
 
 

  

Abstract—We describe a method of mobile robot localization 
based on a rough map using stereo vision, which uses multiple 
visual features to detect and segment the buildings in the robot’s 
field of view. The rough map is an inaccurate map with large 
uncertainties in the shapes, the dimensions and the locations of 
objects so that it can be built easily. The robot fuses odometry 
and vision information using extended Kalman filters to update 
the robot pose and the associated uncertainty based on the 
recognition of buildings in the map. We use multi-hypothesis 
Kalman filter to generate and track Gaussian pose hypotheses. 
An experimental result shows the feasibility of our localization 
method in an outdoor environment. 

I. INTRODUCTION 
This paper presents an approach to determining the pose 

(position and orientation) of a mobile robot in an urban area 
using a set of stereo image pairs. Understanding the 
surrounding scene and identifying man-made structures are 
important tasks for the localization of a mobile robot in 
outdoor environments. For outdoor robot localization, GPS- 
based approaches are often accompanied with odometry. 
While GPS can provide more accurate pose information in 
open spaces, GPS signals are susceptible to various forms of 
interference and can be quite unreliable in urban areas [1]. 

Computer vision can provide both accurate localization 
and robustness against these environmental influences (see 
[2] for a survey). Vision-based approaches are attractive 
because they are self-contained in the sense that they require 
no external infrastructures such as beacons or satellites. The 
knowledge of having buildings in the environment allows us 
to exploit their typical characteristics: horizontal or vertical 
principal directions and abundant parallel or orthogonal 
relationships between lines and surfaces in the buildings. The 
vision system used in this paper attempts to capture these 
highly structured configurations in the buildings. 

A. Approach 
In this paper, we will guide the robot with a rough map 

which represents an environment as a set of 2D line segments 
and can thus be built easily. The map approximates the 
outlines of buildings except detailed features to be used as 
landmarks. We propose a method to robustly estimate the 
robot pose in the map using multiple visual features: low- 
contrast regions, nonvertical borders, vertical borders and 
disparity regions. Low-contrast regions include the sidewalls 
of buildings and the sky in outdoor scenes. Nonvertical and 
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vertical borders are detected from the building structures such 
as windows, doors, corners, a roof and so forth. And the 
disparity regions are extracted for matching with the walls of 
buildings. Multiple visual features are matched to the given 
map and the results are integrated into the odometry for the 
estimation of robot pose using Extended Kalman Filter. 

The unreliable data-association problems in vision-based 
localization motivate the development of method that can 
make delayed decision, i.e. a multi-hypothesis approach. The 
approach allows maintaining when and where to place pose 
hypotheses as many as necessary and as few as possible. This 
property is provided by using a constraint-based search in an 
interpretation tree. This tree is spanned by all possible local- 
to-global data associations, given a local map of observed 
features and a global map of model features [3, 4]. 

In our work, we explore a localization problem using a 
rough map in real outdoor environments. To solve this 
localization problem, we use a novel combination of efficient 
map-matching scheme and multi-hypothesis technique based 
on multiple visual features. For the efficient map matching, 
we use the ordering and the priority constraints of multiple 
visual features extracted robustly using stereo and 
low-contrast region. In addition, hypothesis generation is 
combined with the EKF framework to do the 
multi-hypothesis localization, followed by heuristic 
hypothesis management techniques. As far as we know, there 
are no works that previously explored about this kind of 
localization problem. 

B. Related Works 
Recent research in vision-based localization in urban 

environments focuses on the recognition and matching of 
building facades. Georgiev and Allen [5] have used vision- 
based techniques to supplement GPS and odometry. Their 
system requires detailed geometric models and they have 
only localized views in the vicinity of only a single building. 
Johansson and Cipolla [6] determined the relative pose of a 
camera by computing the transformation required to match 
the rectified facade view from a single image. Reitmayr and 
Drummond [7] presented a model-based hybrid tracking 
system for outdoor augmented reality. The system employs a 
3D model capturing the overall shape of buildings as large 
planar surfaces with highly detailed textures. In these systems, 
creating such detailed models for large outdoor environments 
becomes a troublesome task. 

