
Evaluating the Roomba: A low-cost, ubiquitous
platform for robotics research and education

Ben Tribelhorn and Zachary Dodds
Department of Computer Science

Harvey Mudd College
Claremont, California 91711

btribelh@cs.hmc.edu, dodds@cs.hmc.edu

Abstract— This paper presents the iRobot corporation’s
Roomba vacuum as a low-cost resource for robotics research
and education. Sensor and actuation models for unmodified
Roombas are presented in the context of both special- and
general-purpose spatial-reasoning algorithms, including Monte
Carlo Localization and FastSLAM. Further tests probe the fea-
sibility of sensor extensions to the platform. Results demonstrate
that, with some caveats, the Roomba is a viable foundation for
both classroom and laboratory use, especially for work seeking
to leverage robots to other ends, as well as robotics per se with
a computational focus.

I. INTRODUCTION

Perhaps better than any other single platform, iRobot’s
Roomba vacuum represents ubiquity in robotics today: over
two million Roombas are now cleaning floors in homes and
other institutions. At US$150 off-the-shelf, the Roomba is
a rugged, autonomous robot that operates in human-scale
indoor environments with a sizable proprioceptive sensor
suite (Figure 1). As such, it invites applications in domains
such as robotics research and education. This paper reports
results of both educational and experimental evaluations of
the unmodified Roomba platform, including

• the Roomba’s commercially available hardware inter-
faces

• its recently released serial API [1]
• its sensors’ and actuators’ accuracy
• its support of current spatial-reasoning algorithms
• classroom trials from CS1 and CS2 in spring 2006
• extensibility of its computing and sensory capabilities
The Roomba’s vacuuming capabilities comprise a capable

set of behaviors. All of them are available as primitives
through iRobot’s API. Yet these built-in behaviors entirely
omit spatial reasoning: no mapping, localization, or other en-
vironmental representation is maintained beyond that needed
for its reactive decisions. This paper reports our efforts
to imbue several unaltered Roombas with these additional,
general-purpose spatial-reasoning capabilities. In the process
of using and testing the platform, we have developed soft-
ware tools for control and visualization, as well as theoretical
models of the Roomba’s behavior. Thus, this paper’s primary
technical contributions consist of

• motion and sensor models validated via implementa-
tions of Monte Carlo Localization [2] and FastSLAM

1.0 [3]
• comparisons between those models and naive odometry

and velocity-integration for spatial reasoning
• platform-specific algorithms for mapping portions of

indoor environments
• tested software drivers for Windows, OSX, and Linux
Based on these results and the perspective of eight months

of use, we conclude that the Roomba is a promising alter-
native to the many other low-cost robot platforms available
for research and education, particularly for researchers and
educators whose focus lies in computational or applied facets
of robotics.

Fig. 1. The Roomba available off-the-shelf for US$150, along with its
built-in sensory and actuation abilities. Proprioception is both capable and
complete. Yet it has almost no sensing that reaches beyond the platform
itself.

II. BACKGROUND

Robotic vacuums are becoming increasingly pervasive.
Indeed, vacuuming has been cited as the field’s “killer
app,” bringing more robots into homes than any other
[4]. The enabling robotics research spans architectural in-
sights [5], location-aware vacuuming [6], a large number
of environmental-coverage algorithms [7], and even outright
predictions, now fulfilled [5]. With iRobot’s January, 2006
release of the Serial Command Interface (SCI) API to its
Roomba platform, there is now an opportunity for robotics
researchers and educators to benefit from the successes of
the home-robot industry.

This API makes any Roomba an ordinary serial de-
vice, though vacuums assembled before 10/2005 require a
firmware upgrade. The API specifies a byte-level protocol;

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeE2.3

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1393

this protocol has been incorporated into software drivers
written in Java [8], C++ (within Player/Stage) [9], and Python
[10]. Even before the release of the API, the worldwide
community of robot enthusiasts had shown the platform’s
promise [11] [12]. More recently, Bluetooth, USB, and
RS232 serial interfaces have become commercially available
[13]. Figure 2 summarizes these devices and their current
costs.

Fig. 2. Commercially available USB, RS232, and Bluetooth serial
interfaces to the Roomba provide researchers and educators an inexpensive
platform that requires no custom hardware or construction at all. When
obtained with a Roomba, these devices are now US$10, $5, and $80,
respectively [13].

