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Abstract—This paper presents a method of 3-D SLAM
using a single camera. We utilize a Rao-Blackwellised particle
filter (RBPF) to deal with a large number of landmarks.
A difficulty in monocular SLAM is robustness to outliers
and noise, which may cause false estimates especially under
short baseline conditions. We propose an exhaustive pose-space
search that finds all the plausible hypotheses efficiently using
epipolar geometry. The obtained pose hypotheses are refined by
the RBPF. Simulations and experiments show that the proposed
method successfully performed 3-D SLAMwith a small number
of particles.
Index Terms—Object modeling, 3-D maps, 3-D reconstruc-

tion, Structure from motion, Dense reconstruction

I. INTRODUCTION

3-D Simultaneous Localization and Mapping (SLAM) is
a challenge in mobile robotics. 6-DOF localization in a 3-
D map is crucial in order for a robot to navigate in a
complex environment and to perform a complicated task
such as object carrying. Vision-based SLAM is a promising
approach to this problem. Especially, monocular SLAM is
attractive because its hardware configuration is simple. Fur-
thermore, monocular SLAM can reconstruct distant objects
in large environments since its baseline distance is variable.
We consider in this paper a system which utilizes a single
camera only. Motion sensors such as gyro are not necessary
but can be used to enhance accuracy and efficiency.

Monocular SLAM estimates camera motions and land-
mark locations in 3-D space using features extracted from
images captured by a moving camera. Since a single image
has no depth information, the system must reconstruct the
depth of each feature from two or more images simulta-
neously with reconstructing the camera motion. This is a
well-known problem referred to as Structure-from-Motion
(SFM) in the computer vision community. This problem
is especially crucial at the initialization phase, where the
system has no 3-D reference points (landmarks) yet. In SFM,
the stability of the system heavily depends on outliers and
noise in the feature positions in the images. Even small
noise will affect the estimates significantly when the camera
motion is small. Thus, robustness against outliers and noise
is crucial.

This paper presents a monocular SLAM scheme focus-
ing on this problem. To increase robustness, the system
searches all the camera motion hypotheses exhaustively. If
the extracted features are noisy, many hypotheses can be
generated. When the camera motion is small, it is difficult
to determine which hypothesis is correct. Thus, we find all
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the plausible hypotheses. A key point is an efficient search
by the reduction of the search space dimension from 5-D to
3-D using epipolar geometry. Another key point is that we
employ a multiple hypothesis tracking scheme, in which the
system tracks all the plausible hypotheses using the Rao-
Blackwellised particle filter (RBPF) [13], [11]. The RBPF
filters out false hypotheses and finds the correct one based
on successive measurements. The RBPF is also suitable for
vision-based SLAM since it can handle a large number of
landmarks.

II. RELATED WORK

A monocular SLAM system was firstly developed by
Davison [1]. His system employs the Extended Kalman
Filter (EKF) and particle filters for landmark initialization.
Eade et al. developed a monocular SLAM system using
an RBPF for scalable SLAM [3]. Elinas et al. proposed
σ−SLAM using binocular stereo and an RBPF with SIFT
features to build indoor maps robustly [4]. These systems
do not use motion sensors.

Monocular SLAM is regarded as a kind of bearing-only
SLAM. In bearing-only SLAM, the landmark location is
estimated using EKF with observations from two or more
robot poses. When the distance between the robot poses
is short, the gaussianity of the obtained estimation is too
poor to employ EKF. Several approaches to this problem
have been proposed including multiple hypothesis filter [9],
federated information sharing [16], and inverse depth scheme
[3], [12].

Monocular SLAM is also related with the Structure-from-
Motion (SFM) that has been studied in the computer vision
community. SFM reconstructs camera motions and object
shapes simultaneously based on epipolar geometry with
an optimization scheme [8]. A number of methods have
been developed including the eight point method [7], the
factorization method [18], the trifocal tensor [6], bundle
adjustment, and so on. Nistér developed visual odometry
based on the SFM scheme [14]. Most of these systems
assume that feature correspondences are given by a feature
tracker, and employ a robust estimation technique such as
RANSAC [5] in order to eliminate outliers.

