg(qd(s))
∂q

dqd(s)
ds . The above equation

is a linear s-varying ODE and has the explicit solution:

ζ(s) = δ2(s)ζ(0) − Φ(s), (24)

where

δ(s) = exp

„
sR
0

κ(τ)dτ

«

Φ(s) = −2mg
sR
0

exp

„
2

sR
τ

κ(τ1)dτ1

«
I(τ)(xg(qd(τ)) − ld(τ))dτ .

B. Minimal angular momentum to achieve a step

The functions δ(s) and Φ(s) are calculated directly from
qd(s) and ld(s). A complete step can be accomplished only
if ṡ is always positive. With the assumption that the reference
trajectory is such that (N0(qd(s))+ ld(s)Nl(qd(s)))dqd(s)

ds =
I(s) �= 0. The condition ṡ �= 0 is equivalent to σP �= 0 or
ζ �= 0.

Theorem 1 A step can be achieved if and only if the initial
value of ζ for this step is such that

ζ(0) > Zm = max
0≤s≤1

(
Φ(s)
δ2(s)

)
. (25)

C. Evolution of angular momentum during the impact phase

At the impact, due to equation (12), the evolution of ṡ is
such that ṡ+= ṡ−

α . Thus

σ+
P = δIσ

−
P . (26)

with δI = I(0)
I(1)α , where I is given in equation (22).
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D. Conditions of existence and uniqueness of periodic mo-
tion

The combination of equations (25) and (27) defines the
evolution of ζ (or, equivalently, σP ) from one step to the
next. The evolution of the robot during one step is completely
defined by the value of ζ for one value s. Thus, we study
the evolution of ζ just before the impact ζ− = ζ(1) from
one step to the next, via the Poincaré map

ρ(ζ−) = (δIδ(1))2(ζ−) − Φ(1). (27)

A periodic admissible reference motion is defined by a peri-
odic evolution of the angular momentum, which is equivalent
to a fixed point of the Poincaré map ρ: ζ∗ = ρ(ζ∗).

¿From equation (28), taking into account that ζ(s) > 0, it
follows that:

• if (δIδ(1))2 = 1 and Φ(1) = 0, then any initial value ζ
produces a periodic reference motion.

• the poincaré map has a unique fixed point

ζ∗ = −Φ(1)
1−(δIδ(1))2 , (28)

if, and only if, Φ(1) and 1 − (δIδ(1))2 have different
signs.

Applying Theorem 1 and using (28), ζ∗ in (29) defines a
periodic reference motion if, and only if, the periodic angular
momentum is sufficient to produce the step: (δ1)

2
ζ∗ > Zm.

Theorem 2 A unique periodic reference motion exists if, and
only if −Φ(1)

1−(δIδ(1))2 > Zm

(δI )2
. The periodic motion is defined

by equation (29).

E. Convergence Towards the Cyclic Reference Motion

Equation (28) is equivalent to

ρ(ζ−) − ζ∗ = (δIδ(1))2(ζ− − ζ∗). (29)

Consequently, solutions of equations (20,21) converge to the
periodic motion if, and only if, (δIδ(1))2 < 1.

Theorem 3 Solutions of the zero dynamics given by equa-
tions (20,21) converge to the periodic reference motion if
and only if (δIδ(1))2 < 1.

Combining theorems 1, 2 and 3, the following corollary
can be deduced.

Corollary: The reference periodic motion is orbitally
exponentially stable if, and only if, the reference joints path is
such that:−Φ(1) > max(1−(δIδ(1))2

δ2
I

Zm, 0) and (δIδ(1))2 <
1.

V. SIMULATION RESULTS

The control law is evaluated here for the periodic path
depicted in the stick-diagram of Fig. 3. The joint path qd(s)
is defined with a degree four polynomial in s. The evolution
of the ZMP position is chosen to be a linear function of s.
As s varies from 0 to 1, ld will vary from −0.02m to 0.08m.

The reference trajectory ld(s), qd(s) can be the result of
an optimisation process since the cyclic motion, if it exists,
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Fig. 3. The stick diagram of the desired trajectory. The configuration of the
robot is drawn for s = 0, 0.1, 0.2 . . . , 0.9, 1. Thus a sequence of pictures
of the robot is given. The desired motions of the robot are such that the
configuration of the robot coincides at some instant to each picture, but it
is not imposed that these instants are equally distributed within the period
of one step.
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Fig. 4. The evolution of ζ during the single support phase is characterized
by the functions Φ(s) and δ2(s). The position of the ZMP point is being
controlled to increase linearly, from back to front. Because the vertical
component of the velocity of the center of mass is directed upward at the
beginning of the step and then downward, δ(s) increases at the beginning
of the step and then decreases. Because the center of mass is behind the
ZMP point at the beginning of the step and then in front of the ZMP point,
Φ(s) increases at the beginning of the step and then decreases.

can be explicitly deduced via (29). A methodology allowing
to do this is given in [12].