With iRobot-based software support and third-party hard-
ware interfaces, off-the-shelf Roombas are now program-
matically accessible without any modification whatsoever.
Whimsical applications have emerged: the Roomba has also
been adapted to playing the game Frogger on a busy street
[14]. But it is not obvious that the Roomba can serve as a
resource for validating researchers’ algorithms or enabling
students to implement and experiment with those algorithms
in a lab setting. To our knowledge, this paper’s study is the
first to address these questions.

III. COMMUNICATION AND CONTROL

A. Hardware

The most flexible method of communication is Bluetooth
which uses the unlicensed 2.4 GHz ISM (Industrial Scientific
Medical) band. The aforementioned Bluetooth device (named
the RooTooth) is Class 1, allowing a range up to 100
meters. Connection quality over distance drops slowly and
our tests indicate that adequate connections can be made up
to 60m. The number of Bluetooth devices that can be used
simultaneously is large, as there are 79 channels available.
Our tests have demonstrated that a single laptop can easily
interact at least five devices concurrently without reducing
throughput to individual platforms.

B. Drivers

We have written two Python layers atop iRobot’s byte-
level interface. They provide full access to the Roomba’s
sensors, speaker, motors, and built-in behaviors. As shown
in Figure 3, our top layer allows for straight-line translation
and includes an odometric correction model.

We have also compared the Bluetooth and USB throughput
using this Python layer. USB polling of all of the Roomba’s
sensors averages an update rate of 66Hz; Bluetooth is consid-
erably slower. A single Bluetooth module peaks at 16Hz in
Fast Data Mode and 6Hz in its normal mode. A possible

Fig. 3. The basic architecture of our Python driver.

solution to this limit in bandwidth would be to mount a
micro-controller which reacts to the sensors for stopping
quickly and allows higher level decisions to be made by a
remote computer which would make higher-level decisions
less often. This paper’s focus, however, is in maximizing the
capabilities of an unaltered Roomba platform.

C. Simulation

The Python Robotics (Pyro) toolset already has drivers to
access the Roomba’s capabilities. In addition, the Roomba is
controllable via the player/stage server/simulator.

We have written our own simulator for the Roomba as a
test bed for our algorithm implementations. This simple 2D
interface enables visualization of all of the Roomba’s local
sensing and is freely available at [15].

IV. ROOMBA MODELS

A small number of discrepancies between the Roomba’s
published programming interface [1] and the platform’s
behavior motivated our own modeling of its actions and
accuracy. For instance, the API cites special codes to indicate
straight-line driving (SCI p.4). However, actual behavior did
not differ from those commands’ large radius of curvature
(ROC) limits, published at two meters. Discussions among
many experimenters have confirmed the difficulty of straight-
line motion through the API alone. Second, we found that
Roombas within a single production run are quite consistent
in their behavior. However, those across different major runs
can be very different in their responses to identical API ac-
tuation commands under identical environmental conditions.

A. Odometric Modeling

One of the most important sensing capabilities of the
Roomba is odometry. Unfortunately, there is a huge bias
when translating left and right and turning around the max-
imum ROC (80◦ vs. −30◦ over 15s at 20cm/s). A software
layer, RoombaDrive, compensates for this bias by allowing
simple rotation and linear translation. Linear translation is
achieved by time-slicing left and right turns at the maximum

WeE2.3

1394

Fig. 4. Regressions of translation and rotation show m to be the same for
both of these types of motion for a specific Roomba, named Rsw. We found
equations for distance and angle by integrating data from multiple robots,
including robots from three different production runs.

ROC. The left-bias time-slicing parameter is denoted α, with
0 < α < 1. Every half-second, α half-seconds are spent
turning left, and 1− α half-seconds are spent turning right.

Running various tests of our line driving and turning code
allowed us to extract a motion model. In Figure 4, data from a
single robot is depicted. Linear regressions of raw data versus
actual position in linear translation and rotation shows that
the slope m is constant between line driving and turning. We
ran the tests over multiple robots and production runs and
found this correlation to be consistent.

