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Abstract—This paper presents a new control approach
with prediction to minimize the effects of time delays while
ensuring stability and system performance. Two predictors at
the slave and master sides are constructed assuming that the
time delays in both transmission channels are measurable.
Simulation and experimental results are compared with the
scheme without prediction to show the effectiveness of this
approach. The influence of data dropout to the proposed
teleoperation system is studied in the experiment.

I. Introduction

As the name suggests, teleoperation is the remote
operation of a robotic device or a system. Teleoperation
is the art of controlling a mobile robot or a system
over short or long distances through a communication
medium in a structured or unstructured environment.
The distance may vary from a few meters to thousands
of kilometers. The communication medium is usually the
internet, especially when the distance is large. The most
commonly used areas of teleoperation are in hostile en-
vironments, explorations and in museums or exhibitions
where the robot acts as a tour guide.

A typical teleoperation system consists of three sub-
systems: the master side, the slave side and the com-
munication block. The master side usually consists of
an operator and a master manipulator. The operator
is basically a human being, who sends commands to
the slave and oversees the activities on the slave side
if required. The operator oversees the activities through
visual feedback, force feedback, etc. The commands are
sent with the help of a master manipulator. The master
manipulator can be a joystick, data glove, some other
haptic devices or even a robot. The slave side consists of
a slave and an environment in which the slave navigates.

In the literature, a number of control methods have
been proposed to maintain the stability and synchroniza-
tion for a teleoperation system. The passivity approach
was one among the first developed strategies to deal with
the time delay uncertainties associated with a teleoper-
ated system [1]. They are based on the concepts of power
and energy and can be used to handle large uncertainties.
In the wave variables approach, the stability of the
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system is maintained but performance of the system is
not so good [2]. The performance of the system was
much better when the time delays associated with the
system was taken to be fixed. Later on the wave variables
approach was extended to varying time delays [3]. Once
again the stability was maintained but the performance
degradation still remained a major issue. Though the
wave variables approach is robust it works well only for
passive systems. The major problem with passivity is
that it makes the entire system too conservative.

The idea of neural networks for teleoperation was also
implemented for the time delay problem in teleopera-
tion [4]. This method provided a better transparency
between the master and the slave side but plenty of off-
line and on-line learning techniques limited their prac-
tical applications. Similarly the sliding mode approach
also had some limitations when it came to practical
implementation in the presence of varying time delays [5].
Model based systems were introduced to minimize the
effects of delays in the system [6]. Model based systems
is another possibility for the time delay problem in
which the entire teleoperation model is depicted as a
dynamic model of the entire process. The design of
the model based approach becomes very complicated
when the degrees of freedom (DOF) increases. In the
literature, predictive control for teleoperation has shown
satisfactory results even in the presence of varying time
delays [4] [7].

In this paper, the predictive approach in [8] is extended
to the case without knowing the human operator model,
which reduces the order of the state space form of the
master system. The proposed control structure includes
two predictors in both master and slave sides. These
predictors are applied to simultaneously estimate the
master and the slave internal dynamics. The estimated
dynamics, instead of transmitted delayed signals, are
used in the construction of the controllers. As a con-
sequence, the influence of the delay on the whole system
can be minimized and performance can be improved.
Both simulation and experimental results are demon-
strated for the effectiveness of the proposed approach.
The case with data dropout is also demonstrated in the
experimental results which further shows the advantage
of the proposed scheme.

II. Problem Formulation

The basic working principle [9] of a bilateral teleoper-
ation system is shown in Figure 1. The human operator
applies a force fh to the master manipulator. The master
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Fig. 1. Standard bilateral teleoperation system

manipulator as a result of the force exerted on it moves
with a velocity vm. This velocity vm is transmitted
to the slave manipulator through the internet which is
the communication channel. In the remote environment,
the slave manipulator will act according to the signal
received from the master side. In bilateral teleoperation,
the contact force from the remote environment fe is
transmitted back to the master side operator through
the master manipulator as fmd.

