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Abstract— This paper is concerned with construction of a
mathematical model for a class of lumped-parameter dynamics
of a pair of robot fingers with soft and deformable tips pinching
a rigid object. It is then shown that, in the case of a pair
of planer fingers with two and three joints and a 2-D rigid
object with parallel or non-parallel flat surfaces, there exists a
sensory-motor coordinated control signal constructed by using
only the knowledge of finger kinematics and measurements of
finger joints such that it realizes secure grasping in a dynamic
sense. This shows that a pair of robot fingers can grasp a thing
securely in a blind manner. The result is further extended to
the case of 3-D object grasping and manipulation by a pair of
soft fingers, one of which can move in 3-D space.

I. INTRODUCTION

It is the hand that is most intriguing and most human
of appendages. This motivated many prominent roboticists
to design and make sophisticated multi-fingered robotic
mechanisms imitating the human hand (see the literature[1]
∼ [5]). However, of so many research works on robotic hands
there is a dearth of papers that explored a key function of
the human hand called “precision prehension” based upon
“finger-thumb opposition”. Indeed, opposability of the thumb
against the index finger or other digits is a key characteristics
that distinguishes the humankind from primates, as well as
bipedal walking and tool-making (see[6]).

This paper attempts to explore physical and mechanical
meanings of the prehensility of a pair of multi-joint robot
fingers with soft and deformable tips in both cases of 2D
and 3D object grasps and manipulations. In this paper,
“prehensility” is defined as the ability to grasp an object and
hold it securely in one hand[6]. Hence, the purpose of this
paper is to show that the prehensility can be functioned in
a mechanical setup of dual multi-joint fingers with soft tips
through implementing a sensory-motor coordinated control
signal.

Stable grasp by means of a pair of robot fingers with
soft tips was first investigated by Montana [7], but stability
of a grasp or prehensility is treated in a semi-dynamic
meaning. Arimoto et al. [8] ∼ [11] found an important role
of rolling constraint forces arising in tangential directions
to the object surfaces. However, their stability analysis was
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not mathematically rigorous, though it was based upon
Lagrange’ equation of motion of the overall fingers-object
system. In recent years, rigorous analysis of stable grasp in
the sense of prehensibility has been presented in the case of
rigid contacts when finger-tips are rigid and hemi-spherical,
owing to finding of a class of control signals constructed
by only using finger kinematics and measurement of fingers
joint angles without use of any object kinematics, location
of its mass center, or external visual or tactile sensing [11]
∼ [13]. Hence, Arimoto et al. [11] ∼ [13] called such
a prehensility by means of a pair of robot fingers “blind
grasping”.

This paper extends those results obtained in the case of
rigid contacts to the case of robot fingers equipped with
soft and deformable tips. The most crucial difference of
prehensility between the rigid contact case and the soft area
contact one is that in the former a stability region of grasp
of a thin and light object becomes narrow in its margin but
in the latter any thinner objects with flat surfaces can be
grasped securely with a larger stability margin.

Secondly, motivated from the previous results concerning
“blind grasping” in the case of rigid finger-ends (see [7]), a
class of control signals is proposed, which can be constructed
easily by using only physical parameters of fingers and
measurement data on finger joints. It is shown theoretically
that such a control signal renders the closed-loop dynamics
asymptotically stable on an equilibrium manifold toward
satisfying force/torque balance in a dynamic sense. This
shows that a pair of robot fingers can grasp a thing securely
in a blind manner, that is, without knowing object kinematics
or using external sensings such as tactile or visual sensing.
Numerical simulation results are also given to verify the
theoretical predictions.

