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Abstract— This paper proposes a practical redundancy reso-
lution for 7 DOF redundant manipulators with joint limits. The
primary concern of the paper is how to resolve the redundancy in
the global configuration space when the movable joint angles are
considerably restricted. First, a parameterized inverse kinematic
solution for a 7 DOF manipulator model is derived. Second, how
the joint limits affect the inverse kinematic solution is examined
to explicitly identify the feasible solution under the joint limits.
Then, an analytical redundancy resolution method for avoiding
the joint limits is developed. Finally, kinematic simulations show
that the method is effective for avoiding the joint limits as well as
expanding the reachable region of the manipulator’s tip.

I. INTRODUCTION

This paper addresses the inverse kinematic problem for 7
degrees of freedom (DOF) redundant manipulators. Since a
7 DOF manipulator has an extra DOF inside the manipulator
structure, an infinite number of inverse kinematic solutions are
possible. To control the manipulator, a single solution has to
be chosen from them. The problem of selecting one solution
is conventionally referred to as redundancy resolution.

So far, a variety of redundancy resolution methods have
been proposed. Most of them resolve the redundancy by
optimizing a cost function at each moment [1]. It has been
shown that various subtasks, such as manipulability enhance-
ment [2], torque optimization [3], and obstacle avoidance [4],
can be achieved with an appropriate cost function. However,
these methods solve the inverse kinematic problem in the ve-
locity domain based on the linearized first order instantaneous
kinematic relation between tip velocities and joint veloci-
ties, which is characterized by a Jacobian matrix. Since the
Jacobian-based methods provide only velocity solutions, the
absolute tip pose (position and orientation) as well as repeata-
bility in tracking closed trajectories are not guaranteed [5].

In contrast, redundancy resolution methods in the position
domain have been proposed [6] [7]. In these methods, the in-
verse kinematic problem is analytically solved by introducing
new parameters that represent the redundancy, and then, the
redundancy parameters are determined based on some crite-

ria. One of the advantages of these methods is that a closed-
form inverse kinematic solution is given in terms of joint dis-
placements rather than joint velocities. Hence, these methods
guarantee absolute position accuracy as well as repeatability
in trajectory tracking.

When a 7 DOF redundant manipulator is employed for fine
manipulation tasks like assembly tasks, positioning accuracy
has to be guaranteed. For this purpose, we need to resolve the
redundancy in the position domain rather than the velocity do-
main. However, the existing position-based redundancy reso-
lution methods can not deal with the problem of joint limits.
The joint limits are not only mechanical limits but software
limits for preventing collisions with external objects. This is
usual for manipulators mounted on a mobile platform like a
humanoid robot, where collisions with the body could occur.
In such a case, not all redundancy resolutions are realizable
due to the joint limits. Therefore, the effects of the joint limits
have to be taken into account when resolving the redundancy.

Researches addressing the issue of joint limits in the po-
sition domain are rare. Lück and Lee [8] studied the topol-
ogy of self-motion in the configuration space constrained by
joint limits. Although this work supplies useful information
regarding to the topological properties of self-motion, how to
resolve the redundancy under joint limits is not addressed.

The objective of this paper is to develop a practical re-
dundancy resolution method for 7 DOF redundant manipu-
lators with joint limits. The distinction of our method is that
the method analytically resolves the redundancy in the global
configuration space under the joint limits. This approach
brings the advantages that the positioning accuracy is guaran-
teed in principle and all the feasible solutions are obtainable
with a light computational load.

This paper is organized in the following manner. Section
II derives a parameterized inverse kinematic solution for a 7
DOF manipulator model. Section III identifies the feasible
solutions under joint limits. Section IV develops an analytical
redundancy resolution method for avoiding the joint limits.
Finally, section V presents kinematic simulations to show that
the proposed method is effective for avoiding the joint limits.
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Fig. 1 7 DOF manipulator model.

II. PARAMETERIZED INVERSE KINEMATICS

This section provides an analytical inverse kinematic solu-
tion for a 7 DOF manipulator model. First, the manipulator
model assumed in this paper is described. Next, a parameter
is introduced to represent the redundancy. Then, the inverse
kinematic solution is derived using the redundancy parameter.

