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Abstract— Trotting and galloping allow a quadruped to
rapidly traverse rough terrain. Modeling this motion, which
is only dynamically stable, is of importance for legged robot
operation and for quadrupedal animal motion estimation.
Derived from an eight-step galloping cycle, this study presents
a kinetic hybrid model in which the states vary based on
the principal forces present. As compared to foot contact, or
kinematic, hybrid quadruped models this reduces the maximum
number of possible states from 120 to 6 and provides an
alternative to foot contact monitoring. This approach was tested
on a trotting quadruped robot equipped with an inertial sensor
aided by video. This was processed using an EKF estimator
framework to give attitude estimates at rates of up to 250 Hz
with 5◦ error.

I. INTRODUCTION

Legged platforms offer unparalleled adaptation and obsta-
cle traversal over rough terrain. Rapid field motion requires
the adoption of dynamic gaits that, unlike walking, are
statically unstable, but agile. For quadrupeds this is manifest
in the trot and gallop, with the gallop achieving higher speeds
through the asymmetric extension of the flight phase [1].

The introduction of a flight phase challenges the mechan-
ical, control, and sensing systems as dynamic constraints, in
particular those involving ground contact, become discontin-
uous. The leg mechanism and actuation must generate large
power pulses that provide sufficient thrust to obtain flight.
Controllers have discontinuous control authority as control
may only be imparted during ground contact. Finally, on-
board sensing must operate with sufficient fidelity to capture
motion dynamics, yet be robust to landing shocks.

As long as there is a link to the ground (and its profile
is known or assumed planar), it is possible to directly
track pose and position by solving the kinematic chain(s)
via instrumented legs [2] or ground range [3]. A flight
phase disconnects this chain. Making the assumption that
these intervals are completely ballistic, gives an approximate
solution for forward position [4]. Therefore, to determine
attitude it is necessary to measure the motion in a self-
contained manner with respect to an inertial frame.

Compact, self-contained sensing with respect to a body-
centered inertial frame is typically achieved using an inertial
measurement unit (IMU) [5]. In the legged domain, this
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is complicated by footfall shocks and sensor misalignment
leading to errors in the compensation of gravitational accel-
eration. This leads to the problems of saturation and drift.

Alternative sensing approaches are not ideal as they are
limited in range or fidelity. Off-board tracking, such as that
obtained using optical motion-capture systems, is limited to
fixed workspaces [6]. Standard navigation solutions, such
as global positioning (GPS), do not provide sufficient rates
to fully capture motion dynamics and may be occluded in
certain environments [7]. Recovery of motion (including
pose) using vision, such as that calculated using structure
from motion [8] or visual odometry [9], even in operating
conditions compatible with a high-frame rate camera, is not
ideal due to potential occlusions and the large computational
loads associated with high-bandwidth, real-time processing.

Thus, for agile operations a dynamic legged robot requires
rapid feedback controls based on an aided estimation of cur-
rent state based on information from multiple measurement
sources. In general, these estimators may be described as
consisting of two parts: a forward predictor, and an updater
based on weighted measurements. At the core of these
estimators is a dynamic model describing system motion.

Given the aforementioned motion discontinuities, hybrid
approaches have been advocated for both control [10] and
estimation [11] of running robots. A central issue to these
approaches is the mechanism, or state(s), that drive the
transitions between the various hybrid models. For legged
robots this has typically been based on leg location, and,
in particular, leg contact [12]. Based on the notion that the
topology of the forces is more important than particular
foot contacts, the model presented uses the kinetic state as
determined from inertial sensors (or even inferred from foot
contact patterns) to switch model parameters.

The paper describes the galloping gait cycle and uses this
to introduce the kinetic modes of the hybrid model. This
model is then applied to the attitude estimation problem
using an Extended Kalman Filter (EKF) framework. The
paper then highlights the experimental setup and operation,
for demonstration on a dyanamic quadrupedal robot trotting
at speeds from 1.5–2.5 m/s.

II. RELATED WORK

Dynamic legged locomotion, or legged motion balanced
by kinetics, is an area of active interest. In analyzing the
dynamics, a number of authors have mapped the discon-
tinuities present to a hybrid system model. For instance,
Raibert’s hopping quadruped [13] transitioned from various
modes (or finite states) of operation during the motion cycle.
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Even though it simplifies operation using an equivalent single
“virtual” leg model, mode transitions are nonetheless deter-
mined by foot contact(s). Berkmeier’s quadruped dynamics
model [14] uses event sequences, which are also transitioned
by the feet in contact with the ground.