The dynamics of a single degree of freedom (DOF) for
a master and slave system are as follows [8] [7]:

Mmυ̇m(t) = um(t) + fh(t) (1)
Msυ̇s(t) = us(t) − fe(t) (2)

where Mi are the masses, υi are the motor velocities,
ui is the input force and i = m, s where subscripts m
and s stands for master and slave respectively. fh is the
force exerted by the human operator and fe is the force
exerted on the slave by its environment. In this paper,
the slave side considers the application of wheeled mobile
robots, the contact friction force exerted on the slave by
its environment is expressed as

fe(t) = σ1υs(t) + fn arctan
(

υs(t)
δ

)
(3)

where υs(t) is the wheel’s rotational angular speed, σ1,fn

and δ are constants.
The time delays can be measured as assumed in [7]

and [8]. This assumption is very useful in the design of
the controllers. The delays from the master to the slave
side and vice versa can be estimated by calculating the
local current time (t) from where the signal is sent and
the delayed signal is received at the other side (t−T (t)),
where T (t) is denoted as the delay. For instance, consider
xm to be the signal sent from the master to the slave
at time (t) through the communication channel. If the
signal reaches the slave side after a delay of T (t) then
the signal can be expressed as xm(t−T (t)) on the slave
side. Hence we can also delay the signals artificially if
required. The signal x̂m(t−T̂ (t)) is the estimated version
of the signal xm(t) which was delayed artificially. The
above mentioned assumptions are very useful because
certain signals may not be available at the master and
the slave sides at a particular instant. In those scenarios
we will have to use only the estimated or delayed version
of the signals. In order to use the delayed version of the
signals we assume that the measurement of time delays
are accurate, T̂ (t) = T (t). As we proceed further in this
chapter we will know the usefulness of the assumptions
made in this section.

Fig. 2. A bilateral teleoperation system with the predictive control
strategy

III. Controller Design

Figure 2 shows the schematic diagram for the proposed
predictive control strategy. The human operator dynam-
ics is not taken into account. The environmental model
is considered to be non linear because of the friction
caused by the rotational motion of the wheeled mobile
robot. The objective of this article is to predict at the
slave side the undelayed motion of the external contact
force f̂e(t) and at the slave side to predict the undelayed
motion of the master x̂m(t) and v̂m(t). The controller on
the master side is designed as follows [7],

um(t) = −αfh(t) − Bmυm(t) − Kmxm(t)
+βf̂e(t) + β{fe(t − T (t)) − f̂e(t − T̂ (t))},

where Bm, Km,α and β are design constants. T̂ (t) is
the estimate of the time delay that can be measured as
explained earlier and f̂e(t) = σ1υ̂s(t) + fn arctan

(
υ̂s(t)

δ

)
where f̂e(t − T̂ (t)) and x̂m(t − T̂ (t)) are the estimated
signals which are artificially delayed. fe(t−T (t)), υm(t−
T (t)) and xm(t − T (t)) are the signals fe, υm and xm

respectively that have been sent through the communica-
tion channel from one side to another side. The controller
on the slave side is designed as follows,

us(t) = (1 − kf )fe(t) − Bsυs(t) − Ksxs(t) + Bωυ̂m(t)
+Kωx̂m(t) + Bω{υm(t − T (t))
−υ̂m(t − T̂ (t))} + Kω{xm(t − T (t))
−x̂m(t − T̂ (t))},

where Bs, Ks, Bω and Kω are design constants. x̂m(t)
and υ̂m(t) are estimates of the signals xm(t) and υm(t)
respectively. υ̂m(t− T̂ (t)) and x̂m(t− T̂ (t)) are the esti-
mated signals which are artificially delayed. υm(t−T (t))
and xm(t−T (t)) are the signals υm and xm respectively
that have been sent through the communication channel
from one side to another side.

A. Predictor Design

For the predictor design, the state space form of the
master and the slave controllers are derived as

żm(t) = Amzm(t)+bmusm +bnmfnm(t)+bhfh(t), (4)
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where Am, bm, bh and bnm are matrices with stable
eigenvalues. ym(t) = zm2(t) = xm(t).

Am =
[

0 1
−Km

Mm
− Bm

Mm

]
,bh =

[
0

(1−α)
Mm

]
,

bm =

[
βσ0
Mm
βσ1
Mm

]
, bnm =

[
0

βfn

Mm

]
,

usm(t) = x̂s(t) + xs(t − T (t)) − x̂s(t − T̂ (t)),

fnm(t) = arctan
(

υ̂s(t)
δ

)
+ arctan

(
υs(t − T (t))

δ

)

− arctan

(
υ̂s(t − T̂ (t))

δ

)
.

For the slave side,

żs(t) = Aszs(t) + bsuss(t) + bnsfns(t), (5)

where As, bs and bns are matrices with stable eigenvalues.
ys=zs2(t)=xs(t).

As =

[
0 −ks+kf σ

Ms

1 −Bs+kf σ1
Ms

]
,bs =

[
Kω

Ms
Bω

Ms

]
;bns =

[
0

−kf fn

Ms

]
,

uss(t) = x̂m(t) + xm(t − T (t)) − x̂m(t − T̂ (t)),

fns(t) = arctan
(

υs(t)
δ

)
.