A. Manipulator Model

In this paper, a S-R-S manipulator model is assumed.
Namely, as shown in Fig. 1, the manipulator is assumed to
have seven revolute joints, comprising three shoulder joints,
one elbow joint, and three wrist joints.

To describe the kinematic relation between the joint angles
and the pose (position and orientation) of the manipulator’s
tip, let us define joint coordinate systems. In this paper, each
coordinate system Σi (i = 0, 1, · · · , 7) is determined based on
the Denavit-Hartenberg rules [9]. The base coordinate system
Σ0 and the tip one Σ7 are placed as shown in Fig. 1. With
these coordinate systems, the Denavit-Hartenberg parameters
are described as listed in Table 1. Note that the notation of the
parameters is not unique because the parameters depend on
the definition of the joint coordinate frames.

B. Redundancy Parameter

Since the tip pose is uniquely described by six parameters,
an additional parameter is required to specify the manipula-
tor’s posture uniquely. This parameter is associated with a
self-motion of the manipulator. To describe the self-motion,
this paper incorporates the parameter termed arm angle [10].
As shown in Fig. 2, the arm angle ψ is defined as the angle
between a reference plane and the arm plane spanned by the
shoulder, elbow, and wrist.

In this paper, the reference plane is determined in the fol-
lowing way. The S-R-S manipulator can be regarded as a non-

Table 1 D-H parameters of 7 DOF manipulator model.

i θi αi(rad) di ai

1 θ1 −π/2 dbs 0
2 θ2 π/2 0 0
3 θ3 −π/2 dse 0
4 θ4 π/2 0 0
5 θ5 −π/2 dew 0
6 θ6 π/2 0 0
7 θ7 0 dwt 0

Arm Plane

Reference Plane

ψ
Ps

Pe

Pw

Fig. 2 Definition of arm angle ψ.

redundant manipulator when the joint angle 3 is fixed to zero.
In this case, the arm plane is uniquely determined for a speci-
fied tip pose because no self-motion is possible for the virtual
non-redundant manipulator. Since the arm plane is always de-
terministic except for the case of shoulder/elbow singularity,
it can be used as the reference plane. We will refer the arm
plane determined by the virtual non-redundant manipulator as
the reference plane in the following.

C. Derivation of Parameterized Inverse Kinematic Solution

Now, the inverse kinematic problem is solved using the arm
angle. First, the forward kinematic relation incorporating the
arm angle is formulated. Then, the inverse analysis is carried
out to get the joint angles parameterized by the arm angle.
1) Forward Kinematic Analysis: The manipulator’s tip

pose is represented by the combination of the position
0x7 ∈ �3 and orientation 0R7 ∈ SO(3) of the tip coordinate
system viewed from the base one. The conventional forward
kinematic analysis provides the kinematic relation between
the tip pose and joint angles;

0x7 = 0lbs + 0R3

{
3lse + 3R4

(
4lew + 4R7

7lwt
)}
, (1)

0R7 = 0R3
3R4

4R7, (2)

where the superscript on the left side of each vector/matrix
denotes the reference coordinate system, thus, iRj represents
the orientation of the coordinate system j viewed from the
coordinate system i, and 0lbs, 3lse, 4lew , and 7lwt are constant
vectors given by

0lbs =
[

0 0 dbs
]T
,

3lse =
[

0 −dse 0
]T
,

4lew =
[

0 0 dew
]T
,

7lwt =
[

0 0 dwt
]T
.

The rotation matrix between the coordinate systems i− 1 and
i is given by

i−1Ri =

⎡
⎣

cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi

0 sinαi cosαi

⎤
⎦ (3)

Suppose that the desired tip pose is specified as 0xd7 and
0Rd

7. In this case, the shoulder-wrist axis must be fixed in
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order to satisfy the specified tip pose, because the vector from
the shoulder to the wrist, denoted by 0xsw, is given by

0xsw = 0xd7 − 0lbs − 0Rd
7

7lwt. (4)

Since the self-motion parameterized by the arm angle ψ is a
rotation around this fixed axis, the self-motion does not affect
the wrist position but does affect the wrist orientation. The
orientational difference between the arm plane and the refer-
ence one is described [11] by