Acceleration can also be used for model transition. As
detailed in our previous work [1], flight and stance can be
differentiated using an accelerometer with flight given by an
approximately zero measurement (i.e., a body acceleration
with respect to ground that is close to gravity (−g)). This
concept has also been applied as part of an Interacting
Multiple Model (IMM) estimator for the RHex robot [10].
While simple, this approach considers vertical accelerations
of the body center, which limits the result to bouncing gaits,
such as the bound and pronk.

One approach to extending this to faster gaits is to use an
approximate dynamic model. The issue is that this has to be
balanced against real-time computation limits. A convenient
model for this form of locomotion is the Spring-loaded
Inverted Pendulum (SLIP), which models the motion by
assuming a single point mass connected to a sprung leg [15].
It is extended to quadrupeds via the use of “virtual legs”
[4]; however, this is only applicable for symmetric gaits.
Further, SLIP has no provision for capturing leg interactions.
Even with these simplifications, including gravity results in
a system that requires approximate numerical solution [16].
Berkmeier [14] provides a 2-DOF planar model that does
not use “virtual legs”; but, this is limited to bound, pronk,
and hopping. Palmer [17] extends this to control a trot.
An impulse-based approach, as detailed in [18] and [19],
provides an efficient gallop model. Even with an impulse
model, a mechanism for switching models between the
various gaits is still needed.

This work looks at directly extending the hybrid approach
for dynamic gaits by switching between the major kinetic
modes prevalent. Since foot contact provides a constraint on
dynamics, it must be included. However, similarities present
between particular foot contacts allow for reduction in the
number of modes.

III. GALLOPING GAIT

Biology suggests that the transverse gallop is the fastest
and most efficient quadrupedal gait for endurance/distance
running [20]. It has been suggested by Minetti [21] that the
gallop is a “skipping” gait. This provides several unique char-
acteristics, namely: that vertical energy fluctuations occur at
half the rate of its forward ones; that potential energy is
maximum during flight; and, that the pitch angular velocity
between the stances of the two front feet is zero.

A second, intuitive reason for this is that the forward speed
is given by a product of the effective stride length (Ls) and
the stride frequency (fs) as

S = vx = Ls · fs (1)

where S is the forward speed. Variations in stride frequency
are limited as the fundamental frequency is energetically
favored. Thus, the strategy is to increase the stride length.

The gallop is a four-beat gait pattern in which there is
typically one foot in contact with the ground with periods
of flight and two feet contact [22]. It can be considered as
consisting of eight phases based on which foot is in contact.
In the transverse gallop, the transition from hind to front is
across a diagonal set of foot contacts, which gives the eight
phases as: right-hind, both-hind, left-hind, left-hind+right-
fore, right-fore, both-fore, left-fore, and flight.

As illustrated in Figure 1, the gallop increases the stride
through a longer flight phase achieved by adopting an asym-
metric gait. The asymmetry present allows the foot contacts
and subsequent thrusts to occur at uneven timings. Thus,
there is no plane of symmetry for which the motions on
one side are mirrored on the other [22]. This implies that
the forward speeds and attitudes changes between strides.
The consequence on modeling is that body accelerations
are no longer odd functions that integrate to zero over
symmetric limits [4], which prevents the use of simpler
control strategies, especially those that simulate the motion
as a bouncing ball [10].

Fig. 1. Gait phase radar diagram for the transverse gallop of a horse clearly
shows the asymmetry in leg timing. The axis shows the percent of cycle time
for the major phases (as indicated by the icon where L/R is left/right and
H/F is hind/fore). The sequence rotates counterclockwise. Superimposed at
each of the eight are contact diagrams which show foot contact as dots at
the end of the line (adapted from [23]). Gallop phases averaged from data
in [24] for experiments at a speed of 13 m/s (fs: 2.6 Hz, Ls: 5 m, tcycle:
∼380 ms, and double support: 33%).

IV. SIMPLIFIED QUADRUPED KINETIC MAP

The approach taken to modeling the gallop and related
dynamic gaits is to reduce the number of modes while
capturing the salient dynamic properties for each gait. This
is in keeping with earlier modeling approaches, such as SLIP
and “virtual legs.”