SFM has the same structure as bearing-only SLAM. A
difference between them is that bearing-only SLAM is an
estimation problem with a motion model, for which motion
sensors such as odometry and gyro are used in many cases.
On the other hand, most SFM systems have no motion
models. Our method is based on the SLAM scheme with
a motion model, which predicts the camera motion using
monocular images, not motion sensors.
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Some systems in SFM need no feature correspondences.
Dellaert et al. proposed a SFM method without correspon-
dence based on the Expectation-Maximization scheme [2].
Makadia et al. proposed a SFM method without correspon-
dence using a Radon transform [10]. The latter is based on
a kind of voting scheme, and our approach is conceptually
similar. The difference is that our approach searches the
camera pose space directly by reducing the dimension based
on the fact that the camera translation is not independent of
the camera rotation under epipolar geometry.

III. BASIC FRAMEWORK

A. SLAM using a Rao-Blackwellised Particle Filter

The SLAM considered here estimates the joint probability
density p(x1:t,m|z1:t, u1:t, c1:t) of robot poses x1:t and map
m [17]. Here, z1:t is the features observed from time step 1
to t, and u1:t is a sequence of motion commands. The map
m is a set of landmarks mi, and c1:t is correspondences
between landmarks and observed features. In this paper, as
other vision-based SLAM, a feature is a 2-D point extracted
from a captured image, and a landmark is a 3-D point which
corresponds to a feature. For simplicity, we equate robot
pose with camera pose.

The RBPF-based SLAM factors p(x1:t,m|z1:t, u1:t, c1:t)
as follows by exploiting the conditional independence be-
tween robot poses and landmark locations [13], [11].

p(x1:t,m|z1:t, u1:t, c1:t)

= p(x1:t|z1:t, u1:t, c1:t)
n∏
i

p(mi|x1:t, z1:t, u1:t, c1:t) (1)

The joint distribution is decomposed into low-dimensional
probabilities, which are much more tractable than the
original one. The probability density of robot poses
p(x1:t|z1:t, u1:t, c1:t) is represented using a particle fil-
ter. The probability density of a landmark location
p(mi|x1:t, z1:t, u1:t, c1:t) is represented with a Gaussian
distribution which can be computed using an EKF.

In implementation, the i-th particle ν i
t at time t is repre-

sented in the following fashion.

νi
t =< xi

t, (µ
i
1,t,Σ

i
1,t), . . ., (µ

i
N,t,Σ

i
N,t) >

xi
t is the robot pose estimate and µi

j,t,Σ
i
j,t are the j-th

landmark location estimate and its covariance matrix.
p(x1:t|z1:t, u1:t, c1:t) is estimated using a particle filter

based on a motion model and a measurement model. In-
tuitively, the probability density of x1:t+1 is predicted based
on the motion model and the probability density of x 1:t,
and then the importance weight of each particle is calculated
using the likelihood of the observed features based on the
measurement model. By resampling particles according to
the importance weights, the probability density of x1:t+1

is obtained. The details of this procedure in our system is
presented in Section V.

B. Our Approach to Monocular SLAM

As mentioned in Section I, outliers in feature correspon-
dences and/or noise in the feature positions cause false
estimates especially when the robot motion is small. This
is crucial at the initialization phase, where the system has
no 3-D landmarks yet. The essential point here is that many
subsets of features could generate a different hypothesis of
the camera motion when there are outliers and/or noise.
(Note that any subset of features would generate the same
estimate without outliers nor noise.) The RANSAC is a
useful scheme to find a good hypothesis, but unfortunately
the hypothesis having the best score is not necessarily
the correct estimate. Fig. 1 shows examples of hypotheses
generated by SFM with RANSAC. (b) is the correct estimate
and (c) is the false one, but the score of (b) is smaller than
that of (c).

To cope with this problem, our system searches all the
plausible hypotheses over the camera pose space, and filters
out false hypotheses using an RBPF in order to find the
correct one. In this process, we utilize the fact that the
camera translation is determined linearly based on epipolar
geometry when a camera rotation angle is given. This en-
ables us to search the camera pose (rotation and translation)
space exhaustively only by traversing the rotation space.
Furthermore, this implies that the robot pose has virtually
3-DOFs for rotation only, and that the number of particles
could be reduced.

More concretely, we discretize the camera rotation space,
and find the most plausible camera translation for each dis-
cretized rotation angle. Given two point correspondences and
a rotation angle, the camera translation is exactly determined
up to scale based on epipolar geometry as mentioned later.
To find the most plausible translation from a set of point cor-
respondences, we employ a voting scheme. For each pair of
feature correspondences, we calculate the camera translation
and vote into the corresponding bin in the translation space.
Then, the bin with the highest score is selected as the most
plausible translation at the rotation angle. By repeating this
process for all the discretized rotation angles, we have the
score distribution over the rotation space. Now, we choose
the rotation angles having a high score as good hypotheses.
Outliers can be eliminated through the voting process.