0Rψ = I3 + sinψ
[
0usw×

]
+ (1 − cosψ)

[
0usw×

]2
, (5)

where I3 ∈ �3×3 is the identity matrix, 0usw ∈ �3 is the unit
vector of 0xsw, and

[
0usw×

]
denotes the skew-symmetric

matrix of the vector 0usw. Thus, the wrist orientation is de-
scribed by

0R4 = 0Rψ
0Ro

4, (6)

where 0Ro
4 represents the wrist orientation when the arm

plane coincides with the reference plane.
As Fig. 2 implies, the elbow angle (joint 4) depends only

on the wrist position and is not subject to the arm angle. It
follows that 3R4 and 3Ro

4 are same. Therefore, (6) can be
simplified to

0R3 = 0Rψ
0Ro

3. (7)

Substituting (7) into (1) and (2), we can get the kinematic re-
lation including the arm angle parameter.
2) Inverse Kinematic Analysis: First, the elbow joint angle

is computed. Substituting (1) into (4), we have

0xsw = 0R3

(
3lse + 3R4

4lew
)
. (8)

Computing the square sum of the norm of 0xsw, we get
∥∥0xsw

∥∥2
= d2

se + d2
ew + 2dsedew cos θ4. (9)

The joint angle θ4 can be derived from this equation.
Second, the shoulder joint angles when ψ = 0 are com-

puted to determine the reference plane. As mentioned before,
the reference plane is equivalent to the arm plane when the
joint angle θ3 is fixed to zero. Substituting (7) and θ3 = 0 into
(8), we have

0xsw = 0Ro
1

1Ro
2

2R3

∣∣
θ3=0

(
3lse + 3R4

4lew
)
. (10)

Since the joint angle θ4 is given by (9), unknown parameters
in (10) are θo1 and θo2 only. Comparing both sides of (10), we
can get unique solutions of θo1 and θo2.

Third, the shoulder joint angles for an arm angleψ are com-
puted. Substituting (5) into (7), we have

0R3 = As sinψ + Bs cosψ + Cs, (11)

where As, Bs, and Cs are constant matrices given by

As =
[
0usw×

] · 0Ro
3,

Bs = − [
0usw×

]2 · 0Ro
3,

Cs =
[
0usw

0uTsw
] · 0Ro

3.

Computing the rotation matrix 0R3 and combining some ele-
ments of the matrix, we can get the following equations;

tan θ1 =
−as22 sinψ − bs22 cosψ − cs22
−as12 sinψ − bs12 cosψ − cs12

, (12)

cos θ2 = −as32 sinψ − bs32 cosψ − cs32, (13)

tan θ3 =
as33 sinψ + bs33 cosψ + cs33
−as31 sinψ − bs31 cosψ − cs31

, (14)

where asij , bsij , and csij are the (i, j) element of the matrices
As, Bs, and Cs, respectively. The joint angles θ1, θ2, and θ3
can be derived from these equations.

Lastly, the wrist joint angles are computed. Substituting (7)
into (2), we have

4R7 = Aw sinψ + Bw cosψ + Cw, (15)

where Aw, Bw, and Cw are constant matrices given by

Aw = −3RT
4 · 0RoT

3 · [0usw×
] · 0Rd

7,

Bw = −3RT
4 · 0RoT

3 · [0usw×
]2 · 0Rd

7,

Cw = 3RT
4 · 0RoT

3 · [0usw0uTsw
] · 0Rd

7.

Computing the rotation matrix 4R7 and combining some ele-
ments of the matrix, we can get the following equations;

tan θ5 =
aw23 sinψ + bw23 cosψ + cw23

aw13 sinψ + bw13 cosψ + cw13
, (16)

cos θ6 = aw33 sinψ + bw33 cosψ + cw33, (17)

tan θ7 =
aw32 sinψ + bw32 cosψ + cw32

−aw31 sinψ − bw31 cosψ − cw31
. (18)

The joint angles θ5, θ6, and θ7 can be derived from these equa-
tions.

III. FEASIBLE INVERSE KINEMATIC SOLUTIONS UNDER

JOINT LIMITS

This section investigates feasible inverse kinematic solu-
tions under joint limits. First, the relationship between the arm
angle and the joint angles is analyzed. The feasible region of
the arm angle is then identified for a specified tip pose.