Since it is hard to build the exact map of outdoor 
environments, using inaccurate maps is another easy method 
of giving the environmental information to the robot. 
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Fig. 2. Estimation of a robot orientation from vanishing points. 

 

 
(a)                                                   (b) 

Fig. 1. An input image (a) and its low-contrast regions with detected 
borders (b). 

Inaccurate maps may include hand-drawn map or 
topological-geometrical map, where the relative poses among 
object models can be uncertain. Hand-drawn map is an 
interface for a sketch-based navigation [8], and topological- 
geometrical map is a hybrid map for navigation in large-scale 
environment [9]. The hand-drawn map is, however, hard to 
use for navigation tasks, because it has no metric information. 
And the topological-geometrical map needs a lot of cost to 
build and update the metric local models for object 
recognition in outdoor environments. 

II. FEATURE DETECTION 
In this paper, we shall consider self-localization by means 

of only vision and odometry. We are interested in navigation 
around urban environments such as our university campus. 
Since views of trees, cars and bicycles, however, differ from 
time to time, we use multiple visual features observed from 
buildings by using stereo vision with the angle of elevation 
more than 10°. Their multiple visual features are relatively 
large and static as landmarks to be used for localization as 
follows: low-contrast regions for identifying nonvertical and 
vertical borders, nonvertical borders for the vanishing points 
to calculate the wall directions of buildings, vertical borders 
corresponding to the corners of buildings, and disparity 
regions for matching with the walls of buildings. 

A. Low-contrast Regions 
Many real world scenes contain regions of low contrast. 

Typical regions include the sidewalls of buildings and the sky 
in outdoor scenes. Such low-contrast regions are very hard to 
estimate intensity-based depth because they lack any 
distinctive texture. We can, however, exploit the existence of 
low-contrast regions instead of their limited texture for 
detecting multiple visual features. In this case, the multiple 
visual features should line up in the intermediate regions of 
different low-contrast regions. The low-contrast region 
processing involves segmenting each image into no overlapp- 
ing regions based on intensity. A simple linking algorithm 
starts at every pixel in the image and recursively grows out 
regions of similar intensity [10]. An input image at the first 
frame and its resultant low-contrast regions are shown in fig. 
1. We recognize the sky regions (the top region shown in fig. 
1 (b)) from the extracted low-contrast regions [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

B. Border Features 
We extract couples of nonvertical and vertical line 

segments fitted to the edge pixels and attain coupled borders 
from the line segments near enough to each other both in the 
image and the disparity space. When identifying the borders, 
we consider the height of their end points above ground using 
a segment-based stereo algorithm [12]. A nonvertical border 
can be coupled with up to two vertical borders which may be 
on its left and right sides, respectively, and vice versa. Each 
end of a nonvertical border should be coupled with the upside 
end of its coupled vertical border. Isolated borders are then 
detected when they are adjoining to the sky regions. 
B.1. Nonvertical Borders 

Nonvertical borders can be extracted from the building 
structures and can provide the relative orientation between 
the robot and the building. What is necessary for estimating 
the relative orientation in this case a vanishing point. The 
vanishing points (VPs) of nonvertical borders exist on the 
horizon in the image. We can then estimate the angles 
between the image plane and the lines from the camera center 
to vanishing points (VP1 or VP2 in fig. 2). The lines are 
parallel to the respective directions of visible walls with 
respect to XG of the global coordinate system. 

 
 
 
 
 
 
 
 
 
 
 
 
 

From fig. 2, we can deduce a following relation among the 
robot’s orientation, θp with a range of [-π, π], the inward 
direction of a wall, θb with a range of [-π, π], and the angle 
from a vanishing point, θvp with a range of [-π/2, π/2]: 

 

.0=+− vpbp θθθ                                  (1) 
 

B.2. Vertical Borders 
Vertical borders correspond to the corners of buildings. 