Our approach can find all the feasible hypotheses over the
pose space exhaustively. Since the RBPF can filter out false
hypotheses efficiently, the key point is whether the obtained
hypotheses include the true one or not. The RANSAC can
generate feasible hypotheses, but it is not realistic to examine
all the hypotheses over the pose space exhaustively since
the RANSAC searches hypotheses over the correspondence
space. The exhaustiveness over the pose space is the major
advantage of our approach.

Another advantage is that our approach is quite suitable
for a motion sensor such as gyro. Odometry is not applicable
to the robots that move with 6-DOF in 3-D space. Although
a gyro measures merely rotation angles, it will be sufficient
for our scheme. The measurements from a gyro can narrow
the search region in the rotation space significantly, and it
will increase the accuracy and efficiency of our approach.
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(a) Scene (b) Correct hypothesis
(score = 40)

(c) False hypothesis
(score = 42)

camera

Fig. 1. Examples of reconstruction hypotheses

IV. MOTION ESTIMATION BY EXHAUSTIVE SEARCH

A. Scoring Function over Pose Space
Let I1 and I2 be images captured from a moving camera,

and Q1 and Q2 be the feature sets extracted from I1 and
I2 respectively. The problem considered here is to estimate
the camera motion r = 〈ψ, τ〉 from I1 to I2 given Q1 and
Q2. Here, ψ is rotation angles (roll, pitch, yaw), and τ is a
translation vector. Note that we assume the camera intrinsic
parameters are known.

We propose a method that searches the camera pose space
exhaustively. First, we define the scoring function G(r) for
camera motion r.

G(r) =
∑

q1i∈Q1

∑
q2i∈Q2

g(q1i, q2i)D(r, q1i, q2i) (2)

g(q1i, q2i) is the matching score of image feature points
q1i and q2i. D(r, q1i, q2i) represents the score related with
errors in the epipolar constraint, to be mentioned later. By
calculating G(r) for each r, we have a score distribution
over the camera pose space. The camera poses having
a high score in this distribution are regarded as a good
hypothesis. However, it is not realistic to search directly all
the point r in the camera pose space since the dimension
of r is essentially five ( the scale cannot be obtained from
images only). Makadia et al. proposed a method of reducing
computational complexity using spherical harmonic analysis
[10]. We propose a method of calculating Eq.(2) more
directly in the next subsection.

In the general framework, q1i and q2i cover all the points
in the images, and no explicit correspondences between them
are necessary. In this paper, however, for simple implemen-
tation, we assume the explicit one-to-one correspondences
between Q1 and Q2 using a feature tracker such as the KLT
tracker [15]. Thus, g(q1i, q2i) is defined as follows. This
restriction will be removed in the near future.

g(q1i, q2i) =
{

1, q1i and q2i are matched
0, otherwise (3)

B. Translation Estimation by Epipolar Geometry
Eq.(2) can be calculated efficiently by traversing the

camera rotation space only. The basic idea is to calculate
the camera translation from two point correspondences using
epipolar geometry given a camera rotation angle.

Let q1i and q2i be a feature point in image I1 and I2
respectively as shown in Fig. 2. It is assumed that q1i and

C1 C2

q1i q2i

P

τ R

ni
I1 I2

Fig. 2. Epipolar geometry

q2i are matched by a feature tracker. Then, the well-known
epipolar constraint holds as follows.

(q1i ×Rq2i)T τ = 0 (4)

Here, R and τ are the rotation matrix and the translation
vector of r respectively. q1i × Rq2i is the normal vector of
the epipolar plane. We denote it by ni.

If the rotation matrix R is constant, Eq.(4) will be a linear
equation with respect to τ . Given two point correspondences,
we can easily obtain τ by computing the cross product of the
normal vectors ni and nj of the two epipolar planes which
are determined by the point correspondences (q1i, q2i) and
(q1j , q2j) (i �= j).

τ = ni × nj (5)

We assume ||τ || = 1 since the real scale cannot be obtained
from images.

We calculate D(r, q1i, q2i) in Eq.(2) as follows.

D(r, q1i, q2i) =
∑

q1j∈Q1

∑
q2j∈Q2

g(q1j , q2j)

× D0(r, q1i, q2i)D0(r, q1j , q2j)

D0(r, q1, q2) = e−α|(q1×Rq2)T τ |2 (6)

D0(r, q1, q2) represents the score related with errors in the
epipolar constraint. α is a given constant.