A. Relationship between Arm Angle and Joint Angles

As described in the previous section, the joint angles de-
pend on the arm angle even if the tip pose is fixed. Here, let
us examine how the joint angles vary with the arm angle for a
fixed tip pose.

As shown in (9), the elbow joint is independent on the arm
angle, while the others are subject to the arm angle. The rela-
tionships between the arm angle and the joint angles are rep-
resented by (12)-(14) and (16)-(18). In each of the equations,
the tangent or cosine of a joint angle is related to a function
of the arm angle. Therefore, it is enough to investigate only
the two function types in order to know the characteristics of
all the joint angles. Below, the relationship between an arm
angle and a joint angle for each function type is explored.
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1) Tangent Type: Suppose that a joint angle θi is given by

tan θi =
an sinψ + bn cosψ + cn
ad sinψ + bd cosψ + cd

.

Differentiating both sides with respect to ψ, we can get

dθi
dψ

=
atsψ + btcψ + ct

(ansψ + bncψ + cn)
2 + (adsψ + bdcψ + cd)

2 ,

(19)
where sψ and cψ denote sinψ and cosψ, respectively, and

at = bdcn − bncd,

bt = ancd − adcn,

ct = anbd − adbn.

Since the denominator in (19) is always positive or zero, the
sign of the gradient of θi against ψ is determined by the sign
of the numerator. Functional analysis of the numerator shows
that the sign of the numerator changes if the condition

a2
t + b2t − c2t > 0. (20)

is satisfied. In this case, there exist the arm angles ψ0 where
the numerator is zero, which are described by

ψ0 = 2 tan−1 at ±
√
a2
t + b2t − c2t

bt − ct
. (21)

Since the sign of the gradient changes at ψ0, θi is minimized
or maximized locally at ψ0. Since the second order differen-
tial coefficient of θi at ψ0 can be computed by

d2θi
dψ2

∣∣∣∣
ψ0

=
−btsψ0 + atcψ0

(ansψ0 + bncψ0 + cn)
2 + (adsψ0 + bdcψ0 + cd)

2 ,

(22)
we can distinguish between the minimum and the maximum
by evaluating the sign of the coefficient. Although the details
are omitted here due to the paper limit, further analysis shows
that only two distinct ψ0 are possible, one of which globally
minimizes θi and the other globally maximizes θi.

As a consequence, the relationship between θi and ψ is
classified into either of the following two cases;

(1) Case with the global minimum and maximum:
If the condition (20) is satisfied, there always exist the
global minimum and maximum, but neither local minima
nor local maxima exist. The arm angles associated with
the global minimum and maximum are given by (21).
The joint angle θi with respect to the arm angle ψ is plot-
ted as shown in Fig. 3 (a).

(2) Case with no minima and maxima:
If the condition (20) is not satisfied, the sign of the gra-
dient given by (19) is always same for any ψ. This in-
dicates that θi monotonically increases/decreases as ψ
varies. The joint angle θi with respect to the arm angle ψ
is plotted as shown in Fig. 3 (b).

θ i
 (r

ad
)

θil

θiu

ψ (rad)−π π

θ i
 (r

ad
)

ψ (rad)−π π

θiu

θil

(a) Case 1 (b) Case 2

Fig. 3 Profile of joint angle θi with respect to arm angle ψ when θi

is given by the tangent function; (a) Case with global mini-
mum and maximum, and (b) Case with no minima/maxima.

θ i
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)

θil

θiu

−π πψ (rad)

Fig. 4 Profile of joint angle θi with respect to arm angle ψ when θi

is given by the cosine function.

2) Cosine Type: Suppose that a joint angle θi is given by

cos θi = a sinψ + b cosψ + c.