Vertical borders are coupled with nonvertical borders as 
described in the previous section. Isolated vertical borders are 
detected also considering their heights when they are 
adjoining to the sky regions. The detected borders must be in 
the intermediate regions of different low-contrast regions as 
shown in fig. 1 (b) because there are many tall trees and 
streetlights resulting in similar features. The black regions in 
the figure are not low-contrast regions. 

C. Disparity Regions 
We use an area-based stereo matching in order to extract a 

disparity image [12]. The depth is less sensitive to changes of 
illumination than the previous visual features provided by 
using a single intensity image [13]. In this study, disparity 
regions are detected as connected regions with a disparity in 
the disparity image. 
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(a)                                                 (b) 

Fig. 4. An example of rough map (a) and a guide map of our campus (b). 
 

 

 
(a)                                                   (b) 

Fig. 3. Detected building regions (a) and all multiple visual features (b). 
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Fig. 5. A relationship among global (G), building (B), local (L) and 
robot (R) coordinate systems. 

 
 
 
 
 
 
 
 
 
 
 
 

One of the advantages of stereo vision is that it provides a 
more informative 2D depth map. With a priori knowledge 
about the minimum height of buildings in an urban 
environment, we can extract the regions of buildings from the 
disparity regions using the height calculated from the 
disparity image. The histograms of intensity gradient 
orientations in the regions weighted by their gradient 
magnitudes seem to be well-suited for discrimination 
between urban structures and natural environments. 
Intuitively, the histograms for the building regions tend to be 
unimodal or bimodal and most of whose peaks tend to be 
separated by approximately right angles to each other. But, 
the histograms at the tree regions, for example, tend to be 
more uniformly distributed and the peak values have lower 
maximum values than those of the building regions [11]. The 
textured boxes in fig. 3 (a) show the resultant building regions 
from in fig. 1 (a). The detection result of all multiple visual 
features is shown in fig. 3 (b), where the rectangles represent 
recognized building regions. 

III. ROUGH MAP 
Much of research efforts in the robot navigation have been 

directed towards the object representation on the map and the 
object recognition using the map. Although an accurate map 
provides accurate and efficient localization, it needs a lot of 
cost to build and update [5, 9]. A solution to this problem 
would be to allow a map to be defined roughly since a rough 
map is much easier to build [8]. We assume that the buildings 
in the rough map have planar walls and that these planes have 
both horizontal and vertical edges. This is often the case for 
buildings as they have windows and doors. We also assume a 
flat polygon on the top of a building as a roof since roof 
details on a tall building cannot be seen from the ground level. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The characteristics of rough map can be summarized as 
follows: The exact model of map uncertainty is unknown. 

The uncertainty may be not uniform across the map. The 
geometric details such as exact outlines, exact dimensions 
and exact poses of buildings are not available. The map also 
lacks information about exact models of the building 
structures. Fig. 4 shows a guide map for visitors to our 
university campus and an example of rough map built from 
the map. Human can use this kind of map to navigate 
efficiently, but it is difficult for the robot to use it, because of 
the deficiency of accurate metric and geometric information. 

Relative poses between landmarks in a rough map are 
allowed to be uncertain. The uncertainty of rough map might 
cause the robot pose to be inconsistent if it is represented in 
the global coordinate system of reference. To address this 
problem, we represent the robot pose in a local coordinate 
system attached to a landmark which the robot has recognized 
recently. When the robot finds a new landmark, the robot 
changes the local coordinate system from the old landmark to 
the new one with coordinate transformation of its pose based 
on the relative pose between the old and new landmarks. We 
refer to the landmark as a local origin. As the robot moves, it 
changes the local origin. More specifically, we define the 
robot pose as a pair of a local origin and the pose in a local 
coordinate system attached to the local origin. Landmarks in 
the building with the local origin would have smaller 
positional uncertainty in the local coordinate system than in 
the global one thereby becoming easier to recognize. 