II. DYNAMICS OF PINCHING
Firstly let us derive dynamics of pinch motion by a pair of

two and three DOF (Degrees-of-Freedom) fingers with soft
tips (see Fig. 1). In this setup, symbols O and O′ denote first
joint centers of the left and right fingers respectively, point
O also denotes the origin of Cartesian coordinates fixed at
the base frame, and Oc.m. denotes the center of mass of the
object whose position is expressed in terms of x = (x, y)T

of the Cartesian coordinates. Symbols O1 and O2 denote
centers of area contacts whose Cartesian coordinates are
described as x1 = (x1, y1)T and x2 = (x2, y2)T respectively
and O01 and O02 denote centers of hemispherical soft finger
tips which are expressed in terms of Cartesian coordinates
as x0i = (x0i, y0i)T,(i=1,2) respectively. Next let us denote
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Fig. 1. Two robot fingers pinching an object with parallel flat surfaces
under the gravity effect
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Fig. 2. Definition of physical variables

the Y -component of center O1 of area-contact of the left
finger in terms of Cartesian coordinates (X, Y ) fixed at the
object (see Figs.1 and 2) by Y1 and that of the right finger by
Y2. Other symbols L, li, and lij are defined in Fig.1. Then,
obviously it follows that

∆xi = ri + li + (−1)i (x − x0i)
T

rX (1)
xi =x0i − (−1)i (ri − ∆xi) rX (2)

where ∆xi(i = 1, 2) denote the maximum displacements of
deformation arised in centers of area-contact respectively and
rX = (cos θ,− sin θ)T. Similarly, it follows that

x = x1 + l1rX − Y1rY = x2 − l2rX − Y2rY (3)

from which it follows that

Yi = (x0i − x)T rY , i = 1, 2 (4)

where rY = (sin θ, cos θ)T. Since velocities of O1 (the
center of the left hand contact area, see Fig.2) in terms
of finger-end coordinates and in terms of object coordinates
Oc.m. − XY are equal, it follows that

− (r1 − ∆x1)
d
dt

(
3π

2
+ θ − qT

1 e1

)
=

d
dt

Y1 (5)

where e1 = (1, 1, 1)T. Similarly, it follows that

− (r2 − ∆x2)
d
dt

(
3π

2
− θ − qT

2 e2

)
=

d
dt

Y2 (6)

where e2 = (1, 1)T. Equations (5) and (6) are of the form
of total differentials. Hence, it is reasonable to introduce
Lagrange multiplies λi in such a way that

0 = λi

{
dYi

dt
+ (ri − ∆xi)

d
dt

(
3
2
π − (−1)iθ − qT

i ei

)}
(7)

i = 1, 2 (8)

According to the lumped-parametrization of contact forces
caused by defomation of finger-tip material (see Appendix
A of paper [8]), the reproducing force f̄i(∆xi) arizing in the
direction normal to the object surfaces at the center Oi of
contact area is characterized as

f̄i(∆xi) = ki∆x2
i , i = 1, 2 (9)

with stiffness parameter ki>0[N/m2]. Furthermore, we as-
sume that lumped parametrized viscous forces also arise
from distributed viscosity of the finger-tip material, which
are accompanied with reproducing forces in such a way that

fi (∆xi, ∆ẋi) = f̄i (∆xi) + ξi (∆xi)∆ẋi (10)

where ξi(∆xi) is a positive scalar function increasing with
increase of ∆xi. Then the total potential energy of repro-
ducing forces and the total kinetic energy can be given as

P =P1 + P2 − Mgy +
2∑

i=1

∫ ∆xi

0

f̄i(ξ)dξ (11)

K =
1
2

{ ∑
i=1,2

q̇T
i Hi(qi)q̇i + M ‖ ẋ ‖2 +Iθ̇2

}
(12)

where Hi(i = 1, 2) and I denote inertia moments of the
fingers i = 1, 2 and the object respectively, M denotes
the mass of the object, Pi the potential energy for finger i,
and −Mgy denotes that of the object. Finally, the Lagrange
equation of motion of the overall system can be derived by
applying Hamilton’s principle described as∫ t1

t0

[
δ (K−P )−

∑
i=1,2

∂ 1
2

{
ξi(∆xi)∆ẋ2

i

}
∂∆ẋi

δ∆xi

+
∑

i=1,2

λi

{
∂Yi

∂z
+(ri−∆xi)