Differentiating both sides with respect to ψ, we get

dθi
dψ

= − 1
sin θi

(a cosψ − b sinψ) . (23)

Computing the arm angle ψ0, which makes (23) zero, yields

ψ0 = tan−1 a

b
. (24)

It can be verified that there always exist two distinct ψ0,
which are π radian apart. Since the second order differential
coefficient at ψ0 ± π ensures that

sin θi (ψ0 ± π) · d
2θi
dψ2

∣∣∣∣
ψ0±π

= − sin θi (ψ0) · d
2θi
dψ2

∣∣∣∣
ψ0

,

if the signs of θi at ψ0 and ψ0 ± π are same, θi is globally
minimized at one of the two arm angles and maximized at the
other. Consequently, the joint angle θi with respect to the arm
angle ψ is plotted as shown in Fig. 4.

B. Feasible Region of Arm Angle

Now, the feasible region of the arm angle under joint limits
is identified. In the following, assume that joint limits are
represented by

θli ≤ θi ≤ θui , (i = 1, 2, · · · , 7) (25)

where θli and θui are the lower and upper bounds of the joint
angle θi, respectively.

As shown above, the profile of a joint angle with respect
to the arm angle is classified into either of the two types, one
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of which involves the global minimum and maximum, while
the other involves no minima/maxima. In the latter case, as
shown in Fig. 3 (b), the joint angle will inevitably reach to its
joint limit when the arm angle is going to increase/decrease.
Therefore, when a joint angle involves no minima/maxima,
the feasible region of the arm angle is given by the single do-
main, which is bounded by the two arm angles corresponding
to the upper and lower bounds of the joint angle.

On the other hand, when a joint angle involves the global
minimum and maximum, the feasible region is somewhat
complex. Let ψmin0 and ψmax0 be the arm angles that mini-
mizes and maximizes the joint angle, respectively. Also, let
θmini and θmaxi be the joint angles corresponding to ψmin0 and
ψmax0 , respectively. Taking into account the profile of the joint
angle, we can find that the following five cases are possible.
Note that the width of the range of the arm angle is limited
to 2π radian in the following, but this does not lose generality
because the arm angle forms a torus [12].

(1) θmini > θui or θmaxi < θli:
No feasible region of the arm angle exists.

(2) θmini < θli and θli ≤ θmaxi ≤ θui :
Since ψmax0 is feasible but ψmin0 is not, a certain region
including the point ψmax0 is feasible. The boundaries of
the region is given by solving the equation θi (ψ) = θli.

(3) θli ≤ θmini ≤ θui and θmaxi > θui :
Since ψmin0 is feasible but ψmax0 is not, a certain region
including the point ψmin0 is feasible. The boundaries of
the region is given by solving the equation θi (ψ) = θui .

(4) θmini < θli and θmaxi > θui :
Since both ψmin0 and ψmax0 are infeasible but somewhere
in between the two points is feasible, the feasible region
is given by excluding two regions, which includes ψmin0

and ψ0 respectively, from the entire domain of the arm
angle. The boundaries of the infeasible regions are given
by solving the equations θi (ψ) = θli and θi (ψ) = θui .

(5) θli ≤ θmini ≤ θui and θli ≤ θmaxi ≤ θui :
The entire domain is feasible.

Except for (1), the feasible region of the arm angle for a
single joint is composed of one or more closed subregions.
Therefore, the feasible region of the arm angle for the joint i,
denoted by Ψi, is represented by

Ψi =
ni⋃
j=1

Ψij , (26)

where Ψij is a closed subregion, and ni is the number of the
subregions. As a consequence, the feasible region Ψ satisfy-
ing all the joint limits is represented by

Ψ =
7⋂
i=1

Ψi. (27)

IV. REDUNDANCY RESOLUTION

This section develops a practical redundancy resolution for
a S-R-S manipulator with joint limits. The joint limits directly
affect the reachable region of the manipulator’s tip. Since the
joint angles depend on the arm angle, the reachable region
would be smaller than the kinematic one if the arm angle is ill-
chosen. To elicit the maximal performance of the manipulator,
the arm angle should be determined to avoid the joint limits
as much as possible. Below, we discuss how the arm angle
should be determined to avoid the joint limits.

A. Approach

Since the shoulder and wrist joint angles depend on the arm
angle, the joint limits of the shoulder and wrist portions may
be avoidable by regulating the arm angle properly. Each of
the portions consists of three revolute joints and all the three
joint axes intersect at a single point. This simple mechanism
enables us to regard each portion as a virtual spherical joint.
Since a spherical displacement can be described by a rotation
around an axis [11], the rotation angle φ is one of the indices
that characterize the spherical displacement.

