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Abstract— This paper proposes a tracking control method of
sinusoidal motions utilizing stiffness adjustment of mechanical
elastic elements for serial link systems. Although dynamics
of the controlled objects is nonlinear, the stiffness adjustment
realize a condition similar to a resonance of linear systems. We
present a controller that adjusts stiffness of the elastic elements
to reduce torque requirement of actuators while generating
desired motions. The proposed controller works without using
dynamics models nor parameters of the controlled objects.
Stability of the controller is proved, and tracking errors are
guaranteed to converge to a certain region. Simulation results
demonstrate the validity of the proposed method. We also
present an application of the proposed method to power assist
systems.

Index Terms— Resonance, Robot Dynamics, Power Assist
System

I. INTRODUCTION

Recently, control methods and applications utilizing pas-
sive elements come under spotlight [1]-[4]. Elastic torque
caused by gravity or springs can generate periodic motions
without actuation. Passive walking robots can generate fun-
damental motions of walking by gravitational torque [1] [2].
Walsh et al. developed walking support systems utilizing
springs and adjustable damping elements to reduce torque
of actuators [3]. Fujimoto et al. proposed a control method
based on iterative learning control for hopping robots [4].
This control method generates hopping motions, which re-
quire no actuation in steady states. In these studies, stiffness
of the elastic torque is fixed, and motions are not controlled
specifically.

However, in the case of applications to walking robots or
human support systems such as prostheses, tracking control
of periodical motions and specification of its properties
such as frequency becomes important in some cases. For
example, some power assist systems generate periodical
desired motions based on information of its operator [5] [6].
Stiffness adjustment is one of the realistic ways to generate
specified periodical motions while reducing actuation. Ozawa
et al. proposed a control method to track specified sinusoidal
motions utilizing elastic elements [7]. This method optimizes
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stiffness to realize an anti-resonance, which enables no en-
ergy consumption to track specified motions in steady states.
However, in their study, controlled objects are restricted to
linear systems containing two masses and two springs.

We have proposed power assist systems like Fig.1 that
amplify the sinusoidal operator’s torque while generating
sinusoidal motions by minimum actuator’s torque utilizing
a resonance [5] [8] [9]. This method is assumed to be used
as walking support systems of hip joints because there are
some Clinical Gate Analysis (CGA) data show that torque
and motion of hip joint are nearly sinusoidal [10]. However,
even though the dynamics of the walking support systems
of hip joints is nonlinear, our previous paper treated the
dynamics of the controlled object as linear [5] [8] [9].

As stated above, stiffness adjustment has been considered
for linear systems, because the resonance and the anti-
resonance are concepts of linear systems originally.

This paper proposes a control method utilizing stiffness
adjustment for serial link systems having nonlinear dynamics
as shown in Fig.2. Mechanical elastic elements are installed
in each joint of the model. We mathematically prove stability
of a proposed controller and an effect of the stiffness
adjustment. The proposed controller guarantees a region of
tracking errors when time is consumed enough. The stiffness
adjustment minimizes this region as if an optimal stiffness is
realized even the controlled objects have nonlinear dynamics.
As a result, inertial and gravity torque are largely compen-
sated by torque of the adjusted stiffness like a resonance of
linear systems.

In this paper, desired motions are assumed to be given
firstly. In this case, dynamics models and all parameters of
the controlled objects can be unknown, because we adopt
a simple feedback controller. This controller guarantees
tracking performance like a control method as stated in [11].

Secondary, the proposed method in this paper is combined
with a method of our power assist systems [5] [8]. In this
case, we propose a controller that simultaneously realize
torque amplification and the stiffness adjustment. Due to
a necessity of calculation of operator’s torque, dynamics
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model and all parameters of the model are assumed to be
known. However, amplitudes, frequencies, and phases can
be unknown to adapt change of operator’s torque pattern.
The model of Fig.2 is more precise than the linear model of
our previous study to represent a model of walking support
systems. Therefore, the method of this paper extends our
previous power assist systems for support systems of whole
walking motion.