∂φi

∂z

}T

δz+
∑

i=1,2

uT
i δqi

]
dt=0 (13)

where z = (qT
1 , qT

2 , x, y, θ)T and φi = −(−1)iθ − qT
i ei,

which results in

Hi(qi)q̈i +
(

1
2
Ḣi + Si

)
q̇i − (−1)ifiJ

T
0irX

+λi

{
(ri − ∆xi)ei − JT

0irY

}
+ gi(qi) = ui (14)

M ẍ − (rX , rY ) (f1 − f2,−λ1 − λ2)
T

−(0, Mg)T = 0 (15)
Iθ̈ − f1Y1 + f2Y2 + l1λ1 − l2λ2 = 0 (16)

where JT
0i=∂xT

0i/∂qi and Si is a skew-symmetric ma-
trix (see [14]). It is obvious that the input-ouput pair
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u = (u1, u2)T, q̇ = (q̇1, q̇2)
T concerning the dynamics of

eqs.(13) to (15) satisfies the equation∫ t

0

(
q̇T

1 u1+q̇T
2 u2

)
dτ =E(t)−E(0)

−
∫ t

0

∑
i=1,2

ξ (∆xi(τ)) ∆ẋ2
i (τ)dτ (17)

where E = K + P.
III. CONTROL SIGNALS FOR BLIND GRASPING

Motivated from the analysis in the case of rigid rolling
contacts between rigid finger-ends and a rigid object (see
[12]), we propose the following control signal that should
exert torques on finger joints:

ui =gi(qi) − ciq̇i + (−1)i fd

r1 + r2
JT

0i

(
x01 − x02

y01 − y02

)

−M̂g

2

(
∂y0i

∂qi

)
− riN̂iei i = 1, 2 (18)

where

M̂ = M̂(0) +
∫ t

0

gγ−1
M

2

∑
i=1,2

(
∂y0i

∂qi

)T

q̇i dτ

= M̂(0) +
gγ−1

M

2
(y01(t) + y02(t)

−y01(0) − y02(0)) (19)

N̂i =γ−1
Ni

∫ t

0

(
rie

T
i q̇i

)
dτ

=γ−1
Ni

rie
T
i (qi(t) − qi(0)) (i = 1, 2) (20)

and γM and γNi(i = 1, 2) are positive constants. In this
form, nothing differes from that of control signal proposed
in the rigid contact case. The third term of the right hand
side of eq.(18) is a signal based upon the opposable force
between O01 and O02 (not between O1 and O2, because
positions of O1 and O2 can not be measured). The fourth
term stands for compensation for the object mass based upon
its estimator. The fifth term is introduced for saving excess
movements of finger joints from the initial pose.

IV. THEORETICAL PROOF OF FEASIBILITY OF BLIND
GRASPING

First, define


∆fi = fi + (−1)i Mg
2 sin θ

+ fd

r1+r2
(x01 − x02)

T
rX

∆λi = λi − Mg
2 cos θ

+(−1)i fd

r1+r2
(x01 − x02)

T
rY

Ni = (−1)i fd

r1+r2
(x01 − x02)

T
rY − Mg

2 cos θ

(21)

{
S = −fd

(
1 − ∆x1+∆x2

r1+r2

)
(Y1 − Y2) − Mg

2 N

N = (Y1 + Y2) sin θ − (l1 − l2) cos θ
(22)

Note that from eq.(4) and eq.(1)


(x01 − x02)
T

rY = Y1 − Y2

− (x01 − x02)
T rX

= l1 + l2 + r1 + r2 − (∆x1 + ∆x2)
(23)

Next define

f0 = fd

{
1 +

l1 + l2 − ∆x1 − ∆x2

r1 + r2

}
(24)