Certain signals might not be available at particular
instants. In that case we make use of the delayed versions
of the signals as we can estimate the delayed versions of
the signals. In the above predictor equations (8) and (10),
only the delayed version of the transmit signals usm(t)
and uss(t) are available. To overcome this, we duplicate
the predictor equations at both sides.

˙̂zm(t) = Amẑm(t) + bmusm(t) + bnmfnm(t) + bhfh(t)
˙̂zs(t) = Asẑs(t) + bsuss(t) + bnsf̂ns(t)

where f̂ns(t) = arctan
(

υ̂s(t)
δ

)
. Both fnm(t) and f̂ns(t)

has the signal υ̂s(t) which is calculated from υ̂s(t) = ˆ̇zs2.
The slave side controller us(t) also has the signal υ̂m(t)
which can be calculated from υ̂m(t) = ˆ̇zm2.

B. Stability Analysis
Stability along with the performance of a system

are important factors that cannot be neglected. In this
section, emphasis on the error dynamics, convergence of
the predictor and close-loop stability based on Lyapunov
stability analysis are discussed. The error dynamics for
the master and the slave side are as follows

z̃i(t) = ẑi(t) − zi(t).

Hence,

˜̇zm(t) = Amz̃m(t) + bh (fh(t − T (t)) − fh(t)) ,

˜̇zs(t) = Asz̃s(t) + bns

(
f̂ns(t) − fns(t)

)
.

For simplicity, we define dm(t) = fh(t−T (t))−fh(t) and
ds(t) = f̂ns(t)− fns(t). |dm(t)| = |fh(t−T (t))− fh(t)| ≤
T ∗ρf , where T ∗ is the upper bound of the delay T (t) and
ρf is a constant. What it implies is that dm(t)εL∞[0,∞]
and ds(t)εL∞[0,∞],i.e., |ds(t)| ≤ kc = const as ds(t) is
bounded and is actually an atan(·).

C. Convergence

The stable matrices Am and As are considered for our
analysis. For details, it is similar as the analysis in [7]
and hence it is omitted here.

Master Side: Consider the matrix Am, PεR2×2, P =
P T > 0, γ1 > 0 satisfying,

(
AT

mP + PAm + I Pbh

bT
h P −γ2

1I

)
< 0 (6)

then, ||z̃m(t)|| - the estimation error normalization,
tends, in finite time, to a function Br1 defined as Br1 =
(z̃m(t) : ||z̃m(t)|| ≤ γ1T

∗ρf = r).
Slave Side: Consider the matrix As, QεR2×2, Q =

QT > 0, γ2 > 0 satisfying,

(
AT

s Q + QAs + I Qbns

bT
nsQ −γ2

2I

)
< 0 (7)

then, ||z̃s(t)|| - the estimation error normalization, tends,
in finite time, to a function Br2 which was defined earlier
as well Br2 = (z̃s(t) : ||z̃s(t)|| ≤ γ2kc = r).

D. Closed Loop Stability:

The master and slave controller with state variables
are represented as

ur
m(t) = −αfr

h(t) − Bmυr
m(t) − Kmxr

m(t) + βfr
e (t).

ur
s(t) = (1 − kf )fr

e (t) − Bsυ
r
s(t) − Ksx

r
s(t)

+Bωυr
m(t) + Kωxr

m(t).

where xr
m, υr

m, xr
s and υr

m are state variables. This
is the case without time delay. Then the state space
representation of the master and the slave becomes

żr
m(t) = Amzr

m(t) + bmzr
s2(t) + bnmfr

ns(t) + bhfh(t)
żr

s(t) = Amzr
s(t) + bszr

m2(t) + bnsf
r
ns(t)

where fr
ns(t) = arctan

(
υr

s (t)
δ

)
. The tracking error is

obtained as

ėm(t) = Amem(t) + bmes2(t) + bmζm1(t) + bnmζf (t)
+bnmζm2(t)

ės(t) = Ases(t) + bsem4(t) + bsζs(t) + bnsζf (t)
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where ei(t) = zi(t) − zr
i (t) and i = (m, s),

ζm1(t) = z̃s2(t) − z̃s2(t − T (t)),

ζf (t) = arctan
(υs

δ

)
− arctan

(
υr

s

δ

)
,

ζm2(t) = arctan
(

υ̂s(t)
δ

)
− arctan

(
υs(t)

δ

)

+ arctan
(

υs(t − T (t))
δ

)

− arctan
(

υ̂s(t − T (t))
δ

)
,

ζs(t) = z̃m4(t) − z̃m4(t − T (t)).