II. SYSTEM INCLUDING NONLINEAR STIFFNESS

In this section, we consider a 1-dof pendulum system
shown in Fig.3 as an example of serial link systems. This
system includes nonlinear elastic torque caused by gravity.

This section shows a basic concept of the proposed
method.

A. Dynamics

The dynamics of the 1-dof pendulum system can be
described like this.

Iq̈ = −dq̇ − g sin q − kq + τ (1)

where q is an angle of the pendulum, I is an inertia, d is
a viscosity, g is a constant of gravitational torque, k is an
adjustable stiffness, and τ is torque of an actuator.

All physical parameters I, d, g are assumed to be un-
known.

B. Control Objective

The control objective is to let the joint angle q track a
sinusoidal desired trajectory qd = a sin(ωt+φ)+apπ and to
reduce the torque of the actuator τ by adjusting the stiffness
k, where a, ω, φ are an amplitude, an angular frequency,
a phase of the desired trajectory respectively, and ap is a
constant, which is set to be 0 or 1. The amplitude a is
assumed to satisfy the inequality |a| < π−ar, where ar < π
is a positive constant. Hence, the desired motion is a simple
harmonic motion that the gravitational torque of its center is
0.

C. Optimal Stiffness

Here, let us consider necessary torque of the actuator τd

to generate the desired motion. This necessary torque is
calculated by substituting the desired trajectory qd into the
angle q of the dynamics (1).

τd = Iq̈d + dq̇d + kqd + g sin qd (2)

If the elasticity of the gravitational torque g sin qd has a linear
characteristic like gqd, the right side of the inertial torque Iq̈d

and the elastic torque kqd + gqd can vanish by an optimal
stiffness of a resonant condition k = Iω2−g [8]. This means
that an amplitude of the necessary torque τd is minimized.
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Fig. 3. Pendulum

The viscous torque dq̇d can’t be compensated by the torque
of the stiffness kqd because of requirement of energy supply.

Even though the vanishment can’t be realized in the case of
the nonlinear dynamics, we can define an optimal stiffness k∗
that minimizes maximum of the value |Iq̈d+k∗qd+g sin qd|.
This means that the inertial and the elastic torque to generate
the desired motion Iq̈d + g sin qd are compensated by the
torque of the optimal stiffness k∗qd as much as possible.
This concept is similar to a resonance of linear systems.

D. Controller

1) Torque of Actuator τ : The torque of the actuator τ is
designed using feedback of tracking errors with a viscosity
compensation.

τ = d̂q̇d − kvΔq̇ − kpΔq (3)

where d̂ is an estimated value of the viscosity d, kp, kv are
error feedback gains of the angle and the angular velocity
respectively, and Δq = q−qd is a tracking error of the angle.

The estimation of the viscosity is done by the adaptive
technique.

˙̂
d = −γdq̇d(Δq̇ + cΔq) (4)

where γd is an adaptive gain, and c is a constant selected to
satisfy the inequality d + kv > cI .

2) Adjustment Law of Stiffness k: To reduce the actuator’s
torque, an adjustment law of the stiffness is designed like
this.

k̇ = γkq(Δq̇ + cΔq) (5)

where γk is an adaptive gain.
Similar adjustment law was proposed in our previous work

for linear systems [5]. In the case of the linear systems,
controlled systems become in a resonant condition by the
stiffness adjustment, and an amplitude of actuator’s torque
is minimized in a steady state.

E. Stability

Stability of the proposed controller is proved by using a
candidate of a Lyapnov function V .