For a quadruped, the naive approach of modeling each
contact gives 120 possible transitions between 16 foot con-
tact states. Shifting to modeling the motion based on the
dynamic ground-contact constraints (from 0 to 4 legs in
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contact) and the presence of a sprung leg (i.e., compliance
or lack thereof (rigid leg)) gives a complete set of 10 states.
This is further reduced to by considering the combinations
affecting dynamic gait motions, in particular the gallop.
For example,three and four legs in contact with the ground
stability is determined statically. This gives 6 dynamic states
as detailed in Table I and having 8 principal transitions as
illustrated in Fig. 2.

Gait(s) Contact(s) keffective Modeling Strategy
Flight 0 — Ballistic
Pace/Walk 1 High Inv. pendulum
Trot/Bound/Pronk 1 Low SLIP
Gallop 2 Low Impulse
Slow walk 3 High Alternating tripod
Standing 4 High Static stability

TABLE I
REDUCED QUADRUPED DYNAMIC STATES

Flight Stand
(

)
4, Static
Stability

Pace, Fast walk
(1, Inverted
Pendulum)

Slow walk
(3, Alternating Tripod)

Gallop, Canter
(2 [asymmetric], Impulse)

Trot, Bound, etc.
(1, SLIP)

Fig. 2. Kinetic map for quadruped locomotion. The main kinetic states
are shown as nodes. The numbers in parenthesis indicate the effective or
equivalent number of ground contact constraints (i.e., including reductions
made due to gait symmetry). The solid line indicates transitions occurring
during the dynamic motion, such as the gallop. The dashed line indicates
transitions for slower initial gaits. This model has a reduced number of
states and transitions compared to a direct contact approach.

The particular gait employed and the transition between
kinetic states within the gait is based on the ratio of kinetic
to potential energy; that is, the Froude number, which can
be expressed as:

Fr =
v2

gz
(2)

where v is the magnitude of the velocity vector, g is
gravitational acceleration, and z is the vertical position or
height. The average (over the cycle) Froude number (Fr)
classifies the gait [25] with z defined as the standing height
of the mass center. Hence, a Fr < 1 indicates a walk, 1 <
Fr < 2.5 indicates a trot, and Fr > 2.5 indicates galloping.
The Froude number computed from the current state can
be used to switch between multiple models. For example,
with Fr ≈ 1 indicating flight and Fr > 3 indicating double
support for the gallop.

For the gallop, an additional simplification is to use the
normalized potential energy state of the mass center (p =

z
zmax

) as this may be measured directly using several methods.
Based on observed energy fluctuations [21], a p > 0.9
indicates flight phase, p < 0.2 indicates double support, and
0.2 < p < 0.9 indicates single support.

The advantage of an energy approach is its wider applica-
bility and relative simplicity compared to other methods.
While pitch rates are also unique to galloping, additional
sensing is needed to track the cycle to determine flight
phase robustly. Compared to foot contact sensing, the energy
method is less ambiguous and nearly as convenient from a
robot/machine implementation perspective. For example, it
can distinguish between pronking or standing even though
both gaits have a period with all feet in contact. Further, this
does not preclude foot contact sensing, which can still be
used to as an additional check.

V. METHOD

With a series of approximate models for describing par-
ticular sections of the gait and a mechanism for switching
them, the paper now considers the state estimation problem
in order to determine state from multiple measurements.

The use of camera motion alongside inertial sensors has
been considered for aerial and ground applications [26], [27].
In previous work [5], the use of optical flow as a low-
frequency complementary measure for aiding high-frequency
inertial measurements was explored and found to estimate
orientation as long as it was sufficiently initialized. Figure 3
illustrates the integrative approach that is used to limit drift.
First optical flow is calculated from sparse features. Inertial
data are used to determine the potential energy state, which
comes from the vertical position. This is then used to select
the mode. An EKF estimator is then used to calculate the
state estimates.

Fig. 3. Overview of the processing method in which inertial and video data
are processed. The dashed lines indicate feedback paths for tuning vision
algorithm parameters based on prior estimated motion.
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A. Model

Based on the kinetic map, the trotting motion was modeled
using two modes (flight and single sprung leg) with the
gallop adding a third mode (double contact). In particular,
these phases are a ballistic flight phase with a linear air
friction model, a sprung leg having a stiffness equivalent
to that for when leg or pair of legs in contact, and a lumped
mass model for the periods of double support.

A full derivation of the models is presented in Ref. [4],
[15], [18]. Approximate models are used to simplify the
calculations and later linearizations needed by the EKF.