We attempted to find a single robot-specific parameter to
allow the calculation of m. It turned out that α, the lean to
the left or right as described above, sufficed for this purpose.
First, we ascertained α by time-slicing each robot’s largest
ROC under various α values until we find one that results
in straight-line translation. We then optimize a constrained
quadratic relationship (Figure 5) to find a mapping from this
α to m summarized in equation 1. The intercept value of
c = −5 represents an empirically-tuned correction for the
“wobble” inherent in this method of straight-line translation.
Like the relationship between α to m, this value did not vary
among different platforms.

m = 0.705 + α− α2 (1)

Using equation 1, equations for distance and angle (r, θ)
as functions of the raw data provided by the serial API [1]

Fig. 5. Iterated regression of empirical data which provides equation 1.

and the robot specific α become the following:

r =
distance

10.0
∗ (0.705 + α− α2)− c (2)

θ =
angle

129.0
∗ (0.705 + α− α2) (3)

Fig. 6. Comparison of basic kinematic odometry, velocity estimated
odometry, and our modeled odometry on two robots from separate batches.
For this sample N = 18. Figure 7 presents a closer comparison of basic
odometry versus modeled odometry.

Because the odometry is presented only incrementally,
rapid odometric sampling will reduce the accuracy of these
equations, especially for distance. In situations where it is
necessary to sample multiple times per second, we remove
the compensatory factor c from equation 2. Our working
system samples odometry at every change in velocity.

Results from additional testing of our motion model
against basic odometry and velocity-based odometry are
illustrated in Figures 6 and 7. The sampled error for naive
odometry is σr = 11.5% and σθ = 12.4% which depends
strongly on the specific robot (and might be correlated with

WeE2.3

1395

Fig. 7. Here basic odometry is skewed in angular movement (x = 21.5%)
and generally far less accurate than our modeled odometry.

α). Our corrected model has error of σr = 2.9% and
σθ = 6.1%, significantly improving odometric accuracy.

One caveat with our model is that tests with a hardware-
altered Roomba (the main vacuum and brushes had been
removed) showed a larger m value that did not fit equation
1 due to a reduced drag factor. Changing the weight or
dynamics of a Roomba thus requires remodeling of the
resulting odometry.

B. Sensing Models

The Roomba only has local sensing in the form of bump
and IR sensors. When the Roomba bumps an obstacle, it
often slips as it pushes forward, causing the robot to rotate.
This rotation is not measured by the odometry. It can be
factored into larger error models used by higher-level control
or estimation software. The IR sensors can detect virtual
walls (provided with the Roomba) and cliffs.

The bump sensors have four states which result from a
left and right sensor attached to a single rigid bumper. Thus,
these states are left, right, front, or no bump. The collision
angle that will produce a front bump varies with the sampling
rate. In the ideal, bumps within a forward-facing cone of
±20◦ cause both sensors to trigger (due to bumper rigidity).
However at sampling rates of around 4Hz or less, a front
bump will be detected at a range of ±60◦ or more. If the
response to this bump is similarly slow, the robot will usually
slip and actually end its motion facing the wall which can
adversely effect odometry. This effect is mitigated, but not
eliminated, by our modeled odometry.

V. ALGORITHMIC VALIDATION: MCL
Monte Carlo Localization (MCL) is a probabilistic esti-

mation of pose in a known map that combines range sensing

and odometry [2]. Using only the tactile sensing on-board
the Roomba we were able to implement and demonstrate
successful pose tracking at AAAI 2006. Three snapshots
from an example of a successful MCL run are shown in
Figure 8; the full video is at [15].

Fig. 8. Recorded at AAAI 2006, this shows a Roomba successfully
localizing itself using MCL. In the middle image note that the wall in
question is actually an IR-based virtual wall provided with the platform.

Our MCL implementation used an over-generous uniform
model of motion error: 35% in distance and 25% in angle, in
order to compensate for the inaccuracy of the naive kinematic
model. Recall that when driving in large arcs the Roomba is
extremely biased even while reporting symmetrically identi-
cal odometric readings. Thus, this large, uniform error creates
a cloud of particles to cover probable locations. Successful
runs generally used 300 particles.

Because of many applications’ preference for piecewise
linear motion, building a motion model of arcs is not
always of primary importance. Instead, using the straight-
line driving modeled in Section IV, we experimented further
with mapping algorithms, as detailed in the next section.

VI. ROOMBA MAPPING

Mapping with the Roomba presents a stiff challenge.
Given the lack of onboard computation and lack of range
sensing, mapping is nontrivial. We have designed a prelimi-
nary set of mapping algorithms using only local sensing and
odometry. What makes them possible is the strong a priori
knowledge that we assume:

• A typically indoor, human-scale environment consisting
only of walls (and other line segments).

• All such walls and segments are parallel or perpendic-
ular.

WeE2.3

1396

These assumptions allow many naive interpretations of the
incoming data. For instance, one could fit a line to raw
odometry data recorded at each of the Roomba’s wall-bumps
(the naive algorithm). Our online Roomba-based mapping
models each wall as an ellipse and uses our improved model
of reported odometry and straight-line driving. Here we
present our algorithm and contrast the results of our approach
in comparison with the naive one.