2V = IΔq̇2 + (kp + k∗ + ckv + cd)Δq2

+2cIΔq̇Δq + γ−1
d Δd2 + γ−1

k Δk2 (6)

V̇ = −(d + kv − cI)Δq̇2 − c(kp + k∗)Δq2

+b(k)(Δq̇ + cΔq) (7)
≤ −b1(b)Δq̇2 − b2(b)Δq2 + b3b

2 (8)
b = −g sin q − k∗qd − Iq̈d (9)

where Δd = d̂ − d, Δk = k − k∗, b1(b) = kv − cI − α1b
2,

b2(b) = c(kp + k∗ − α2b
2), b3 = 1

α1
+ c

α2
, and α1, α2 are

positive constants introduced to prove the stability. Because
the desired trajectory is a sinusoid and the gravitational
torque g sin q is bounded |g sin q| < g, there exists a
constant bm that satisfy the equation bm = max |b|. Then,
the parameters b1(bm), b2(bm) can be positive by adequate
choices of the parameters α1, α2. Therefore, V̇ is negative
and V decreases while the following inequality is satisfied.

b1(bm)Δq̇2 + b2(bm)Δq2 > b3b
2
m (10)
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This means that the tracking errors Δq̇2, Δq2 decreases
together with decrease of V until the inequality (10) is
not satisfied. Therefore, the tracking errors converge to
vicinity of a certain region b1(bm)Δq̇2 +b2(bm)Δq2 ≤ b3b

2
m

when t → ∞. To avoid complex discussion, an accurate
guaranteed region of the tracking errors is not shown in this
paper, but the accurate region becomes smaller if the region
b1(bm)Δq̇2 + b2(bm)Δq2 ≤ b3b

2
m becomes smaller.

Using similar discussion to the paper [11], the region of
tracking errors can be reduced by choices of larger error feed-
back gains kp, kv , because the parameters b1(bm), b2(bm)
becomes larger by the choices of larger gains kp, kv .

Therefore, the system is stabilized by the proposed con-
troller (3), (4), (5).

F. Effect of Stiffness Adjustment

The purpose of the stiffness adjustment is to reduce the
torque of actuator (3) while achieving the tracking control.
The term d̂q̇d of the actuator’s torque (3) compensates
the viscous torque, and this term is needed to generate
the desired motion as stated in the section II-C. Hence,
the feedback terms of the controller (3) compensate the
inertial and the gravitational torque to generate the desired
motion. If the tracking errors Δq̇, Δq become smaller by
the stiffness adjustment, the feedback terms become smaller.
This means that the inertial and the elastic torque are largely
compensated by the elastic torque of the adjusted stiffness
kq. Therefore, the tracking errors are discussed here in detail
to show the effect of the stiffness adjustment.

To discuss the tracking errors more precisely, we focus
on the elastic torque g sin q + k∗qd of the equation (9). The
elastic torque g sin q + k∗qd is merely treated as bounded
values in the section II-E. However, this torque seems to
contribute generation of sinusoidal motion partially, because
elastic torque usually generate periodical motion. Hence,
smaller region of the tracking errors may be calculated by
focusing on the elastic torque.

Based on the discussion of the section II-E, if the third
term of the (7) can be smaller, the guaranteed region of the
tracking errors can be smaller. The parameter b of this term
can be rewritten like b = g(sin q − sin qd) + (g sin qd −
k∗qd − Iq̈d). Hence, the third term b(Δq̇ + cΔq) can be
decomposed into the three terms −gc(sin q − sin qd)Δq,
−g(sin q − sin qd)Δq̇, (−g sin qd − kqd − Iq̈d)(Δq̇ + cΔq).

1) Terms of b(Δq̇ + cΔq): In the following discussion,
we consider a situation that the tracking error |Δq| is smaller
than ar. This situation can be realized easily by choices of
large feedback gains kp, kv as discussed in the section II-E.

The term −gc(sin q− sin qd)Δq is negative in the case of
ap = 0, because the sign of sin q − sin qd and Δq are the
same in the situation |Δq| < ar and |qd| < π − ar. In the
case of ap = 1, this term becomes positive, and the inequality
−gc(sin q − sin qd)Δq ≤ gΔq2 is satisfied. Therefore, this
term can be calculated as −gc(sin q − sin qd)Δq ≤ apgΔq2

The term −g(sin q − sin qd)Δq̇ is calculated as a cross
term of the tracking errors Δq2 and Δq̇2 like this.