To handle the uncertainty, the relative pose between two 
local coordinate systems is defined using a Gaussian random 
variable. Let djk = (xjk, yjk, θjk)T be the relative pose of local 
coordinate system Lk with respect to local coordinate system 
Lj. The transformation of robot pose XR = (x, y, θ)T from local 
coordinate system Lj to Lk can be calculated as follows: 

 
 XRk = T-1(θjk)(XRj - djk),                              (2) 
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where XRj and XRk are the robot poses with respect to the 

local coordinate systems Lj and Lk, as shown in fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 shows representative transformations among global 
(XG-YG), building (XB-YB), local (XL-YL), and robot (XR-YR) 
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Fig. 7. Correspondences between a set of multiple visual features 
and a visible building. 

 

      (a)                                                          (b) 
Fig. 6. The uncertainty model of the global map (a) and a local map at the 
first frame (b). 

coordinate systems. A building coordinate system has its 
origin at the center of building and parallel to the principal 
directions of building. A local coordinate system is selected 
such that its origin is at a visible and nearest corner of a 
certain building from the robot. The local coordinate system 
is also parallel to the building coordinate system or one of its 
axes placed on the visible and nearest wall of the building. 
The uncertainty of local coordinate system is calculated from 
the uncertainty of building coordinate system with respect to 
the global coordinate system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We approximate the buildings present in an environment to 
polygonal objects on the map and compute the uncertainties 
of their poses and dimensions for estimating the robot pose. 
Fig. 6 shows examples of modeling the uncertainties of rough 
map in the global and local coordinate systems, where the 
buildings are drawn with their mean poses and mean 
dimensions. The global map uncertainty is roughly assumed 
with respect to the origin of the map and transformed to the 
local uncertainty model with respect to its local origin by a 
coordinate transformation using (2) and (3). The local map 
has greater uncertainty than the global map except the walls 
and the corners on the axes of the local coordinate system. 
The coordinates of (0, 0) on the both maps are their respective 
origins and the local origin has no error. Assuming Gaussian 
error models, the colored ellipses in each map mark 3σ 
uncertainty regions of the centers and corners of different 
buildings by their relative pose errors with respect to the 
respective origin. 

IV. MAP MATCHING 
One of the most important and challenging aspects of 

map-based localization is map matching. In the matching 
process, we use the depth information: a segment-based 
stereo algorithm for the borders and an area-based one for the 
disparity regions corresponding to the walls of buildings. The 
multiple visual features should be used in order to match the 
sensory data to the environment map reliably. 

When visual pose estimation is attempted, an approximate 
estimate of the pose is available from the odometry. This 
estimate is used to search the map for the most appropriate 
buildings for visual localization. The buildings within a 

certain distance range from the robot are selected by scanning 
through the given map. Only the features of buildings that are 
viewable under the orientation uncertainty of the robot pose 
are considered. We also eliminate the features of buildings 
that are visible at a too low angle to produce a stable match 
with the image. 

Given the candidate features of buildings that successfully 
passed this selection process, the robot matches the detected 
features to those candidates with the Mahalanobis distance 
criterion using the depth. The resolution of the depth data is, 
however, not constant; the farther from the stereo camera, the 
larger the error of depth. In order to simplify the computation, 
we use disparity space [14] which keeps the error constant. 

At this point, we are ready to match up the multiple visual 
features with the map. Instead of generating and testing all of 
the data associations using the multiple visual features 
simultaneously, we build the data associations according to 
the priority of nonvertical borders, vertical borders, and 
disparity regions in this order (see section V). Since this 
priority constraint can reduce more effectively the uncertainty 
of robot orientation, we can thus narrow the map candidates 
for the data association more efficiently. 

The data association of nonvertical borders with outlines of 
buildings is possible when satisfying the following criteria: 
1) The Mahalanobis distance dvp between their vanishing 

points should be close enough to each other. 
 