A. Roomba-specific mapping

In the general case of N walls, each bump is a unit of
information that is added to our map. We initially begin with
one wall. Starting with the second collision we minimize
the increase in uncertainty over all walls by limiting the
minor axis of the wall to a Roomba’s diameter (33cm) and
the standard deviation of collision angles to 0.5 radians. If
the latest bump location does not fit any wall within these
threshholds, a new wall is added to the map.

Our results for small runs of eight or fewer bumps align
the walls after collecting all the data. Wall alignment uses
the angle of the first wall to rotate the second wall and each
subsequent wall uses the angle of the previous wall to align
itself. This works well for small samples, however around
seven or eight collisions corrections to incoming data must
be made or else wall uncertainty will become too large and
the algorithm will hallucinate erroneous walls.

Thus, to correct larger samples, we begin throwing out
old points when fitting new data. This method incorporates
enough history to always have a best fit (three points per
wall) while stressing the ground truth of each bump reading.
The following descriptions contrast the maps made using the
naive (raw odometry) and improved (Section IV odometry)
models.

Case 1: (single wall) Fitting a line to a set of points is
trivial and both the naive and improved odometric models
performed well.

Case 2: (a corner) Basic odometry shows slightly better
results and less global skew. As is clear in Figure 9, single-
corner finding is not difficult.

Case 3: (a hallway) With a set of five collisions, our
odometry model found nearly parallel walls and estimated
the distance between them to be 181cm. The actual distance
is 180cm. Basic odometry, in contrast, estimated that the
hallway walls were perpendicular and found three walls; the
unconstrained fit is depicted in Figure 11. Figure 12 shows
naive odometry from a longer hall run. We are able to find
parallel walls as illustrated in Figure 13. With the large
data sample correction, our modeled odometry estimates
the hallway to be 184.8cm and naive odometry estimates
201.4cm, again with a true 180cm distance. Complete results
are listed in Figure 10. Our modeled odometry–not designed
for the purpose of mapping but for the purpose of straight-
line translation–demonstrates a significant improvement in
accuracy.

Fig. 9. Blue: Basic odometry. Red: Modeled odometry. Enforcing perpen-
dicularity of walls, both sets of odometric readings find the corner, and both
finish close to the true wall-relative location.

Line fitting Modeled Naive
short run 181.0 ± 3.0cm 194.1 ± 101.9cm*
long run 184.8 ± 124.1cm 201.4 ± 40.9cm

Fig. 10. Center-to-center distances from hallways cases depicted in Figures
11 and 13. The expected hallway distance is 180cm. Reported error is the
average of the minor axes of the ellipses fit to the walls (three most recent
points of each wall). *This distance is from the centers of orthogonal walls.

B. FastSLAM

We also implemented FastSLAM 1.0 with known data
correspondence as detailed in Probabilistic Robotics. We
used a hallway and a simple wandering algorithm to ensure
that alternating bumps corresponded to each of the two
walls, in turn. The walls themselves serve as FastSLAM’s
landmarks. While a naive adaptation of FastSLAM might
ignore the angle of the walls and to assume that the location
of the feature is the center of the wall, the results from
such a method are not very useful for mapping because
they are highly uncertain and do not contain relative angular

Fig. 11. Unconstrained wall fitting shows modeled odometry to be
significantly better than naive odometry.

WeE2.3

1397

Fig. 12. Here naive odometry is skewed far to the right and our corrected
odometry is skewed nearly as much to the left. This run includes 15 bumps
in a hallway where the Roomba traveled about 10 meters from its starting
location.

Fig. 13. As relative position is all that matters the correlated hallways
have changed position as the odometry continues to gain more error. By
only using the last six bumps, a fit can be maintained down a long hallway.

information.
Thus, our implementation of FastSLAM uses the feature’s

covariance matrix to model both the angle and uncertainty
of a wall, and the point location is then used as the center of
the wall. Unfortunately, longer runs suffer from considerable
angular drift which degrades the results. As before, only
the three most recent points of a wall are used to calculate
the uncertainty ellipse. However, unlike our line-fitting algo-
rithm, with FastSLAM the earlier points impact the current
ellipses because the movement of each landmark depends on
the current covariance at every step. This difference proves to
be the key distinction between our algorithm and FastSLAM.
To compare the two, we report the single metric parameter
estimated by both algorithms, i.e., the estimated distance
between the walls. Results from FastSLAM are listed in
Figure 14.