−2g(sin q − sin qd)Δq̇ ≤ g
(
α3Δq2 + α−1

3 Δq̇2
)

(11)

where α3 is a constant introduced to prove the effect of the
stiffness adjustment.

On the other hand, if an elastic torque is linear like glq,
the value gl(q − qd)Δq̇ becomes a time derivative of the
storage function Vg = glΔq2, where the gl is a stiffness.
The nonlinear stiffness g sin q have similar characteristic if
the angle q is small enough. Hence, a part of the term
−g(sin q − sin qd)Δq̇ is composed of the time derivative of
the storage function Vg , and the term −g(sin q − sin qd)Δq̇
can be calculated to reduce the effect of the term.

−2g(sin q − sin qd)Δq̇ + V̇g

≤ (g − gl)
(
α3Δq̇2 + α−1

3 Δq2
)

(12)

where gl is a maximum constant satisfying the inequality
(12).

The term (−g sin qd − k∗qd − Iq̈d)(Δq̇ + cΔq) satisfies
the following inequality.

2(−g sin qd − k∗qd − Iq̈d)(Δq̇ + cΔq)
≤ {

α4Δq̇2 + α5cΔq2 +
(
α−1

4 + α−1
5 c

)
n2

1

}
(13)

where n1 is a constant that satisfies the equation n1 =
max | − g sin qd − k∗qd − Iq̈d|, and α4, α5 are constants
introduced to prove the effect of the stiffness adjustment.

2) Region of Tracking Errors: As the result of the above
discussion, the region of the tracking errors can be guaran-
teed as follows.

A candidate of a Lyapnov function V2 is defined like this.

V2 = V + Vg (14)
V̇2 ≤ −b5Δq̇2 − b6Δq2 + b7n

2
1 (15)

where b5 = d + kv − cI − α3(g−gl)
2 − α4

2 , b6 = c(kp + k∗)−
apg − (g−gl)

2α3
− α5c

2 , b7 = 1
2α4

+ c
2α5

.
Therefore, the tracking errors decrease until the inequality

b5Δq̇2+b6Δq2 > b7n
2
1 will not be satisfied, and the tracking

errors converge to the vicinity of the region b5Δq̇2+b6Δq2 ≤
b7n

2
1.

Then, the region of the tracking errors b5Δq̇2 + b6Δq2 ≤
b7n

2
1 are minimized, because k∗ minimizes the equation

n1 = |Iq̈d + k∗qd + g sin qd| as stated in the section II-C.
Therefore, the region of the torque of the actuator is

minimized by the stiffness adjustment. This means that the
inertial torque Iq̈d and the gravitational torque g sin qd to
generate the desired motion qd are largely compensated by
the torque of the stiffness kqd.

G. Summary

For the system, which has the dynamics (1) including
the nonlinear gravitational torque, the controller (3), (4),
(5) guarantees the stability, and the stiffness adjustment (5)
realizes the effect of the stiffness optimization. This means
that the stiffness adjustment minimize the guaranteed region
of the tracking errors, and the inertial and the gravitational
torque to generate the desired motion are largely compen-
sated by the torque of the adjusted stiffness. The proposed
controller uses no dynamics models and no parameters of
the dynamics owing to the simple structure of the controller.
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III. SERIAL LINK SYSTEM

This section proposes a similar controller to that of the
section II for serial link systems like Fig.2.

A. Dynamics

Dynamics of the serial link systems having n joints is
described by the following equation.

R(q)q̈ +
{

1
2
Ṙ(q) + S(q, q̇) + D

}
q̇ + g(q)

= −Kq + τ (16)

where R(q, q̇) ∈ �n×n is a positive definite inertia ma-
trix, S(q, q̇) ∈ �n×n is a skew symmetric matrix, D =
diag(d1 · · · dn), d1 · · ·dn are viscosity, g(q) ∈ �n is a
vector of gravitational torque, K = diag(k1 · · ·kn) is a
stiffness matrix, k1 · · · kn are adjustable stiffness of elastic
elements installed in each joint, q = (q1 · · · qn)T is a vector
of joint angles, and τ = (τ1 · · · τ2)T is a vector of torque of
actuators.