Differently from the case of rigid finger-ends [12], f0 is not
a constant but dependent on the magnitude of ∆x1 + ∆x2.
Nevertheless, it is possible to find ∆xdi(i = 1, 2) for a given
fd > 0 so that they satisfy


f̄1(∆xd1) =

(
1 + l1+l2−∆xd1−∆xd2

r1+r2

)
fd

f̄2(∆xd2) =
(
1 + l1+l2−∆xd1−∆xd2

r1+r2

)
fd

(25)

because f̄i(∆x) is of the form of f̄i(∆x) = ki∆x2 [8]. Then,
by substituting eq.(17) into eq.(13) and referring to eqs.(20)
to (22), we obtain the closed-loop dynamics of the overall
fingers-object system in the following way:

Hi(qi)q̈i +
(

1
2
Ḣi + Si

)
q̇i − (−1)i∆fiJ

T
0irX

−∆λirλi − ∆Mg
∂y0i

∂qi

− ri∆Niei = 0 (26)

M ẍ−(∆f1−∆f2)rX−(∆λ1+∆λ2)rY =0 (27)
Iθ̈ − ∆f1Y1 + ∆f2Y2

+l1∆λ1 − l2∆λ2 + S = 0 (28)

where ∆Ni = N̂i − (1 − ∆xi/ri)Ni(i = 1, 2) and

rλi = −
{

(ri − ∆xi)ei − JT
0irY

}
(29)

Then, it is important to note that along a solution to the
equations of (26) to (28) under the constraints of eqs.(5) &
(6) the following energy relation is satisfied:

d
dt

W =
∑

i=1,2

−
{

ci‖q̇i‖2 + ξ(∆xi)∆ẋ2
i

}
(30)

where

W=K+∆P +
fd

2(r1 + r2)
(Y1 − Y2)

2+
γM

2
∆M2

+
∑

i=1,2

γNi

2
N̂2

i +
Mg

2

{
(y01+y02−2y)

}
(31)

y01+y02

2
− y=

Y1+Y2

2
cos θ− 1

2

{
(l1−l2)

+(r1−r2)−(∆x1−∆x2)
}

sin θ (32)

∆P =
∑

i=1,2

∫ δxi

0

{
f̄i(∆xdi+ξ)−f̄i(∆xdi)

}
dξ (33)

where δxi = ∆xi − ∆xdi. Now, it is convenient to define

∆λ=
(
∆f̄1,∆f̄2,∆λ1,∆λ2,

∆M

2
g,∆N1,∆N2,

S

r3

)T

(34)
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A=



−JT

1 rX 0 rλ1 0
0 JT

2 rX 0 rλ2

r cos θ −r cos θ −r sin θ −r sin θ
−r sin θ r sin θ −r cos θ −r cos θ

Y1 −Y2 −l1 l2


 (35)

D =




−∂y01
∂q1

−r1e1 0 0

−∂y02
∂q2

0 −r2e2 0
0 0 0 0
0 0 0 0
0 0 0 r3


 (36)

where ∆f̄i = ∆fi − ξi(∆xi)∆ẋi. Then, the closed-loop
dynamics of (26), (27), and (28) can be expressed in the
following unified matrix-vector form:

H ¨̄z +
(

1
2
Ḣ + S

)
˙̄z + C ˙̄z − [A, D]∆λ

+
∑
i=1,2

ξ(∆xi)∆ẋi

(
∂∆xi

∂z̄

)
= 0 (37)

where z̄ =
(
qT

1 , qT
2 , r−1xT, θ

)T,


H = diag(H1, H2, r
2MI2, I)

S = diag(S1, S2, 0, 0, 0)
C = diag(c1I3, c2I2, 0, 0, 0)