The evolution of δ(s) and Φ(s) are given in Fig. 4. Their
final values, Φ(1) = −205, and δ(1)2 = 0.9954 are useful
for constructing the Poincaré map. The behavior of ζ during
the impact is defined by δ2I , which is equal to 0.6422. The
minimal value of ζ for which a step can be achieved is
Zm

δI
= 232. The periodic motion is given by equation (29).

The fixed point occurs at ζ∗ = 569. The slope of the Poincaré
return map ρ is (δ(1)δI)2 = 0.6393, and because it is
less than 1, the corresponding periodic walking motion is
exponentially stable. The stability arises from the effect of
the impact because δ(1)2 is close to 1.

A simulation was done for ten steps, assuming no model-
ing error and initializing the state of the robot on the periodic
orbit, a horizontal force (350 N) is applied for 0.2s < t <
0.24s at the center of mass; see Fig. 5. Convergence toward
a periodic motion was obtained for each of the five joints
of the robot. As an illustration, the evolution of the angle of
the torso is depicted in Fig. 5-a. The same convergence is
also evident in the evolution of the position of the ZMP point
with respect to time in Fig. 5-b; for each step, its evolution is
linear from −0.02m to 0.08m except when the perturbation
exists. Fig. 5-c presents the evolution of ṡ with respect to
time; it clearly converges toward a periodic motion. This
control approach is also robust with respect to modeling error

FrB3.3

3601



2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
1

1.5

2

2.5

3
Trunk evoltion in its phase plane

0 1 2 3 4
−0.05

0

0.05

0.1
l(t)

0 1 2 3 4
1.5

2

2.5

3

3.5

4

4.5
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Fig. 5. The convergence towards a periodic motion is observed in
simulation with the proposed control law.

[12].

A. Effect of the ZMP evolution

lmin lmax ζ∗ Zm

δ2
I

(δ(1)δI )2 ṡc(1) T [s]

-0.05 0.05 943.02 149.69 0.613 3.86 0.401
-0.04 0.06 823.92 175.44 0.621 3.62 0.437
-0.03 0.07 699.48 202.78 0.630 3.36 0.488
-0.02 0.08 569.18 231.61 0.639 3.04 0.569
-0.01 0.09 432.40 261.85 0.648 2.66 0.733

0 0.10 288.45 293.42 No Cyclic motion

TABLE I

THE EFFECT OF THE ZMP EVOLUTION

The evolution of the ZMP point throughout the step affects
the existence and stability of the periodic motion obtained
with the proposed control law. To illustrate this point, we
consider various linear evolutions of the position of the
ZMP point with different average values, ( ld(1)+ld(0)

2 ) while
holding constant the net change in the position of the ZMP
point, ld(1) − ld(0) = 10 cm. Table I presents the main
properties of the periodic motion and of the control law with
respect to the variation of the average value of the ZMP
position during one step. Placing the average position of the
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Fig. 6. The motion of the robot is not stable, it does not converge to a
periodic motion, but the position of the ZMP remains inside of the sole of
the stance feet.

ZMP closer to the toe leads to larger values of (δ(1)δI)2

and smaller values of ζ∗ and average walking speed. When
the center of mass is in front of the ZMP point, the moment

arm due to gravity speeds up the motion. When the center
of mass is behind the ZMP point, the moment arm due to
gravity slows down the motion. When the average position
of the ZMP is moved forward, the portion of the step where
gravity speeds up the motion decreases, and thus the average
walking speed decreases.

In the last row of table I, the value of ζ∗ is less than
the minimum value necessary to complete a step (i.e., it
does not satisfy equation (26)), and consequently a walking
motion cannot be produced. If the control law is used for this
case, the behavior shown in Fig. 6 is obtained. A perfect
tracking of the joint path is observed, the position of the
ZMP satisfies at each time the condition of non rotation of
the feet (fig 6 left lower part) but the motion of the robot is
not stable. The robot does not fall down but it comes to a
stop.

VI. CONCLUSION

For a planar biped, a control strategy was proposed based
on tracking a reference path in the joint space instead of
a reference function of time. This allows the simultaneous
control of the path positions of the joints and the ZMP. The
biped adapts its time evolution according to the effect of
gravity. A stability study of the robot’s time evolution has
been presented. Easily testable analytical conditions have
been presented for the existence and uniqueness of a periodic
motion for the orbital exponential stability of a periodic
motion.
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