Not surprisingly, because our alternative approach is so
closely coupled with the platform on which it is running,
it results in improved accuracy in estimating the inter-wall
distance of a hallway. This paper’s purpose, however, is not
to propose a “correct” mapping algorithm for the Roomba,
but to investigate the Roomba’s ability to support algorithms

of current interest to the community. In addition, the platform
scales well pedagogically: it supports probabilistic investiga-
tions as ably as it does reactive architectures. Such scalability
is unusual in low-cost platforms.

FastSLAM Modeled Basic
short run 158.4 ± 3.0cm 185.1 ± 101.9cm
long run 99.5 ± 124.1cm 155.3 ± 40.9cm

short (ellipses) 181.5 ± 3.0cm 278.6 ± 101.9cm
long (ellipses) 298.7 ± 124.1cm 570.5 ± 40.9cm

Fig. 14. Wall distances from the hallway cases depicted in Figures 11
and 12. The expected hallway distance is 180cm and all results save one
have this distance within their uncertainty. The best data fit is the short run
using corrected odometry and ellipse fitting which is the only one to have
a reasonable amount of error. Reported error is the average of the minor
axes of the ellipses fit to the walls; given the significant odometric skew for
these long runs, large errors are unsurprising.

VII. PLATFORM EXTENSIONS

As a result, in conjunction with our odometric models and
software drivers, the Roomba is a viable low-cost solution for
robotics and AI applications and education. Our algorithmic
results demonstrate the ability and promise of this platform.
Yet there are drawbacks: the two most important are the lack
of onboard computation (when, as here, it is used as a serial
device) and its lack of range sensing. This section describes
methods for overcoming these issues.

A. Computation

A very important feature of any AI device is computational
power. Many controllers are available to add this “AI-umph”
to the Roomba. PDAs, Gumstix, and micro-controllers are
common additions to small mobile robots. One of our
solutions is to velcro a laptop to the top of the Roomba.
Mounting a laptop on the top the of the robot did not reduce
the motors’ performance noticeably. At higher speeds, a less
precarious solution is to mount a wireless camera on the
robot and continue to run the computation off the Roomba
itself.

B. Sensing

Using Mac OS X as this project’s primary development
environment, we have devloped a C library that enables
access to the YUV pixel values provided by the iSight
camera (or any other QuickTime input) [15]. Prior work in
this area has not allowed for pixel-level access of values
[16]. This development along with the laptop mounted on
the Roomba enabled us to implement and run FastSLAM
using visual input data with artificial landmarks placed in
the environment.

An approach taken by Brian Gerkey [11] for augmenting
the Roomba’s capabilities adds a laser range finder atop the
vacuum’s enclosure. This served as the basis for another
slam approach, using the algorithms provided as part of
Player/Stage. It’s noteworthy that the sensor in this case
increases the cost of the total system by more than an order
of magnitude.

WeE2.3

1398

An alternative and very low-cost means to obtain single-
point range data is to use an onboard camera and a laser
pointer, which prior work has shown can provide excellent
accuracy for the price (less than 5% error at 4m for US$40)
[17] .

VIII. EDUCATIONAL TRIALS

The Roomba was used as the basis for several assignments
in a CS1/CS2 course sequence taught at Chatham College, an
all-women’s institution in Pittsburgh, PA. Low cost was one
reason for choosing the Roomba. Yet a much more important
reason was that, as a serial device, the Roomba integrated
effortlessly into the Python-based environment in which these
courses were being taught.

This CS1/CS2 trial included an external assessment effort
to determine the extent to which the Roomba (and robots
in general) affected students’ feelings and capabilities in
learning introductory computer science. The results have
shown that the physical interactions had a significant impact.
One student indicated that the impact was intellectual:

Like when you’re just working on the screen it’s
like ‘oh the little dot is moving.’ When you’re
working with the actual thing [the Roomba], you’re
like okay, problem solving. Because it’s a lot easier
to solve the problem if it’s 3D, in front of you, and
you can see exactly what the problem is.

Another student described the robot’s impact in affective
terms: “Playing with the Roomba made it a lot more fun.”

A third student pointed to overcoming some of the
Roomba’s idiosyncracies when asked Which activities do you
think have been most useful this semester in making you a
better programmer?:

I would say that probably working with the
Roomba definitely just because the first day we
worked with it we were trying to get it to go in a
straight line because it has like a natural curve to
it so it doesn’t go straight.