Let φd be the rotation angle where the three joints are at
designated angles. It is expected that the orientational dis-
placement of the spherical joint will get closest to the desig-
nated one when φ = φd. If each of the designated joint angles
is selected as the angle furthest from its limits, the joint limits
will be avoided as much as possible by finding φ nearest to
φd. Based on this theory, we will develop three methods to
avoid the joint limits associated with the shoulder portion, the
wrist portion, and the combination of them, respectively.

B. Joint Limit Avoidance for Shoulder Joints

First, the arm angle is derived to avoid the shoulder joint
limits. Let θd1 , θd2 , and θd3 be the desired angles of θ1, θ2,
and θ3 respectively, and 0Rd

3 be the orientation at the desired
angles. The difference between the desired and actual orien-
tations is described by

0R3 · 0RdT
3 = I3 + sinφs

[
0us×

]
+ (1 − cosφs)

[
0us×

]2
,

(28)
where us ∈ �3 and φs ≥ 0 are the unit vector of the rotation
axis and the rotation angle around the axis, respectively. Since
φs becomes zero when the actual orientation coincides with
the desired one, φs has to be minimized to make the actual
orientation closest to the desired one.

Substituting (11) into (28) and computing its trace, we have

trace
(

0R3 · 0RdT
3

)

= as sinψ + bs cosψ + cs

= 1 + 2 cosφs,

where as = trace
(
As · 0RdT

3

)
, bs = trace

(
Bs · 0RdT

3

)
,

and cs = trace
(
Cs · 0RdT

3

)
. Thus, the problem of minimiz-

ing φs is reduced to that of maximizing the objective function

fs (ψ) = as sinψ + bs cosψ + cs.
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ψi
max

Ψi+1

ψi+1
min

ψ
ψ opt

Fig. 5 The optimal arm angle is not always feasible under joint lim-
its.

It can be verified that fs (ψ) is minimized or maximized at

ψs = tan−1 as
bs
. (29)

Let ψopts be the solution that maximizes fs. Then, another
solution is given by ψopts ± π, which minimizes fs. Thus,
the optimal arm angle for avoiding the shoulder joint limits is
given by ψopts .

If this solution is infeasible due to the joint limits, we have
to modify the solution. In general, the feasible region of the
arm angle consists of one or more closed subregions. When
ψopts is infeasible, there exist two subregions Ψi and Ψi+1 en-
closing the infeasible point as shown in Fig. 5. Let ψmaxi be
the boundary of the subregion Ψi, which is closer to ψopts .
Similarly, let ψmini+1 be the boundary of the subregion Ψi+1,
which closer to ψopts . Since the objective function fs mono-
tonically increases within the range [ψopts − π, ψopts ] and
monotonically decreases within the range [ψopts , ψopts + π],
the optimal and feasible arm angle is either ψmaxi or ψmini+1 ,
which is closer to ψopts .

C. Joint Limit Avoidance for Wrist Joints

The arm angle for avoiding the wrist joint limits can be
derived in the similar way. In this case, the objective function
is obtained from (15) as

fw (ψ) = aw sinψ + bw cosψ + cw,

where aw = trace
(
Aw · 4RdT

7

)
, bw = trace

(
Bw · 4RdT

7

)
,

and cw = trace
(
Cw · 4RdT

7

)
, and 4Rd

7 is the desired orien-
tation of the wrist three joints. This function is minimized or
maximized at

ψw = tan−1 aw
bw
. (30)

Let ψoptw be the solution that maximizes fw. If it is feasible
under the joint limits, it is the optimal arm angle for avoiding
the wrist joint limits. Otherwise, the optimal arm angle is the
one which is feasible and closest to ψoptw .