(38)

a positive scale factor r is introduced to balance numerical
values of coefficients among motion equations in terms of
ẋ with the physical unit of force [N] and rotational motion
equations of q̇i and θ̇ with the unit of torque [Nm], and
r3 > 0 is also an appropriate scale factor. Next, define

p1 =
3∑

j=1

q1j , p2 =
2∑

j=1

q2j (39)

and note that (Y1−Y2)2 is quadratic in x01−x02 and y01−y02

and N̂2
i for i=1, 2 are quadratic in p1 and p2. It follows from

the definition of ∆P that ∆P is a positive definite function
in δx1 and δx2. Hence, it is easy to check that W has a
minimum Wm under the constraints of eqs.(5) & (6). This
means that ‖ ˙̄z‖ is bounded and thereby it is possible to show
that ‖∆λ‖ is bounded from eq.(37) and constraints of eqs.(5)
& (6). Thus, ¨̄z becomes bounded and thereby ˙̄z becomes
uniformly continuous in t. Since q̇i(t)(i = 1, 2) and ∆ẋi are
in L2(0,∞) from (30), it follows from the well-know lemma
(see Appendix C of [14]) that q̇i(t) → 0 and ∆ẋi(t) → 0
as t → ∞, which means that θ̇(t) → 0 as t → ∞ from
constraints of eqs.(5) & (6). Since the matrix [A, D] is of
an 8 × 8 squared matrix and nonsingular as easily checked,
it follows that ∆λ(t) → 0 as t → ∞. Thus, as t → ∞ the
force/torque balance is established in a dynamic sense.

The proof presented above has been rather sketchy owing
to limitation of given pages, but it can be ascertained by
carrying out numerical simulations.

Further, it should be remarked that dynamics of the
overall fingers-object system depicted in Fig.1 is redundant in
degrees-of-freedom. In fact, the dimension of the generalized
position coordinates is eight and there are two holonomic

constraints concerning rolling. Therefore, the total d.o.f of
the overall system is six. Then, the force/torque balance is
realized through specification of physical values of ∆x1,
∆x2, λ1, λ2, and the magnitude of y − (y01 + y02)/2.
Thus, one d.o.f is redundant. Actually, blind grasping can be
realized when each robot finger has the two d.o.f, though in
this case ∆λ(t) in (37) converges to some non-zero constant
vector ∆λ∞ as t → ∞. The details of the discussions
including exponential convergence of ∆λ(t) to zero (in a
redundant case) or to some constant ∆λ∞ (in the non-
redundant case) as t → ∞ must be omitted in this paper
due to the page limitation.

V. NUMERICAL SIMULATION OF 2-D CASE
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Fig. 3. Two robot fingers pinching an object with non-parallel flat surfaces
under the gravity effect

We carried out computer simulation for an object with
non-parallel flat surfaces as shown in Fig.3. As in the case
of section 2, Lagrange’s equation of motion of the overall
fingers-object system can be derived if rX and rY are
replaced with r′

Xi and r′
Y i defined as

r′
Xi =

(
cos

(
θ + (−1)iθ0

)
− sin

(
θ + (−1)iθ0

) )
(40)

r′
Y i =

(
sin

(
θ + (−1)iθ0

)
cos

(
θ + (−1)iθ0

) )
i = 1, 2 (41)

Then, it is improtant to define the following symbols:

∆f̄ ′
i =fi + (−1)i Mg

2
sin

(
θ + (−1)−iθ0

)
− fd

r1 + r2

{
l′w cos θ0 + (−1)id′ sin θ0

}
−ξi (∆xi)∆ẋi (42)

∆λ′
i =λi − Mg

2
cos

(
θ + (−1)−iθ0

)
− fd

r1 + r2

{
l′w sin θ0 + (−1)id′ cos θ0

}
(43)
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∆M = M̂ − M, ∆N ′
i = N̂i − (1 − ∆xi/ri)N ′

i i = 1, 2 (44)

where

N ′
i = −

{
fd

r1 + r2

(
l′w sin θ0 − (−1)id′ cos θ0

)
+

Mg

2
cos

(
θ + (−1)iθ0

)}
(45)

d′ =(x01 − x02) sin θ + (y01 − y02) cos θ (46)
l′w =−(x01 − x02) cos θ + (y01 − y02) sin θ (47)

Y ′
1 − Y ′

2 = (Y1 − Y2) cos θ0 − (l1 − l2) sin θ0 (48)