B. Controller

The controller is designed using similar strategy to that of
the section II.

τ = D̂q̇d − KvΔq̇ − Kps(Δq) (17)
˙̂
d = −ΓdQ̇d(Δq̇ + CΔq) (18)
k̇ = ΓkQ {Δq̇ + Cs(Δq)} (19)

where D̂ = diag(d̂1 · · · d̂n) is an estimated matrix of D,
Kp = diag(kp1 · · ·kpn), Kv = diag(kv1 · · · kvn) are
matrixes of feedback gains, Δq = (Δq1 · · ·Δqn)T = q−qd,
qd = (qd1 · · · qdn)T is a vector of desired trajectories,
s(Δq) = (s1(Δq1) · · · sn(Δqn))T , s1() · · · sn() ∈ � are
saturated functions defined in a book [12], Γd ∈ �n×n is a
positive definite matrix of adaptive gains, d̂ = (d̂1 · · · d̂n)T ,
Qd = diag(qd1 · · · qdn), C = diag(c1 · · · cn), c1 · · · cn

are positive constants, k = (k1 · · · kn)T , Γk ∈ �n×n

is a positive definite matrix of adaptive gains, and Q =
diag(q1 · · · qn).

The desired motion is set to be qdi = ai sin(ωit +
φi) + apiπ (i = 1 · · ·n), where ai, ωi, φi are amplitudes,
angular frequencies, phases, and api are set to be 0 or 1.
In order for the links not to exceed the vertical direction
of gravitational force, the desired motion has to satisfy the
condition |∑i

j=1 qdj | < π − ari (i = 1 · · ·n), where ari

are positive constants. Most walking motions satisfy this
condition.

C. Stability

The candidate of a Lyapnov function Vr can be defined
using passivity of error dynamics [12] and similar discussion
to the section II-F.

2Vr = Δq̇T R(q)Δq̇ + ΔqT (K + CKv + CD + Gl)Δq

+s(Δq)T Kps(Δq) + 2s(Δq)T CR(q)Δq̇

+ΔdT Γ−1
d Δd + ΔkT Γ−1

k Δk (20)

V̇r ≤ −b10||Δq̇|| − b11||s(Δq)|| + b12(k∗) (21)

where Δd = d̂ − d, d = (d1 · · ·dn)T , Δk = k − k∗,
k∗ = (k∗1 · · · k∗n) are constants, b8, b9, b10, b11, b12(k∗) are
positive constants, Gl = diag(gl1 · · · gln), and gl1 · · · gln are
constants playing the same role as the gl in the section II-F.1.

Therefore, the tracking errors Δq̇, Δq converges to a
vicinity of the region b10||Δq̇|| + b11||s(Δq)|| ≤ b12(k∗).

D. Effect of Stiffness Adjustment

An effect of the stiffness adjustment is also proved us-
ing similar discussion to the section II-F.2. We can define
the stiffness k∗ as a vector that minimizes the constant
b12(k∗). The optimal stiffness K∗ can be defined as a
matrix that minimizes maximum value of ||R(qd)q̈d +{

1
2 Ṙ(qd) + S(qd, q̇d)

}
+ g(qd) + K∗qd||. This concept is

also similar to the resonance of linear systems. Therefore,
the proposed controller (17), (18), (19) minimizes the region
of the tracking errors as if the optimal stiffness is realized.

E. Simulation

We conducted a numerical simulation of a 2-link serial
link system as shown in Fig.4 to demonstrate validity of
the proposed controller. This model is similar to a simplest
walking model [2]. Hence, the q1 is assumed to be an angle
of an ankle joint, and the q2 is assumed to be an angle of a
hip joint.

The desired motion qd was set to represent a half cycle
of a walking motion like taking a step forward as shown
in Fig.5(a), Fig.5(b). The equation (16) was adopted as a
dynamics. The equations (17), (18), (19) were adopted as a
controller.