Overall, the Roomba added excitement to the classes,
and it provided hands-on, task-specific applications for the
programming concepts covered. Moreover, the Roomba did
not add the time-intensive overhead of constructing and
maintaining Lego-based or other hand-built platforms, nor
did it require us to change the programming language or OS
on which the class was based. In contrast to many other low-
cost platforms, the Roomba can be used to support an existing
CS and AI curriculum, rather than requiring a curriculum
designed especially for it.

IX. PERSPECTIVE

These extensions and applications of the Roomba only
scratch the surface of what is possible, enabling users an
inexpensive basis on which to design systems that run “with
our initiation, but without our intervention.” [5] As this pa-
per demonstrates, even the ubiquitous, unmodified Roomba
platform can support far more than the vacuuming tasks

for which it was designed. As an educational resource, the
Roomba is fantastically scalable: it is as suitable for reinforc-
ing beginning programming concepts as it is for exploring
algorithms of current interest to the robotics community. As a
research resource, the Roomba empowers investigators who
want to use robots, rather than build them. For example,
it offers researchers involved in the fields of multi-agent
systems, HRI, or many other subfields of AI and CS an off-
the-shelf means to embody and test their work without having
to spend time constructing or modifying hardware.

Ultimately, the Roomba offers the robotics community
both an example of the widespread commercial viability of
autonomous robots and a novel resource we can leverage
toward our educational and research goals. This paper pro-
vides an improved odometric model of the Roomba, some
strategies for handling its idiosyncrasies, and and an initial
assessment of the Roomba’s capabilities. We believe it won’t
be long before there emerge a wide variety of applications
of this modest platform.

X. ACKNOWLEDGMENTS

This work was made possible by funds from NSF DUE
#0536173, as well as funding and resources from Harvey
Mudd College and Chatham College.

REFERENCES

[1] Roomba Serial Command Interface (SCI) Specification, iRobot, 2006.
[Online]. Available: http://www.irobot.com/hacker

[2] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust monte carlo
localization for mobile robots,” Artificial Intelligence, vol. 128, no.
1-2, pp. 99–141, 2001.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping prob-
lem,” in Proceedings of the AAAI National Conference on Artificial
Intelligence. Edmonton, Canada: AAAI, 2002.

[4] L. Grossman, “Maid to order,” Time Magazine, vol. September, 2002.
[5] R. Brooks, “Achieving Artificial Intelligence through Building

Robots,” Massachusetts Institute of Technology, Cambridge, MA, AI-
Memo 899, Tech. Rep., 1986.

[6] S. Domnitcheva, “Smart vacuum cleaner - an autonomous location-
aware cleaning device,” in Adjunct proceedings, Sixth Int. Conf. on
Ubiquitous Computing (UbiComp), 2004.

[7] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press., 2005.

[8] T. Kurt, Hacking Roomba: ExtremeTech. Wiley, 2006, to appear.
[9] B. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage project:

Tools for multi-robot and distributed sensor systems,” in In Pro-
ceedings of the 11th International Conference on Advanced Robotics
(ICAR), 2003, pp. 317–323.

[10] Z. Dodds and B. Tribelhorn, “Erdos: Cost effective peripheral robotics
for ai education,” in Proceedings, AAAI, 2006, pp. 1966–1967.

[11] B. Gerkey, “Mapping with the iRobot Roomba,” 2006. [Online].
Available: http://www.ai.sri.com/∼gerkey/roomba/index.html

[12] P. Mecklenburg, “Roomba SLAM,” 2005. [Online]. Available:
http://www.cs.unc.edu/∼prm/roomba/roomba-slam.pdf

[13] “RoombaDevTools,” 2006. [Online]. Available:
http://www.roombadevtools.com

[14] P. Torrone, “Roomba Tronic,” Make Magazine, vol. 06: Robots, 2006.
[15] Z. Dodds and B. Tribelhorn, “Erdos,” 2006. [Online]. Available:

http://www.cs.hmc.edu/∼dodds/erdos
[16] D. Heckenberg, “Using Mac OS X for Real-Time Image Processing,”

in Proceedings of the Apple University Consortium Conference, 2003.
[17] A. Davidson, B. Tribelhorn, T. Leung, and Z. Dodds, “Low-Cost

Range Sensing for Laptop Robots,” in Proceedings of the IASTED
Conference of Robotics and Applications, 2005, pp. 329–333.

WeE2.3

1399