In the error equations, there are two uncertain terms
in ζm2(t) and ζf (t). Assume that ζm2(t) and ζf (t)
εL∞[0,∞], |ζm2(t)| ≤ 2kc and |ζf (t)| ≤ kc. Then the
error dynamics can be written as

ė = Ae(t) + Bζ(t) (8)

A =
[
Am 0
0 As

]
, e(t) =

[
em(t)
es(t)

]
,

B =
[
bm bnm 0 0
0 0 bs bns

]
, ζ(t) =

⎡
⎢⎢⎣

ζf (t)
ζm1(t)
ζm2(t)
ζs(t)

⎤
⎥⎥⎦ .

The matrix A is stable as both Am and As have stable
values and SεR2×2, S = ST > 0, γ3 > 0, then,(

AT S + SA + I SB
BT S −γ2

3I

)
< 0. (9)

If (9) holds for S = ST > 0 and γ3 > 0 and where
SεR2×2 is a positive definite symmetric matrix, then the
tracking error normalization of the closed loop tends,
in finite time, to the function Br3 defined as Br3 =
(z̃m(t) : ||z̃m(t)|| ≤ γ3T

∗ρf = r) which means that the
error is bounded and since A is a stable matrix, (9) is
always satisfied.

Remark: The convergence error at the master side
Br1, the convergence error at the slave side Br2 and the
tracking error Br3 are all bounded and the associated
matrices Am, As and A respectively are always stable.

IV. Simulation Results
The main objective of the simulation is to monitor the

tracking performance of the proposed predictive control
method for different time delays. The performance of the
proposed method can be judged by comparing its results
with the results of the desired and the conventional
model. In the simulations, the models are tested for
different time delays. The master signal xm, slave signal
xs and the error signals or tracking error (exm and
exs) of all the three models are plotted and compared.
The error signal as the name suggests, is the difference
in a particular signal of the system with the predictor
or without the predictor to the corresponding signal in
the desired model. For instance, the error signal of the
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Fig. 3. Comparison of signals when the time delay is 0.2+0.2 sin(t)
seconds for the whole system. (a) Master side signals; (b) Slave side
signals; (c) Error signals at master side; (d) Error signals at slave
side.

predictor at the slave side is calculated by finding out
the difference in the slave signal of the predictor to the
slave signal of the desired model. Ideally the error signal
should be close to zero which implies that the system has
better tracking which means that the system has better
impedance match.

In the simulation, the parameters are selected as
Mm = 1kg.m2, Bm = 5Nms, Km = 2Nm, α =
0.5, Ms = 1kg.m2, Bs = 1.5Nms, Ks = 5Nm, kf =
5, Bω = 2Nms, Kω = 5, fn = 0.3, β = 1, σ1 = 0.4
and δ = 0.1. The force exerted fh = 5 sin(t). The
initial conditions of the system in state space form are
xm(0) = 0.5rad, υm(0) = 0rad/sec, xs(0) = 0.1rad and
υs(0) = 0rad/sec. The values are chosen according to
the user specification while preserving the passive close-
loop properties. This passivity property is equivalent to
the condition λminG(jω) + [G(jω)]∗ ≥ 0, where λmin(·)
denotes the minimum eigenvalue with respect to the
corresponding argument and [G(jω)]∗ = [G(−jω)]T

denotes the conjugate of the transfer function G(jω) [8].
Figure 3 shows the signals at the master and the

slave sides for all three simulation models and also the
error signals at the master and the slave side for a time
delay of 0.2 + 0.2 sin(t). From Figure 3(b), it is evident
that system performance of the predictive control model
is better than the system without prediction as the
slave signal xs(t) of the predictive control model closely
tracks the slave signal of the desired model. The error
signals at both the master and the slave sides of the
predictive control model are smaller when compared to
the respective error signals of the conventional model.
The simulations were carried out for various time de-
lays and in all scenarios the predictive control model
had better tracking and smaller error signals than the
conventional model. Hence from the results it is evident
that the performance of the predictive control model is
much better than the conventional scheme. The proposed
scheme works well for time delay uncertainties which
underlines the fact that the system is robust.