Fig.5(a), Fig.5(b), Fig.5(c), Fig.5(d) shows that angles and
angular velocities nearly converged to the desired ones. The
stiffness nearly converged to constant values with a little
oscillation as shown in Fig.5(e). The estimation of viscosity
were almost achieved as shown in Fig.5(f).

The necessary torque to generate the desired motion
without viscous torque τd1, τd2 were almost compensated by
the torque of the stiffness k1q1, k2q2 after the convergence
of the other variables as shown in Fig.5(g), Fig.5(h), where
(τd1τd2)T = R(qd)q̈d +

{
1
2 Ṙ(qd) + S(qd, q̇d)

}
q̇d +

g(qd). Hence, the actuator’s torque τ1, τ2 were nearly nec-
essary to compensate the viscous torque to generate the
desired motion d1q̇d1, d2q̇d2, like the resonant condition of
linear systems as shown in Fig.5(i), Fig.5(j). Therefore, the
effect of the stiffness adjustment was verified through the
simulation results.

F. Summary

The controller (17), (18), (19) guarantees the convergence
of the tracking errors to the certain region for serial link

q1

q2k1

k2

τ1

τ2

Fig. 4. Controlled Object of Simulation
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Fig. 5. Simulation Results

systems as shown in Fig.4. Therefore, the torque of the
actuators converges to the certain region, and the stiffness
adjustment (19) minimizes the region. The proposed con-
troller uses no dynamics models and no parameters of the
dynamics. The effectiveness of the controller is demonstrated
by the simulation results.

IV. APPLICATION TO POWER ASSIST SYSTEM

This section shows an application of the control method
in this paper to power assist systems.

Walking motions of human have been studied a lot recently
[10], and some assistive systems are proposed utilizing
characteristics of the walking motion [5] [8] [3]. One of
the characteristics is that some parts of walking motions
and torque are composed of sinusoids [10] [3]. Hence, we
have proposed power assist systems that amplify sinusoidal
operator’s torque while generating sinusoidal motions by
minimum actuator’s torque utilizing stiffness adjustment [5]
[8]. Effectiveness of the power assist systems have been
verified through some simulations and experiments [9]. How-
ever, our previous method is restricted to linear systems
assisting 1 joint of its operator. The control method of this
paper extends our previous power assist systems to nonlinear
systems assisting some joints of its operator.

A. Dynamics

Dynamics of an exoskeleton type power assist system
with its operator having n joints is similar to the serial link
systems (16).

R(q)q̈ +
{

1
2
Ṙ(q) + S(q, q̇) + D

}
q̇ + g(q)

= −Kq + τ + τ h (22)

where τh is a vector of torque of the operator, and other
vectors and matrixes are the same as the section III-A.

B. Assumption

The torque of the operator assumed to be sinusoidal.
τ h = (τh1 · · · τhn)T

= (a1 sin(ω1t + φ1) · · · an sin(ωnt + φn))T (23)

where a1 · · · an, ω1 · · ·ωn, φ1 · · ·φn are amplitudes, angular
frequencies, phases of the torque of the operator τh,

In the case of the application to the power assist systems,
the dynamics model and the all parameters are assumed
to be known because of necessity of calculation of the
operator’s torque τh. However, to adapt change of pattern
of the operator’s torque τh, the amplitudes, the angular
frequencies, the phases ai, ωi, φi(i = 1, 2 · · ·n) are assumed
to be unknown. Therefore, the torque of the operator τh

can be calculated from the dynamics model (22), but the
calculated values can not be used directly as the torque of
the actuators τ in view of causality, because dimension of
the calculated values is torque.

C. Control Objective

Under above the dynamics and the assumptions, control
objective is to amplify the torque of the operator τh by the
torque of the actuators τ and to reduce the torque of the
actuators τ by adjustment of the stiffness K .

D. Controller

1) Torque of Actuators: To amplify the torque of the
operator τh by factors of amplification gains kpa1 · · · kpan,
the torque of the actuators are designed using estimated
values of operator’s torque τ̂h.