S′ =−fd

{
l′w(

r1 − r2 − ∆x1 + ∆x2

r1 + r2
) sin θ0

+ d′(1 − ∆x1 + ∆x2

r1 + r2
) cos θ0

}
− Mg

2
N ′ (49)

N ′ =
∑

i=1,2

{
Yi sin(θ+(−1)iθ0)+(−1)ilicos(θ+(−1)iθ0)

}
(50)

In this case, the same form of control signals as that defined
in eq.(18) can be applied to dynamics of the overall finger-
object system. The closed-loop dynamics is written in the
form of (26) to (28) if rX , rY , Y1 − Y2, and S are
replaced with r′

Xi, r′
Y i, Y ′

1 −Y ′
2 , and S′ respectively. In the

simulation, the constraints of eqs.(5) and (6) can be ensured
by using Baumgarte’s method called the CSM (Constraint
Stabilization Method). Physical parameters of the fingers-
object system are given in Table I and physical gains in
control signals are given in Talbe II. Transient responses
of principal physical variables appearing in the closed-loop
dynamics are shown in Fig.4 from (a) to (j). It is seen from

TABLE I
PHYSICAL PARAMETERS (in case of 2-D grasp).

l11 = l21 length 0.065 (m)
l12 length 0.039 (m)
l13 length 0.026 (m)
l22 length 0.065 (m)
m11 = m21 weight 0.045 (kg)
m12 weight 0.025 (kg)
m13 weight 0.015 (kg)
m22 weight 0.040 (kg)
I11 = I21 inertia moment 1.584 × 10−5(kgm2)
I12 inertia moment 3.169 × 10−6(kgm2)
I13 inertia moment 8.450 × 10−7(kgm2)
I22 inertia moment 1.408 × 10−5(kgm2)
r1 radius 0.010 (m)
r2 radius 0.020 (m)
L base length 0.063 (m)
M object weight 0.040 (kg)
l1 object width 0.013 (m)
l2 object width 0.023 (m)
h object height 0.050 (m)
I inertia moment 1.248 × 10−5(kgm2)
θ0 object inclination −15.00(deg)

angle
ki(i=1,2) stiffness 3.000 × 105(N/m2)
c∆1 viscosity 1000(Ns/m2)
c∆2 viscosity 500.0(Ns/m2)

TABLE II
PARAMETERS OF CONTROL SIGNALS & INITIAL VALUE OF ESTIMATOR

fd internal force 1.0 (N)
ci i=1,2 damping coefficient 0.006 (Nms/rad)
γM regressor gain 0.01
γNi i=1,2 regressor gain 0.001
M(0) initial value 0.010(kg)
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Fig. 4. Transient responses of physical variables

Fig.4 that except Y ′
1 −Y ′

2 and θ all magnitudes of constraint
forces fi and λi(i = 1, 2) converge to their correspponding
target values respectively, that is, ∆f̄ ′

i and ∆λ′
i converge to

zero as t → ∞. Other variables ∆M , ∆N ′
i(i = 1, 2), and

S′ converge to zero as t → ∞, too. It should be also noted
that Y ′

1 −Y ′
2 and θ also converge to some constant values as

seen from Fig.4 (a) and (b). It should be remarked that in
this simulation we intentionally use finger-ends with different
sizes (r1 �= r2) and an object with non-uniform density (that
is, l1 �= l2). At the initial position, we set ∆x1 = 0 and
∆x2 = 0 and therefore f1 = 0 and f2 = 0. As seen from
(c) and (d) of Fig.4, ∆f̄ ′

i(i = 1, 2) are around −2.0[N] at
t = 0 because of f1 = f2 = 0 at t = 0. However, once
fi > 0 just after t > 0, fi(∆xi, ∆ẋi)(i = 1, 2) are kept to be
positive forever, which means that contacts between finger-
ends and the object are maintained throughout movements
of the overall system.
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Fig. 5. Two robot fingers pinching a 3-D thin object with parallel flat
surfaces under the gravity effect