During flight phase, for instance, the measurement model
covariances are tunned to account for the lack meaningful
accelerometer measurements during free-fall. The system
model, shown in Eq. 3 uses a linearized differential equation
in height z with gravitational acceleration g, air density ρ,
and ballistic coefficient β. As β is found empirically, a tuned
flight phase coefficient kfp can be used for the ratio of ρ to
β. Note that if βg � ρż air friction is negligible, giving the
expected ballistic result.

z̈ =
ρż2

2β
− g ≈ kfpż − g (3)

During single contact the gait is modeled using SLIP
conditions. This assumes that the effective (or “virtual”) leg
acts under the center of mass. When linearized, this becomes
even more idealized as it approximates a lump mass with
Hookean spring having an effective stiffness ks as

z̈ = ω2
0 (z0 − z)− g (4)

where ω2
0 is ks/m and z0 is the height corresponding to

unloaded ground contact.
During double support the attitude of the body becomes

important. Double support can be modeled using the impulse
method, but is non-linear [18]. Using a small angle assump-
tion and linearizing Newtonian mechanics gives the simplest
governing equations as:

z̈ =
(f1 + f2)

m
− g (5)

θ̈ = bf2 − af1 (6)

where f1 and f2 are the vertical contact forces at the legs and
a and b are the moment arms from the shoulder to the mass
center. The contact forces can be approximated by measuring
the leg compression or stroke. Sideways movement (y) is
small because an no-slip condition is assumed. For the cycle,
forward speed (ẋ) is bounded by the constraint in Eq. 1.

B. Hybrid EKF Estimation Techniques

Estimation is a process for calculating system variables
from measurement source(s). The Hybrid EKF is a state-
space approach that is optimal in a least-squares sense
under the (strict) assumption of white, mutually independent
linear environments [28]. Alternative estimation algorithms,
such as the Unscented KF or Particle filter, provide better
linearization; however, their use has to be balanced against
computational resources and the update rates required.

Using the notation adopted in previous work [3], we define
x as the target state vector, F as the system dynamics
matrix, H as the measurement matrix, and v and w as
the process and measurement noise vectors respectively.
Thus, the system can be modeled as ẋ = Fx + v, and
the measurement as z = Hx + w. Hybrid models can be
implemented as a function that smoothly varies F.

VI. IMPLEMENTATION

The goals of this method are to obtain state estimates
robust to the eccentricities present in legged locomotion.
To do this, the technique was extended to the KOLT robot,
where the principal task is to estimate attitude (especially
pitch) for use in its trot and galloping controllers. The
implemented estimator operates at peak rates of 250 Hz. In
practice, this was often run at half the rate to free resources.

A. KOLT

Pictured in Fig. 4, the Kinetically Ordered Locomotive
Tetrapod (KOLT) robot is a testbed for dynamic legged
locomotion theory with application to high-capacity legged
robots. Its four identical 3-DOF legs are fully actuated. Its
speed presents a significant challenge as control simulations
indicate the need for rapid pitch feedback at rates >50 Hz.

Fig. 4. The KOLT robot is ∼2 m long and 75 kg in weight.

B. Configuration

KOLT performance is measured using a custom iner-
tial sensor suite consisting of commercial, micromachined
accelerometers (Kionix KMX52-1050 and ADXL210 re-
spectively for tracking translational motion and determining
phase transitions through impulse shocks) and gyros (three
Silicon Sensing CRS03-11). Data sets are captured using a
Kteam Kameleon board. Video is recorded from a TV-format
camera (Pulnix TMC with a Pentax 4.8 mm lens) using
a Bt848a video capture card (chipset) at 320×240 pixels
resolution and 30 fps.

As the Kameleon has no provision for video, it was
processed using a separate PC. The original video is dein-
terlaced and converted to grayscale. The feature detector
and RANSAC selection algorithm were tuned to typically
net 10 to 15 features. One advantage is that flow from
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RANSAC points can be computer with stricter criteria, with
little penalty in computation time. The features are then
tracked using a pyramidal implementation of the Lucas-
Kanade algorithm with a nominal depth of three. The optical
flow is used to define feature pairs that are accumulated over
time to give the ego-motion.

VII. EXPERIMENTS AND RESULTS

Experiments were performed on KOLT to evaluate the
performance of the HEKF method. To facilitate comparison
and to ensure safe robot operation, the robot was connected
to an instrumented boom arm. The arm is 2.75 m long has
has 3DOF (pitch along the axis plus roll and yaw about
the center post). For these experiments, data from precision
encoders (6,000 count) on the boom arm were considered to
be the control values (i.e., arm and KOLT coupling flexion
are assumed to be negligible). The large boom arm radius
resulted in small pose changes per sample, especially for both
yaw. Synchronization of the control was made by having
KOLT record boom encoder data.