τ = Kpaτ̂h − KvΔq̇ − Kps(Δq) (24)
qd = (E + Kpa)D−1τ̂hi (25)

where Δq = q − qd, Kpa = diag(kpa1 · · · kpan), E =
diag(1 · · · 1) ∈ �n×n, τ̂hi =

∫ t

0 τ̂hdt and the others are
the same as the equation (17). The desired trajectories qd

are assumed to be satisfied the condition of the section III-
B.
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If the estimated values τ̂h converges to the true values
τh, the first term of the controller (24) becomes amplified
torque of the operator’s torque τh.

2) Estimation of Operator’s Torque: Estimation of the
operator’s torque is done using the adaptive observer [9].

τ̂h = −KoΔτh − Θτ̂hi (26)

where the matrix Ko > 0 is a matrix of observer gains,
Δτh = τ̂h − τh, Θ = diag(θ1 · · · θn), and θ1 · · · θn are
estimated values of ω2

1 · · ·ω2
n.

The estimation of the θ1 · · · θn is done by the update law.

θ̇ = ΓθT̂hΔτh (27)

where θ = (θ1 · · · θn)T , Γθ are adaptive gains, and T̂h =
diag(τ̂h1 · · · τ̂hn). Therefore, the torque of the actuators (24)
don’t include signals whose dimension is torque, and the
proposed controller satisfy causality. Detail of the adaptive
observer is written in our previous paper [9].

3) Adjustment Law of Stiffness: The same adjustment law
of the stiffness described in (19) is adopted for the power
assist systems.

E. Convergence of Torque Estimation

Convergence of the estimation (26) is proved using a
candidate of a Lyapnov function Ve.
2Ve = ΔτT

hΔτh + ΔτT
hiWΔτhi + ΔθT Γ−1

θ Δθ (28)

V̇e = −ΔτT
hKoΔτh (29)

where τhi = τ̂hi −
∫ t

0 τhdt, W = diag(ω2
1 · · ·ω2

n). Using
LaSalle’s invariance theorem, τ̂h → τh, θi → ω2

i (i =
1 · · ·n) are guaranteed when t → ∞. Therefore, the torque
Kpaτ̂h converges to amplified torque of the operator Kpaτh,
and the torque amplification is realize by the controller (24).

F. Stability

Stability is guaranteed by a candidate of a Lyapnov
function Vpa = Ve + Vr composed of Ve and Vr of the
section III-C.

G. Effect of Stiffness Adjustment

Discussion of an effect of the stiffness adjustment is
almost the same as that of the section II-F. Therefore, the
inertial and the elastic torque are largely compensated by the
torque of the adjusted stiffness.

H. Summary

For the power assist system, which has the nonlinear
dynamics (22), the controller (24) (26) (27) (19) realize
the amplification of its sinusoidal operator’s torque and the
stiffness adjustment under some assumptions of the section
IV-B. Therefore, the inertial and the gravitational torque to
generate the desired motions are largely compensated by the
torque of the adjusted stiffness. The proposed controller uses
the dynamics model and all the parameters of the dynamics
owing to calculation of the operator’s torque. However, the
amplitudes, the frequencies, the phases of the operator’s
torque can be unknown to adapt change of torque pattern
of the operator.

V. CONCLUSION

This paper has presented a control method utilizing stiff-
ness adjustment of mechanical elastic elements for serial link
systems. The proposed controller guarantees convergence
of tracking errors to a certain region, and minimizes a
region of actuator torque by the stiffness adjustment. Thus,
inertial and gravitational torque to generate desired motions
is largely compensated by torque of the adjusted stiffness.
The controller uses neither dynamics models nor parameters
of the controlled objects owing to simplicity of the controller.

An application of the control method to power assist
systems was also presented. In this case, a controller was
proposed to amplify sinusoidal torque of its operator, and
to adjust stiffness to compensate inertial and gravitational
torque by torque of the adjusted stiffness. The controller
of the application uses information of dynamics model and
all parameters of the dynamics, but amplitudes, frequencies,
phases of the operator’s torque can be unknown in order to
adapt changes of torque pattern of its operator.
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