),())(( 122
vpvpXvpxvpvpvpvp XxXxd −+−= −σσ           (4) 

 

where xvp and Xvp are the vanishing points of a 
nonvertical border and a building outline, and σ2

xvp and 
σ2

Xvp are their uncertainties, respectively. If dvp is small, 
two vanishing points are considered to be consistent. 

2) The Mahalanobis distance drt between their parameters in 
the disparity space should be small enough, because 
there are many buildings having parallel walls in urban 
environments. 

 

),()()( 1
rtrtrtrt

T
rtrtrtd XxΣΣXx Xx −+−= −        (5) 

 

where xrt and Xrt are the Hough parameters (r, t) in the 
disparity space of a nonvertical border and a building 
outline, and Σxrt and ΣXrt are their error covariance 
matrices, respectively. The judgment of data association 
depends on the threshold dthresh for each distance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The vertical borders are associated with the corners of 
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buildings using the Mahalanobis distance criterion in the 
disparity space. The coupled borders are associated with the 
coupled features of building outlines and corners. We also 
consider the ordering constraint in their associated building. 

In the case of disparity data, the disparity regions 
recognized as building regions are associated with the walls 
of buildings using the Mahalanobis distance criterion. 
Neighboring disparity data corresponding to a wall are 
grouped from the result of data association. By using a plane 
fitting procedure, each group is fitted to a plane. The results 
are the plane models as the environment representation. 

Fig. 7 shows a building in the map with visible walls and 
corners pictured as thick segments, and black dots and circles, 
respectively, on the left side. Coupled borders, an isolated 
vertical border, and a rectangular disparity region bounding 
them are shown on the right side of the figure. A set of the 
arrows of same color depicts that coupled borders, an isolated 
vertical border, and a disparity region are consistently 
matched to the outline, the corners, and the wall of same 
building, respectively. Considering the coupled borders and 
their ordering constraint, we can generate consistent sets of 
the data associations of coupled nonvertical and vertical 
borders, an isolated vertical border and a disparity region. 

V. MULTI-HYPOTHESIS LOCALIZATION 
The Kalman filter acts as a pose tracker in this paper. But, a 

false matching of the observed features to the model features 
can lead to an irrecoverable lost situation if only a single 
distribution is maintained. Although the most credible 
estimation at one time turns out to be totally wrong, a 
Multiple Hypothesis Localization allows alternative pose 
estimates to be maintained instead of tracking only the most 
credible hypothesis. The MHL has been widely used to solve 
global localization problems, in which a robot has no 
knowledge of its initial pose. In our work, however, instead of 
starting with an empty hypothesis, we start with a highly 
reliable hypothesis of robot pose. A starting robot pose 
around the true pose and its uncertainty of random size must 
be supplied by an operator. 

This method can be achieved by explicitly tracking 
multiple pose hypotheses, via multiple Kalman filters using 
the priority data associations of multiple visual features (refer 
to our work [15] for detailed implementation). Direct 
association of all observations to all targets is, however, not 
practical as the number of possible hypotheses may be huge 
with frame steps. This is the reason various heuristics are 
introduced to keep the algorithm practicable in the method. 

Step 1: Hypothesis evolution by robot motion. When the 
algorithm starts, it takes as input the prior set of pose 
hypotheses from the previous cycle. Each of the current 
hypotheses evolves to take into account the uncertainty of 
robot motion according to the odometry. Then, the local 
origin of each evolved pose hypothesis is changed when a 
new one is found. The global map is transformed to a local 
map with respect to the new local coordinate system and then 
to the disparity space for map matching. When no features are 

detected from the current input image or no detected features 
are matched with the map, the evolved pose hypotheses 
become the input set of current pose hypotheses in next cycle. 

Step 2: Hypothesis generation by nonvertical borders. 
Nonvertical borders are first used for hypothesis generation. 
For each combination of possible associations between 
nonvertical borders and building outlines, a new pose 
hypothesis is generated using EKF. In this hypothesis 
generation, the robot orientation is mainly adjusted. 

When each pose hypothesis violates one of the following 
four constraints, the hypothesis is considered to be infeasible: 

 The pose hypothesis should satisfy the relative ordering 
constraint of borders in a single building. 