D. Joint Limit Avoidance for All Joints

Now, how to avoid all the joint limits is discussed. As men-
tioned above, the elbow joint limits are not avoidable by regu-
lating the arm angle, while the shoulder and wrist joint limits
are avoidable by maximizing the function fs and fw, respec-
tively. Hence, it is expected that both the shoulder and wrist
joint limits will be avoided together by maximizing an objec-
tive function combined with fs and fw. A candidate of such
functions is, for example,

f (ψ) =
rsfs (ψ) + rwfw (ψ)

rs + rw
,

Table 2 Upper and lower bounds of each joint (unit: degree)

i 1 2 3 4 5 6 7

θu
i 90 45 120 135 90 90 120
θl

i -90 -45 -120 0 -90 -90 -120

where rs ≥ 0 and rw ≥ 0 are weighting factors. This function
is minimized or maximized at

ψ = tan−1 rsas + rwaw
rsbs + rwbw

. (31)

Consequently, the optimal arm angle is given by the solution
ψopt that maximizes f , if it is feasible. Otherwise, the optimal
arm angle is the one which is feasible and closest to ψopt.

V. SIMULATION

This section performs kinematic simulations to show the
effectiveness of the methods developed in this paper. The
kinematic parameters listed in Table 1 are used in the sim-
ulations, where each link length is set to dbs = 0.317 (m),
dse = 0.45 (m), dew = 0.48 (m), dwt = 0.07 (m). Besides,
the movable range of each joint is limited as shown in Table 2.

Suppose that the desired tip pose is given by

xd =
[

0.65 0 0.5
]T

(m),

Rd =

⎡
⎣
−1 0 0
0 1 0
0 0 −1

⎤
⎦ . (32)

The feasible region of the arm angle can be computed by the
method presented in section III. The feasible region for each
joint angle is obtained as

Ψ1 = [−180, 180] (deg),

Ψ2 = [−45.991, 45.991] (deg),

Ψ3 = [−111.734, 111.734] (deg),

Ψ5 = [−108.926, 108.926] (deg),

Ψ6 = [−62.154, 62.154] (deg),

Ψ7 = [−180, 180] (deg),

where the range of the arm angle is [−180, 180] (deg). The
feasible region of the arm angle for all the joints is the inter-
section of these regions, which is given by

Ψ = [−45.991, 45.991] (deg).

Computing the joint angles at the minimal and maximal arm
angles in order to validate this result, we obtain

θ|ψmin = [43.992, 45, −71.419, 82.872,

42.572, 82.193, −27.693]T (deg),

θ|ψmax = [−43.992, 45, 71.419, 82.872,

−42.572, 82.193, 27.693]T (deg).

Since the joint 2 has reached to its limit at both of the arm
angles, the arm angle can not go beyond these values.
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Next, suppose that the tip pose is specified by

xd =
[

0.65 0 0.5
]T

(m),

Rd =

⎡
⎣

0 −1 0
−1 0 0
0 0 −1

⎤
⎦ .

In this case, the feasible region of the arm angle is computed
as Ψ = [−43.246, 43.246] (deg). The optimal arm angles for
avoiding the shoulder, wrist, and all joint limits are given by
(29), (30), and (31), respectively. Computing them, we have
ψopts = 0 (deg), ψoptw = 54.479 (deg), ψopt = 25.017 (deg),
where the weighting factors in (31) are rs = rw = 0.5. Since
ψoptw is infeasible, it has to be modified into the nearest feasi-
ble value ψoptw = 43.246 (deg). To validate the results, com-
puting the joint angles at ψ = 0 and ψ = ψopt, we obtain

θ|ψ=0 = [0, 25.666, 0, 82.872,

0, 71.463, −90]T (deg),

θ|ψ=ψopt = [−32.325, 32.687, 46.864, 82.872,

−24.101, 74.814, −73.709]T (deg).

As shown, the absolute value of the maximal joint angle at
ψ = 0 is |θ7| = 90, while the one at ψ = ψopt is reduced to
|θ6| = 74.814. Thus, the redundancy resolution method is ef-
fective for keeping the joint angles away from the limits.

Lastly, let us investigate how the redundancy resolution af-
fects the reachable region of the manipulator’s tip. As an ex-
ample, suppose that the tip rotates around z-axis in the ab-
solute coordinate system without changing the tip position,
where the initial pose is given by (32). Then, the tip pose can
be described by

xd =
[

0.65 0.0 0.5
]T

(m),

Rd =

⎡
⎣
− cos γ − sinγ 0
− sinγ cos γ 0

0 0 −1

⎤
⎦ ,

where γ represents the rotation angle around the z-axis. When
γ increases/decreases continuously, the tip rotates around the
z-axis, and eventually reaches its limit at some point. Thus,
the reachable region of the tip is equivalent to the feasible
range of the rotation angle γ.