The experiments were performed for bound and trot gaits
that were programed using the symmetric and virtual leg
methodologies. As current research is refining a sustained
galloping controller, data for the gallop are not presented.
To increase resources available for control, the estimator
was simplified for KOLT operation as only to track attitude
values. Thus, the estimator’s state space had of 9-terms (all
three DOF for 3D motion, plus their first derivatives, plus
their biases).

The results of the HEKF estimator for a typical trotting
experiment are shown in Figs. 5 and 6. For comparison with
the encoders the estimated state values were transformed
to the boom arm origin frame. The gyro covariance and
initial bias value was found through a calibration procedure.
Many experiments were performed for short periods of time
(∼1 minute), yet the inertial drift, if unchecked, would have
exceeded practical limits (i.e., greater than 90 deg.).

For dynamic trotting motion, such as that shown in Fig.
6, the HEKF estimator has an error of approximately 5 deg.
RMS. This large an error might seem surprising, but can be
attributed to errors in the inertial measurements which lead
to biases in the estimate. Further, when the inertial data are
significantly in error, the HEKF is not able to adapt rapidly
to become more reliant on the aided (visual) data. Tuning
the HEKF for this would lead to a case where the estimator
over weights the importance of the visual data, which will
lead to the estimates lagging (due to the delay of the visual
measurements). At an extreme, this is equivalent to operating
without inertial measurements.

The use of optical flow does not need an a priori ground
model assumption as would be associated with leg or range
pose recovery methods. However, it adds delay, which limits
its use in control applications. Perhaps with emerging high-
speed, low-light, low-noise cameras and dedicated visual
processors, such processing will soon be available in an inte-
grated package. The optical flow is not a complete observer
of all motion. For example, it is prone to errors resulting from
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Fig. 5. The pitch data from the HEKF inertial estimator and from the
reference encoder on the boom arm show stable estimator performance over
36 cycles (during ∼20 seconds of running). The loss of balance, as seen
during the final landing, is poorly compensated by the estimator.
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Fig. 6. A sub-section of the trotting pitch data. The tracking performance
is improved compared to general motion, especially for rapid positive (nose
upwards) pitch motions.

the “aperture problem” and, in a monocular arrangement, is
not able to disambiguate small changes in attitude from small
translations. Further, the current implementation makes use
of a brightness constancy assumption which limits operation
to areas where light levels are constant.

VIII. CONCLUSIONS

Due to the discontinuities, dynamic legged locomotion is
a unique domain separate from aerial or wheeled vehicles.
This is treated using a hybrid model that models the trot as
consisting of two dynamic modes and the gallop as three.
Modes are transitioned using an energy based metric. This
builds on and is consistent with prior work in this field,
though adopts a kinetic instead of kinematic framework for
hybrid transitions.

As measured by pitch excursion changes, the performance
of the estimator on the quadruped is sound with the estimator
converging. In fairness, the trot gait is a more stable motion
that is compatible with the constant angular velocity (no
torque) flight phase assumption.
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To an extent, this result is somewhat expected as the hybrid
model incorporates more information and is a prudent means
of capturing the discrete dynamics in an implementation. The
interesting result is this also suggests that an efficient cycle
may be constructed with only three instead of the five states
suggested by Raibert or the 120 possible transitions present.

The experiment contributes a quantification of KOLT
performance. It also shows that modifying HEKF estimation
techniques to include characteristics unique to trotting or
galloping legged movement results in stable self-contained
attitude tracking with low latency and fast updates, which
would not be possible with one sensing modality alone.

IX. FUTURE WORK

A limiting issue with this and other estimation approaches
is the need for several tuning values for the stiffness, damp-
ing, estimator covariances, optical flow feature finder, and
RANSAC amongst others. Future work is considering the
extension of the estimator logic to calibrate these values
robustly against ground truth values.

The models describing quadruped performance are sim-
plistic by design so as to enable faster computation. Ob-
viously, off-line applications can afford more processing.
Thus, future work is considering the extension of the impulse
methods to yield more complete, yet efficient, estimation
solutions. Even with a more involved model, the estimator
could act as a smoother instead of a filter, updating the state
history when resources are free.
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