C. Voting into Translation Space
We compute the scoring function G(r) using a voting

scheme.
(1) Discretization of the camera rotation space

We define a region which will cover all the possible
rotation angles between I1 and I2, and discretize the
region. We denote a discretized angle by ψn. This
region is expected to be small in the case of monocular
SLAM, which is a sequential process in usual.

(2) Discretization of the camera translation space
We create a voting table by discretizing the translation
space. Since τ is a unit vector, τ is represented by two
angles in a polar coordinate system.

(3) Estimation of translation for a rotation angle
Given a discretized rotation angle ψn, we calculate the
translation vector τ using Eq.(5) for each pair of fea-
ture points in Q1 ×Q2. In this paper, we approximate
D0 in Eq.(6) simply as a delta function, and vote into
the bin corresponding to τ in the translation voting
table. Then, we find the bin τm having the maximal
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score. Now, we define G(〈ψn, τm〉) as the maximal
score.

(4) Estimation of rotation angle
By repeating step (3) for all the discretized rotation
angles, we have the score distribution over the rotation
space. Note this is an approximation of G(r).

(5) Selection of pose hypotheses
We employ as pose hypothesis each r at which G(r)
exceeds a given threshold th1.

The hypotheses obtained at step (5) have insufficient accu-
racy because of the discretization of the pose space. Thus,
we refine each hypothesis using a non-linear optimization
method that minimizes the reprojection errors, which is a
well-known technique in computer vision.

The computational complexity of this procedure is
O(KN2) when we assume the feature correspondence is
one-to-one as Eq. (3). K is the number of discretized angles
in the rotation space, and N is the number of feature points.

D. Elimination of Outliers
The voting process eliminates outliers in the camera mo-

tion estimation. If feature correspondences include outliers,
the votes calculated from the outliers will be distributed
randomly over the translation space. Thus, outliers will not
affect the score distribution as long as the outlier rate is not
significantly large (see Section VI-A).

Once a camera pose r is obtained, we can eliminate
outliers with respect to r using epipolar geometry. If q1

and/or q2 are outliers with respect to r, (q1 × Rq2)T τ will
be large. Thus, we eliminate the features which make the
value larger than a given threshold.

V. SLAM FORMALIZATION

A. Motion Model
The motion model p(xt|xt−1, ut) is the probability den-

sity that the robot moves from xt−1 to xt given motion
command ut. Without motion sensors, we define the motion
model using a Gaussian mixture which consists of camera
pose hypotheses estimated by the abovementioned method.
Each pose hypothesis is represented by N(xi

t,Σxi
t
). xi

t is
calculated as xi

t = ri + xt−1, where ri is the i-th pose
hypothesis obtained by the voting scheme. The covariance
is calculated as Σxi

t
= (JT

xi
t
Σ−1

zt
Jxi

t
)−1 , where Jxi

t
is the

Jacobian of perspective projection function z t = h(xt,mct)
with respect to the camera pose at xi

t. Σzt is the covariance
of the feature noise.

If we have a motion sensor, we can reduce the number of
possible hypotheses significantly. The motion model based
on the velocity and acceleration estimated from the past
camera trajectory is also useful to filter out the hypotheses.
This is important from a practical point of view, but we do
not discuss it in this paper.

B. Measurement Model
The measurement model p(zt|xt,mct , ct) is the proba-

bility density that landmark mct is projected onto feature
point zt when the camera pose is xt. ct represents the
correspondence between m and zt.

We approximate this probability density with a Gaussian
distribution. Based on the perspective projection model, the
j-th feature point zj,t is a function of the camera pose xt and
the corresponding landmark mj , that is, zj,t = h(xt,mj).
By linearizing this function using Taylor expansion with
respect to mj , we have the following equation.

zj,t = ẑj,t + Jmj,t−1(mj − m̄j,t−1) + vj

Here, ẑj,t = h(x̂t, m̄j,t−1). x̂t is the prediction of xt by
the motion model. Jmj,t−1 is the Jacobian of h(xt,mj)
with respect to m̄j,t−1. vj is measurement noise in a 2-
D feature point, which is represented by N(0, R). Then,
zj,t is represented as a Gaussian N(ẑj,t + Jmj,t−1(mj −
m̄j,t−1), R).