VI. NUMERICAL SIMULATION OF 3-D CASE

In this section, previous treatments of 2-D object grasp
are extended to 3-D dynamics of pinch motion by a pair
of 2-DOF finger (this finger can move only in 2-D space)
and 3-DOF finger (that finger can move in 3-D space)

TABLE III
PHYSICAL PARAMATERS (in case of 3-D grasp)

l11=l21 length 0.040 (m)
l12=l22 length 0.040 (m)
l20 length 0.000 (m)
m11 = m21 weight 0.045 (kg)
m12 = m22 weight 0.035 (kg)
m13 weight 0.020 (kg)
Ixx11 = Ixx21 inertia moment 5.625 × 10−7(kgm2)
Iyy11 = Iyy21 inertia moment 1.613 × 10−5(kgm2)
Izz11 = Izz21 inertia moment 1.613 × 10−5(kgm2)
Ixx12 = Ixx21 inertia moment 4.375 × 10−7(kgm2)
Iyy12 = Iyy21 inertia moment 1.254 × 10−5(kgm2)
Iyy22 = Iyy22 inertia moment 1.254 × 10−5(kgm2)
r0 link radius 0.005 (m)
ri(i=1,2) radius 0.01 (m)
L base length 0.063 (m)
M object weight 6.667 × 10−3 (kg)
li(i=1,2) object width 2.500 × 10−3 (m)
h object height 0.050 (m)
ki (i=1,2) stiffness 3.000 × 105(N/m2)
c∆i(i=1,2) viscosity 1000(Ns/m2)

TABLE IV
PARAMETERS OF CONTROL SIGNALS AND INITIAL VALUES

fd 0.100 (N) ci (i=1,2) 0.006
cq20 0.006 γM 0.001
γNi(i=1,2) 0.001 γN0 0.001
M(0) 0.000 (kg) N̂1(0) 0.000 (N)
N̂2(0) 0.000 (N) N̂0(0) 0.000 (N)

as shown in Fig.5. The 3-D overall finger-object system
with hemispherical rigid ends has been already analyzed
[13]. This 3-D model with rigid finger ends is extended
to that of a 3-D model with soft finger ends. The most
important difference between rigid finger pinching and soft
finger one is that, instead of considering contact constraints
between rigid finger ends and a pinched object, soft finger-
ends induce a potential energy that can generate reproducing
forces and rolling constraints of finger-ends rolling on the
object surfaces must be regarded as a movement of the center
of contact area without slipping. Another important feature
of use of soft fingers is that a stability region for dynamic
grasp of a thin object can be enlarged by taking advantage
of the visco-elastic property of finger-end material. In order
to confirm this, we explore through computer simulations
what conditions on control gains are required to realize stable
pinching of such thin object by using soft fingers. First, we
carried out numerical simulation of pinching motion for a
rigid object with width 5.0[mm] and weight 6.667[gram]. In
the case of a physical model of dual fingers shown in Fig.5
where the left finger is planar with 2 DOFs and the right
finger with 3 DOFs is capable to move in 3-D, it is shown
in the previous paper[13] that the principal physical variables
converge to some corresponding constant values as t → ∞
as in the following:


∆f̄i → fi∞, ∆λY i → (−1)i−1λY ∞
∆λZi → (−1)i−1λZ∞, ∆M → m∞, ∆Ni → ni∞
∆N0 → n0∞

(51)

where the following sensory-motor coordinated control sig-
nal is applied:

ui =−ciq̇i + (−1)i fd

r1 + r2
JT

i (qi)(x01 − x02)

−M̂g

2

(
∂y0i

∂qi

)T

−riN̂iei−r2N̂0e0i, i=1, 2 (52)

where e01 = (0, 0)T, e02 = (1, 0, 0)T, and e1 = (1, 1)T,
e2 = (0, 1, 1)T. M̂ , N̂i(i = 1, 2), and N̂0 are estimated
values as in the following:

M̂(t)= M̂(0) +
∫ t

0

gγ−1
M

2

∑
i=1,2

(
∂y0i

∂qi

)T

q̇i dτ (53)