When the arm angle is fixed to zero, i.e. ψ = 0, the reach-
able region is given by

Γ0 = [−120, 120] (deg).

For comparison, consider that the arm angle is controlled to
satisfy the arm angle given by (31) for avoiding all the joint
limits, i.e. ψ = ψopt. Computing the reachable region, we
have

Γ = [−147.693, 147.693] (deg).

These results indicate that the redundancy resolution method
is indeed effective for expanding the reachable region.

VI. CONCLUDING REMARKS

This paper proposed a practical redundancy resolution for
7 DOF redundant manipulators with joint limits. First, a pa-
rameterized inverse kinematic solution in the position domain
was derived using the arm angle parameter. Second, feasible
inverse kinematic solutions under joint limits were identified.
Then, an analytical redundancy resolution method for avoid-
ing the joint limits was developed. Lastly, kinematic simula-
tions showed that the redundancy resolution method was ef-
fective for avoiding the joint limits as well as expanding the
reachable region of the manipulator’s tip.

We have successfully applied this redundancy resolution
method to an anthropomorphic arm of a humanoid robot,
where the joint movable ranges are severely limited. Our
objective is to execute various practical tasks like assembly
tasks by the humanoid robot. To deal with environmental un-
certainties, we have adopted a position-based impedance con-
trol scheme, which requires a position-based redundancy res-
olution. The proposed method has contributed immensely to
achieving an assembly task by expanding the reachable region
of the arm’s tip despite the severe joint limits.

REFERENCES

[1] D.N.Nenchev, “Redundancy Resolution through Local Optimization: A
Review,” J. Robotic Systems, vol.6, no.6, pp.769–798, 1989.

[2] T.Yoshikawa, “Manipulability and Redundancy Control of Robotic
Mechanisms,” Proc. 1985 IEEE Int. Conf. Robotics and Automation,
pp.1004–1009, 1985.

[3] K.C.Suh and J.M.Hollerbach, “Local versus Global Torque Optimiza-
tion of Redundant Manipulators,” Proc. 1987 IEEE Int. Conf. Robotics
and Automation, pp.619–624, 1987.

[4] Y.Nakamura, H.Hanafusa, and T.Yoshikawa, “Task-Priority Based Re-
dundancy Control of Robot Manipulators,” Int. J. Robotics Research,
vol.6, no.2, pp.3–15, 1987.

[5] J.Nakanishi, R.Cory, M.Mistry, J.Peters, and S.Schaal, “Compara-
tive Experiments on Task Space Control with Redundancy Resolu-
tion,” Proc. 2005 IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
pp.1575–1582, 2005.

[6] S.Lee and A.K.Bejczy, “Redundant Arm Kinematic Control Based on
Parameterization,” Proc. 1991 IEEE Int. Conf. Robotics and Automa-
tion, pp.458–465, 1991.

[7] T.Asfour and R.Dillmann, “Human-like Motion of a Humanoid Robot
Arm Based on a Closed-Form Solution of the Inverse Kinematics Prob-
lem,” Proc. 2003 IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
pp.1407–1412, 2003.

[8] C.L.Lück and S.Lee, “Self-Motion Topology for Redundant Manipu-
lators with Joint Limits,” Proc. 1993 IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, pp.626–631, 1993.

[9] H.Asada and J.J.E.Slotine, Robot Analysis and Control, John Wiley &
Sons, 1986.

[10] K.Kreutz-Delgado, M.Long, and H.Seraji, “Kinematic Analysis of 7-
DOF Manipulators,” Int. J. Robotics Research, vol.11, no.5, pp.469–
481, 1992.

[11] J.M.McCarthy, An Introduction to Theoretical Kinematics, MIT Press,
1990.

[12] J.W.Burdick, “On the Inverse Kinematics of Redundant Manipulators:
Characterization of the Self-Motion Manifolds,” Proc. 1989 IEEE Int.
Conf. Robotics and Automation, pp.264–270, 1989.

FrD10.2

4516