 Matched borders in each data association must be in the 
predicted field of view. 

 Each association should be possible in the sense of 
Mahalanobis distance check. 

 A generated pose must not be largely far away from the 
evolved pose in the Mahalanobis distance sense. 

Such infeasible pose hypotheses are all pruned. 
Step 3: Hypothesis generation by vertical borders. 

Vertical borders are then used for hypothesis generation. For 
each pose hypothesis generated in the previous step, a set of 
combinations of consistent associations between vertical 
borders and building corners is generated. A new pose 
hypothesis is generated for each combination by using EKF. 
In the case of coupled vertical borders, only the hypotheses 
generated using the corresponding nonvertical borders are 
considered. The same pruning process is then applied to the 
generated pose hypotheses. 

Step 4: Hypothesis refinement by disparity regions. For 
each pose hypothesis generated using nonvertical and/or 
vertical borders, the disparity data are clustered and matched 
with the map of the hypothesis. The pose hypothesis is then 
refined using the matching and EKF. The same pruning 
process is again applied to the refined pose hypotheses. 

Step 5: Hypothesis merging. If multiple pose hypotheses 
have the same local coordinate system and are within a 
specified range of each other in the Mahalanobis distance 
sense, they are grouped and merged into a new pose 
hypothesis. Since the hypotheses in a group are considered to 
be equally plausible, the resultant pose estimate of merged 
hypothesis is the mean of their poses and its covariance 
estimated is determined to cover all their uncertainty regions. 
All pose hypotheses after this step constitute the input set of 
current pose hypotheses in next cycle. 

VI. EXPERIMENTAL RESULT 
Our implementation uses the multiple visual features and 

the state prediction is made by using only odometry data. The 
system was tested on about 200 x 200 m2 site with 9 buildings 
on variable outlines (refer to fig. 4). In the test, a sequence of 
stereo images was obtained by driving the robot using the 
joystick interface to the steering control system all along the 
path and back to the start position. The visual localization 
routine proposed in this paper was then performed. It used the 
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      (a)                                                          (b) 
Fig. 10. The results of multi-hypothesis localization on the test run.

 

(a)                                        (b) 
 

(c)                                        (d) 
Fig. 9. Multiple pose hypotheses set at the first frame step using 
nonvertical borders (a), vertical borders (b), disparity regions 
(c) and resulting merged hypotheses (d) of (c). 
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Fig. 8. A robot path and sampled images used for an experiment. 

accumulated error from odometry as an initial guess to 
determine the visible buildings on the given map and chose 
their multiple visual features observed for localization. Fig. 8 
shows a robot path and sampled images of 30 frames 
counterclockwise used for our experiment, where the number 
in circle indicates the number of frame step. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 shows the results of multi-hypothesis localization on 
the magnified local map using the multiple visual features at 
start position in fig. 8. The ellipses in the figure are the 
estimated 3σ uncertainty regions of the robot positions by 
matching the respective visual features to the map. A corner 
of a building linked to the centers of ellipses means the origin 
in the local map of the pose hypotheses. Multiple pose 
hypotheses are merged in order to keep the number of 
hypotheses low. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At the first frame (start position), the robot has a rough 

knowledge on its pose and observes 6 nonvertical borders, 5 
vertical borders and 8 disparity regions (refer to fig. 3 (b)). 
This yields 20, 14 and 13 pose hypotheses for each visual 
feature, respectively (shown in fig. 9 (a) through (c)); only 
position information from the pose hypotheses is displayed. 
Fig. 9 (a) shows a 3σ uncertainty ellipse of superposed 20 
pose hypotheses using nonvertical borders. The reason for the 
superposition is because we assumed no correlation between 
the position and orientation of the robot at start position. The 
vanishing point of a nonvertical border provides information 
about the robot’s orientation only. 13 pose hypotheses 
generated using disparity data in fig. 9 (c) are merged to 4 
hypotheses in fig. 9 (d) by the constraint of the same local 
coordinate system and the threshold of Mahalanobis distance. 
The large circle drawn in fig. 9 (d) denotes the uncertainty 
region of an initial robot position with respect to a local 
coordinate system. The uncertainty circle consists of the 
global uncertainty of an initial robot pose and the global 
uncertainty of a local origin by a coordinate transformation 
using (2) and (3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