N̂i(t)= N̂i(0) +
∫ t

0

γ−1
Nirie

T
i q̇i(τ)dτ (54)

= N̂i(0) + γ−1
Nirie

T
i (qi(t) − qi(0)) (55)

N̂0(t)= N̂N0(0) +
r2

γ0
q20(t) (56)

Note that N̂0 appears in the control input for 3-D motion
of the right finger so that q20 induces rotation around the y
axis. Table III shows numerical data of physical parameters
of the robot fingers and pinched object. Parameters of control
signals and initial values of estimators M̂ and N̂i are given
in Table IV. From transient responses in Fig.6, ∆f̄i, ∆λY i,
and ∆λZi converge to f∞, (−1)i−1λY ∞, and (−1)i−1λZ∞
as t → ∞ respectively. Similarly, ∆Ni(i = 1, 2) and ∆N0

converge to ni∞(i=1,2) and n0∞ as t → ∞ respectively
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according to Fig.6. SY and SZ also converge to some
constant values as t → ∞ respectively, which show that
the rotational moments affecting the pinched object converge
to zero (the torque balance is achieved). Therefore, these
variables eventually tend to satisfy eq.(51) that corresponds
to a certain equilibrium state. It is confirmed that stable
grasping in 3-D space was realized in a dynamic sense by a
pair of robot fingers with hemispherical and soft tips.

Next, we tried to examine the case of a thinner and light
object with width 1.0[mm] and weight 1.333[gram] like a
credit card. When we used the same values for viscosity
c∆i, stiffness ki, and damping constants ci as in Table III
and ran the simulation based on the same control gains
as in Table IV, the trajectories of state variables did not
converge in the sequel. The material of finger-tips should be
a little softened. Hence, we changed physical parameters of
the finger-tip material to those in Table V and decreased the
value of fd to the level of fd = 0.010[N] as given in Table
VI. Then, we could obtain a successful result as shown in
Fig.7. As seen in Fig.7 all principal physical variables tend to
their corresponding constant values as t → ∞, which shows
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Fig. 6. Transient responses of physical variables

TABLE V
PHYSICAL PARAMATERS

M object weight 1.333 × 10−3 (kg)
li(i=1,2) object width 0.500 × 10−3 (m)
h object height 0.050 (m)
ki stiffness parameter 1.000 × 105(N/m2)
c∆i(i=1,2) viscosity parameter 300.0(Ns/m2)

TABLE VI
PARAMETERS OF CONTROL SIGNALS AND INITIAL VALUES

fd 0.010 (N) ci (i=1,2) 0.006
cq20 0.006 γM 0.001
γNi(i=1,2) 0.001 γN0 0.001
M(0) 0.000 (kg) N̂1(0) 0.000 (N)
N̂2(0) 0.000 (N) N̂0(0) 0.000 (N)
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Fig. 7. Transient responses of physical variables

accomplishment of stable blind grasping in a dynamic way.

VII. CONCLUSIONS

This paper shows that there exists a class of control
signals constructed from using only finger kinematics and
measurement data of finger joint angles that enable a pair of
multi-d.o.f fingers with soft finger-tips to grasp a rigid object
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securely and manipulate it towards an equilibrium state of
force/torque balance. This shows that even a pair of robot
fingers can grasp an object securely in a blind manner like
human grasp it even if their eyes are closed. A sketchy proof
of convergence of solution trajectories of the closed-loop
dynamics toward an equilibrium state satisfying force/torque
balance is given in a 2-D case. From computer simulations, it
is shown that physical parameters of stiffness and viscosity of
the finger-end soft material are sensitive to performances of
stable motion of grasping. It is also shown from simulations
that gain-tunings of control parameters based upon rough
prediction of the object width and weight must be important,
since “blind grasping” is feasible once adequate control gains
are chosen and fixed.

Experimental results on blind grasping by using a pair
of soft robot fingers are omitted in this paper due to page
limitation but will be shown in a movie accompanied with
this paper submissionw.
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