C. Importance Weight
We calculate the importance weight of each particle

according to FastSLAM1.0 [17]. The proposal distribution
is as follows.

p(x1:t|z1:t−1, u1:t, c1:t−1) =
p(xt|xt−1, ut)p(x1:t−1|z1:t−1, u1:t−1, c1:t−1)

Importance weight wi
t is calculated as follows.

wi
t =

target distribution
proposal distribution

=
p(xi

1:t|z1:t, u1:t, c1:t)
p(xi

1:t|z1:t−1, u1:t, c1:t−1)

= η

∫
p(zt|mt, x

i
t, ct)p(mt|xi

1:t−1, z1:t−1, c1:t−1)dmt

This is a convolution of N(ẑj,t+Jmj,t−1(mj−m̄j,t−1), R)
and N(m̄j,t−1,Σmj,t−1). We have the importance weight as
follows.

wi
t ∝

∏
j

N(ẑi
j,t, R+ JT

mj,t−1
Σmj,t−1Jmj,t−1) (7)

D. Landmark Update
The probability density of landmark location is updated as

follows. In the RBPF-SLAM, this is calculated using EKF.

p(mct |x1:t, z1:t, c1:t)
= ηp(zt|xt,mct , ct)p(mct |x1:t−1, z1:t−1, c1:t−1)

In this paper, however, we estimate landmark locations
simply using the triangulation from feature points on two
images. When the baseline distance is short, the errors
in the location of a landmark reconstructed from images
would be too large to represent by a Gaussian distribution
because of the non-linearity of perspective projection. Thus,
we estimate the landmark location using the triangulation at
every frame, and select the most accurate estimation based
on the covariance matrix of the estimated landmark location.
This is the landmark initialization problem well-known in
monocular SLAM, and we will improve the process by
employing EKF with the inverse depth scheme [12] in the
future.

The covariance of a landmark location is calculated as
follows [8]. Σmj,t is computed using SVD.

Σmj,t = (JT
mj,t

Σ−1
zj,t
Jmj,t)

−1
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E. Procedure
Our method is performed in the following procedure.

(a) Initialization (t = 1 to k)

Since there are no landmarks at the initialization step,
the system estimates the camera motion and landmarks
simultaneously only from images without motion sensors.
To ensure sufficient baseline distance, we use k images.
Currently, k is given by human.

(1) Camera pose estimation
We compute the score distribution from images I1 and
Ik using the method in Section IV, and create particles
for the hypotheses having a high score.

(2) Landmark initialization
For each particle, we eliminate outliers and reconstruct
landmarks by the triangulation using I1 and Ik.

(b) Sequential reconstruction (t > k)

(1) Camera pose prediction
We compute the score distribution using the method
in Section IV, and select the hypotheses having a high
score. For each hypothesis, we eliminate outliers and
estimate the camera pose.
Then, we create new particles by pairing each hypoth-
esis at time t and each particle at time t − 1. The
number of particles increases in this process.

(2) Importance weight and resampling
We calculate the importance weight of each particle
based on Eq.(7), and resampling particles according
to the normalized importance weights. The number of
particles is reduced to the original one.

(3) Landmark update
For each resampled particle, we eliminate outliers and
reconstruct landmarks using the triangulation. If the
landmark is new, we just reconstruct it from the first
two images in which the landmark appears. If the
landmark is already registered, we update it when the
covariance of the new reconstruction is smaller than
the old one.

The real scale cannot be obtained only from images. The
scale of the generated 3-D map is proportional to τ obtained
at the initialization step. Note that we assume ||τ || = 1 as
mentioned above. At the sequential reconstruction step, we
estimate the scale factor using the 3-D map built so far.
This is performed by minimizing the reprojection errors of
the landmarks in the 3-D map onto the images using a non-
linear optimization method.

VI. EXPERIMENTS

A. Simulation
We carried out a simulation to evaluate the performance of

our method by comparison with a RANSAC-based method.
Fig.3 shows the success rates of camera pose estimation
by the two methods. In this simulation, 50 landmarks are
randomly generated in 3-D space, and are projected onto
two images at different camera poses. Varying feature noise
level σ (Gaussian) and outlier rate, the relative camera pose
is reconstructed from the two images. The 8-point method

success
rate [%]

outlier
rate[%]

10 20 30 40

20
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40
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80

50 60 70 10 20 30 40
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40

60

80

50 60 70

success
rate [%]

outlier
rate[%]

0 0

our method
RANSAC (best)
RANSAC (all)

(a) Feature noise σ = 0 [pixel] (b) Feature noise σ = 0.5 [pixel] 

Fig. 3. Success rate of camera pose estimation

[7] is used for reconstruction in the RANSAC-based method.
The number of samples in RANSAC is 1000.