Figure 4 shows the results when there are some
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Fig. 4. Comparison of error signals at the slave side when the
environment has some uncertainties: (a) Δfe(t) = 0.2 sin(t); (b)
Δfe(t) = 0.5 sin(t)

TABLE I

The error bound on the slave signals ‖ exs ‖ after reaching the

steady state(t ≥ 5 seconds) ((A) With Predictor; (B) Without

Predictor)

Case (A) (B)

T(t): 0.2 sec 0.022 0.032
T(t): 0.2+0.2sin(t) sec 0.025 0.045
T(t): 0.4+0.3sin(t) sec 0.022 0.052
Δfe(t): 0.2sin(t) sec 0.023 0.038
Δfe(t): 0.5sin(t) sec 0.048 0.052

model uncertainties. In this case we assume that the
environmental impedance model has some inaccuracies
i.e., fe(t) is not accurate. Figure 4(a) and Figure 4(b)
are assumed to have an environmental uncertainty of
Δfe(t) = 0.2 sin(t) and Δfe(t) = 0.5 sin(t) respectively.
The error signal is more in the case of Figure 4(b) as
it has a greater uncertainty. Even though the tracking
error is large the system still remains stable and better
when compared to the conventional scheme.

Table I shows the error bounds. These values are
obtained from the simulation results for different cases
with different time delays. For various time delays
and environmental uncertainty, the error signal of the
predicted system is less when compared to the system
without prediction. Hence the performance of the pre-
dicted system is better.

A. Experimental Setup

The simulation results show that the proposed predic-
tive control method works well for different time delays.
To guarantee the Quality of Service (QoS), the teleop-
eration models should be tested in a real environment.
So the next step is to monitor the performance of the
proposed predictive control strategy in a real environ-
ment with live data packets. In the experimental setup,
packet loss and time delays are introduced between the
master and the slave, and this is accomplished with the
help of a package called NIST Net.

NIST stands for National Institute of Standards and
Technology. NIST Net is a network emulation package

Fig. 5. NIST Net setup

Fig. 6. Experimental results for a time delay of 200 ms and 0
percent packet loss. (a) Comparison of slave signals (b) Comparison
of error signals (c) Error signal of proposed method.

that runs on Linux operating system and is used for
testing a wide variety of network conditions, such as
packet loss, packet duplication, time delays, bandwidth
limitation and delay jitter on live data packets. NIST Net
acts as a router to perform our required choice of tests on
network conditions. It allows monitoring of two or more
network clients. These network clients can be specified by
NIST net using their IP addresses. The other advantage
is that the network clients can be in two different subnets.
In this article, there are only two clients - the master and
the slave. Figure 5 gives a pictorial description of NIST
Net setup. UDP is the protocol used for data transfer
between the master and the slave sides.

B. Experimental Results
The desired, conventional and proposed predictive

control teleoperation models are now tested in a real
time environment for various time delays and packet loss.
Figure 6, shows the results for a time delay of 200 ms
and no packet drops. The time delay is 200 ms in each
direction. So the total delay in the system is 400 ms.
In the Figure 6(a), it is clear that the tracking of the

WeE12.4

1655



Fig. 7. Experimental results for a time delay of 200 ms and 20
percent packet loss. (a) Comparison of slave signals (b) Comparison
of error signals (c) Error signal of proposed method.

proposed controller is much better than the tracking of
conventional scheme i.e., the slave signal of the proposed
controller is closer to the desired signal. Figure 6(b)
shows that error signal for the proposed scheme to be
smaller than the conventional scheme. Figure 6(c) shows
the error signal of the proposed controller alone. This
figure shows the variation of the proposed controller with
respect to the zero axis. The experiments were carried
on with the same time delay of 200 ms but the packet
drops were varied. The results for a time delay of 200
ms and packet loss of 20 percent is shown in Figure 7.
When compared to Figure 6, the results of the proposed
controller show a very small increase in the tracking
error. But the conventional scheme drifts further away
from the desired signal and the tracking error for the
conventional scheme has increased. In fact the tracking
error for the conventional scheme has doubled for a
packet loss increase of just 20 percent. For a packet loss
of 20 percent, the system performance of the proposed
controller is almost the same as 0 percent packet loss but
in the conventional method the changes are appreciable.

Figure 8 shows the results for a packet loss of 70
percent. As expected for such a high packet loss the
system won’t be able to track the desired signal ef-
fectively. Now in Figure 8(a) the gaps between the
signals are appreciable. Hence the tracking error of the
proposed controller is large but on comparison with
the conventional method the proposed controller still
performs better.

V. Conclusions

A predictive control strategy is applied for a teleopera-
tion system. This approach is compared with the scheme
without prediction; the simulation results prove that the

Fig. 8. Experimental results for a time delay of 200 ms and 70
percent packet loss. (a) Comparison of slave signals (b) Comparison
of error signals (c) Error signal of proposed method.

system performance of the model with predictor to be
better than the system without the predictor. From the
results, the proposed strategy works well for time varying
delays and in unknown environmental model, which
shows that the controller is robust. This performance
of this strategy was tested experimentally when there
are both time delays and packet loss.
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