During this test run of 30 frame steps, the sensor data were 
recorded by the robot stopping at regular intervals to take a 
pair of stereo images. The average relative displacement 
between the observations of each frame was less than 10 m 
and 20° for translation, and less than 90° for rotation. The 
algorithm succeeded always in generating and tracking the 
pose hypotheses around the true poses of robot. The error 
ellipses in fig. 10 (a) denote the unmagnified 3σ uncertainty 
levels of the robot positions in the local coordinate system 
displayed on the global map. The linked tracks of the ellipse 
centers between current and descendent pose hypotheses in 
the figure are shown in fig. 10 (b) with line segments of same 
color for separating different frame steps. The terminated line 
segments in the figure represent the pruned hypotheses. 

The robot stays localized in the presence of errors and 
sensing ambiguities where tracking of a single hypothesis 
would fail. This is a dramatic increase in robustness made 
possible with a small computational cost of pose hypotheses 
as shown in fig. 11. At each frame step, the average 
processing time of all hypotheses was lower than 5% of the 
total execution time including the visual processing. The 
minimum number of the pose hypotheses at each step was 
larger than 1,000 when the hypothesis management strategies 
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Fig. 11. Number of validated pose hypotheses and respective features. 

 

                                    (a)                                                          (b) 
Fig. 12. A longest track by the proposed method and an odometry-alone 
result (a) and norm of uncertainty covariance along the track (b). 

of validating, pruning and merging were not applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 

The number of pose hypotheses generally increases as the 
number of observed features increases. Considering the large 
number of features around step 17, the small number of pose 
hypotheses at the step is, however, thought mainly due to that 
completely new buildings were obtained in the map when 
turning left into the byroad, and most of the observed features 
were extracted from and matched to the same building. The 
high number of pose hypotheses for the low number of 
features around step 26 is thought due to the place where there 
exist many buildings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 (a) shows a comparison of dead-reckoning 
estimates and a trajectory estimated by the MHL approach on 
the global map which drawn with the mean poses and mean 
dimensions of buildings. The total path length is about 250 
meters and the image sequence consists of 30 frames. The 
dead-reckoning path is completely wrong after a short frame 
interval. A longest track of the tracks displayed in fig. 10 (b) 
is also plotted with its 3σ uncertainty ellipses at each step. It is 
backtracked from the end position nearest to the start position 
to demonstrate the feasibility and good performance of the 
proposed MHL approach in this paper. Fig. 12 (b) reports the 
change of the norm of position covariance along the track. 
When no matchable features are in view, the uncertainty of 
robot position becomes greater. The uncertainty of robot 
position decreases whenever matchable features are in the 
field of view. 

VII. CONCLUSION AND FUTURE WORK 
This paper presents an approach to determining the robot 

pose in an urban area where GPS cannot work since the 

satellite signals are often blocked by the buildings. We tested 
the method with real data and the obtained results show that 
the method is potentially applicable even in the presence of 
errors in feature detection of the visual features and 
incomplete model description of the rough map. 

To make use of the rough map, which is an incomplete 
description of the environment, we deploy a technique based 
on multi-hypothesis tracking in localization. The main 
disadvantage of the multiple hypothesis approach is, however, 
the very large number of hypotheses that may be generated. 
But, the hypothesis management techniques of validating, 
pruning and merging appear to constrain the hypothesis trees 
to manageable sizes. 

This method is a part of our ongoing research aiming 
autonomous outdoor navigation of a mobile robot to follow 
the planned path to a user-chosen location on the rough map. 
Thus, we want to address the integration of our system with 
an autonomous navigation module in the near future. 
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