In this simulation, we judged a hypothesis is passed if
its error in each camera rotation angle is within 1.0 [deg].
For our method, “success” means that at least one of the
hypotheses selected at step (5) in Section IV-C is passed.
The threshold th1 was set to 70% of the maximal votes. For
the RANSAC-based method, we employed two criteria. One
is that it is successful when at least one of the 1000 samples
is passed. The other is that it is successful when the sample
having the best score is passed.

Theoretically, in the case of using the 8-point method,
1177 samples will provide 99% success rate at 50% outlier
rate [8] when σ = 0. Fig.3 (a) supports it. Fig.3 (b)
shows that the success rate of the RANSAC-based method is
degraded more than that of our method when feature noise of
σ = 0.5 [pixel] is added. From this result, we found that our
method outperforms RANSAC in finding good hypotheses.
We also found that the best hypothesis can be false. Multiple
hypothesis tracking by RBPF addresses this problem.

Fig.4 shows the simulations of monocular SLAM by our
method. 50 landmarks are randomly generated in 3-D space,
and the camera moves along the predefined trajectories: a
circle with a radius of 700 [cm] and a straight line of 1600
[cm]. Feature noise of σ = 0.5 [pixel] is added to each
feature on the images, and outlier rate is 20 % in each image.
The number of particles in RBPF is 20. Fig.4 shows the
camera trajectory of the best of the 20 particles. In (a), the
standard deviation of the camera poses in the best particle
is σx = 7.4 [cm], σy = 55.0 [cm], σz = 95.2 [cm], σroll =
0.36 [deg], σpitch = 0.40 [deg], σyaw = 0.27 [deg]. In (b),
the standard deviation is σx = 12.0 [cm], σy = 8.2 [cm],
σz = 21.9 [cm], σroll = 0.37 [deg], σpitch = 1.02 [deg],
σyaw = 0.08 [deg].

B. Experiments in Real Environments
We conducted experiments in indoor and outdoor environ-

ments. Images were captured by human with a digital cam-
era. The image size was 320 by 240 pixels. The number of
particles is 20. The correspondences between feature points
were obtained using the KLT tracker [15]. The number of
feature point in an image was 50. The experiments were done
off-line. The maps were reconstructed using key frames,
each of which was extracted over every n frames (n =3
to 8). n was given by human, which was constant in one
experiment.
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Fig. 4. Simulation results

10m

(b) Result (c) Cov. of the landmarks(a) Snapshot of the environment

landmarks

camera
trajectory

landmarks
with covariance

top view

Fig. 5. Result of an experiment in outdoors

Fig.5 shows the result of an experiment in outdoors.
The camera moved about 15[m] and captured 30 images.
The total number of landmarks is 173. Although outdoor
environments have both near and far landmarks, they were
reconstructed well as shown in (b). The covariance of
each landmark is shown in (c). In this experiment, many
hypotheses were generated at the initialization step. It is
difficult to find which one is correct from a small number
of measurements. The RBPF filtered out false hypotheses
to find the correct one based on the measurements obtained
time after time.

Fig.6 shows the result of another experiment in outdoors.
The camera moved about 80[m] and captured 180 images.
The total number of landmarks is 368. There are many
landmarks at distant locations. Fig.7 shows the result of an
experiment in indoors. The camera moved in a 10[m] ×
10[m] room and captured 180 images. The total number of
landmarks is 773. This is a good example of the 6-DOF
camera motion in 3-D space.

In these experiments, the rotation space was discretized
from -10 [deg] to 10 [deg] by 1 [deg] interval for each angle.
The computation time is currently 3 to 10 seconds per key
frame. The computation time will be reduced by program
customization and parallel processing.

VII. CONCLUSIONS

The paper has presented a monocular SLAM scheme
using a Rao-Blackwellised particle filter. Our contribution is
an exhaustive pose space search, in which all the plausible
hypotheses are found efficiently using epipolar geometry
and a voting scheme. By tracking and refining multiple
hypotheses using the RBPF, 3-D SLAM is performed ro-
bustly. Future work includes error analysis and more efficient
implementation of the system.

20m

top view

camera
trajectory

landmarks

Fig. 6. Result of another experiment in outdoors

top view side viewcamera
trajectory

landmarks

Fig. 7. Result of an experiment in indoors
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