
A genetic algorithm for
nonholonomic motion planning

Gorkem Erinc
School of Engineering and Science

International University Bremen – Germany

Stefano Carpin
School of Engineering

University of California, Merced – USA

Abstract— The paper presents a genetic algorithm to find and
optimize solutions for nonholonomic motion planning problems.
Mainly focusing on mobile robots, the algorithm uses present
randomized algorithms to come up with suboptimal paths and
iteratively optimizes them according to a fitness function which
includes domain specific knowledge. The major advantages of
this method include being an any-time algorithm, and improv-
ing the quality of the solution throughout the evolutionary
process. An extensive experimental analysis comparing our
results with state of the art algorithms outline the effectiveness
of the proposed methodology.

Index Terms— nonholonomic motion planning, genetic algo-
rithms, mobile robots

I. INTRODUCTION

Since the publication of Laumond’s seminal paper on
non-holonomic motion planning [1], there has been an ever
increasing amount of research devoted to the subject. The
grounds of this vein of research are found in the fact that
most robots indeed involve nonholonomic constraints. This
is specially true for wheeled mobile robots. However, even
the basic motion planning is well known for being a prob-
lem exhibiting intrinsic high complexity (NP-HARD) [2].
Nonholonomic motion planning is therefore not amenable
to easy to compute solutions. As outlined in section III,
along the years different solutions were proposed. Some
are able to solve the problem very quickly, but without
any guarantee for what concerns path quality. Of course,
having the possibility to choose between multiple solutions,
we would prefer solutions featuring shorter or safer paths.
Other solutions instead produce solutions that can be very
close to the shorter one, but, not surprisingly, their time
requirements dramatically grow when closer approximations
are sought. Realizing that motion planning can be seen as
an optimization problem, in this paper we propose a genetic
algorithm for motion planning of car-like vehicles in static
environments that aims to position itself between these two
extremes. The presented algorithm iteratively refines a set of
candidate solutions according to a fitness function taking into
account not only path length, but also other criteria, an aspect
often not addressed in other motion planning algorithms. A
set of four domain specific genetic operators to evolve the
population over time has been developed. Finally, it is worth
outlining that while genetic algorithms were already used to
study holonomic motion planning problems, to the best of
our knowledge, the application to nonholonomic problems
is scarce. The paper is organized as follows. Section II

formalizes the problem as well as the vehicle model used
throughout the paper. Related literature relevant for the
current paper is presented in section III. Section IV is the
core of the paper, where the different components of the
genetic algorithm are presented. Comparative experimental
results are illustrated in section V, and conclusions are
offered in the closing section VI.

II. PROBLEM FORMULATION

We shortly formalize the nonholonomic motion planning
problem. The interested reader is referred to the book by
LaValle [3] for a comprehensive presentation of the topic.
We mainly follow the notation used therein. Let W be the
workspace where the robot A moves, and let O ⊂ W be the
obstacle region in the workspace. Associated with A there
exists a configuration space C. Indicating with A(q), q ∈ C,
the subset of W occupied by A when it is at configuration
q, we define Cobs and Cfree as follows:

Cobs = {q ∈ C | A(q) ∩ O 6= ∅}

Cfree = C \ Cobs

Given qinit, qgoal ∈ Cfree, the piano movers problem, i.e.
the holonomic motion planning problem, asks to determine a
continuous path p : [0, T]→ Cfree such that p(0) = qinit and
p(T) = qgoal. The fact that p cannot enter Cobs is a so called
global constraint. In the nonholonomic motion planning
problem, a set of additional non integrable constraints in the
form

g(q, q̇) ./ 0 (1)

have to be satisfied for each q along the path, where ./ can
be =, <,≤, > or ≥. These constraints are local, and state
that the robot cannot achieve arbitrary velocities, because
they must always satisfy relationship 1. Assuming that at
each configuration q ∈ Cfree a set of inputs U(q) can be
applied to the robot, local constraints can also be expressed
in parametric form, i.e.

q̇ = f(q, u).

The meaning is the same, i.e. the velocity cannot be freely
chosen, but it is rather constrained by the configuration and
the set of inputs available at that configuration. One of the
simplest examples of nonholonomic system is the car. Its
configuration space is R2 × SO(2), i.e. its configuration
is q = (x, y, θ) with θ ∈ [0, 2π). The car cannot move

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA6.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1843

sideways, but in the short time interval it always moves
along the direction of the rear wheels. This constraint can
be expressed as

ẏ cos θ − ẋ sin θ = 0

which is a non integrable instance of equation 1. Let L be
the distance between the front and the rear wheels. The same
constraint can be expressed in parametric form assuming that
two inputs us, speed, and uφ, steering, can be applied.

ẋ = us cos θ

ẏ = us sin θ

θ̇ =
us

L
tanuφ

By restricting us ∈ {−1, 1} and uφ ∈ {φmax, φmin} we
obtain the famous Reeds and Shepp car. By disallowing the
input us = −1 the Dubins car is obtained. This is the model
that will be used from now on.

III. RELATED WORK

A significant amount of research has been devoted to
non-holonomic motion planning. Due to space constraints,
we here briefly report only about the methods relevant for
the sequel of this paper. A solution to the nonholonomic
problem was proposed by Barraquand and Latombe [4].
Their approach, also called Forward Dynamic Programming
(FDP), is based on dynamic programming. In order to speed
up the process, the configuration space is preliminary divided
into cells whose shape is a parallelepiped. Initially every cell
is labeled as free. The algorithm starts by creating a tree
rooted at the starting configuration qinit. Leaves in the tree
are additionally stored in a priority queue Q sorted according
to the cost-to-come. At every iteration the algorithm extracts
the leaf with the lowest cost from Q. Let this configuration
be qmin. All applicable inputs are applied to qmin in order to
create its descendants. Each of the descendent configurations
is validated to determine whether it should be inserted in
Q or not. A configuration not in Cfree or lying in a cell
marked as visited is discarded. Otherwise, after its cost is
calculated it is inserted in Q and the corresponding cell
label is changed to visited. This process is iterated until the
cell containing qgoal receives the visited label. Fine grained
cell subdivisions lead to solutions approximating better and
better the best solution. Clearly, the finer a subdivision, the
higher the time needed to explore it. The Rapidly-exploring
Random Trees (RRT) algorithm introduced by LaValle [5]
also builds a tree T rooted at the starting configuration qinit.
At every iteration a random configuration qnew is generated
and the closest node qnear in T is determined. By applying
suitable inputs, T is extended from qnear towards qnew. The
extension of a branch terminates when an obstacle is hit, or
after a fixed integration time. By combining two trees into a
bidirectional search schema, RRT is able to solve challenging
motion planning problems and is practically one of the fastest
planners available. One drawback is that the determined path
is in no way optimal with respect to path length, clearance,
or any other criteria.

For what concerns genetic algorithms for motion planning
problems, Michalewicz, Xiao et al. [6][7] developed a plan-
ing/navigation algorithm for a holonomic robot moving in 2D
that shows the power of evolutionary computation for motion
planning tasks. The chromosomes are paths consisting of
one or more line segments. Each chromosome includes the
initial and goal configurations, and additional intermediate
nodes. Each node consists of x and y coordinates and a
Boolean state variable that indicates whether the node and
the line segments initiating from that node are feasible. The
number of nodes in a chromosome is randomly generated in
the initialization process. The diversity of the population is
sustained by eight operators. Notably, the firing probabilities
of the operators are not fixed but tuned during the evolu-
tionary process. Moreover, in the papers by Hocaoglu and
Anderson [8][9] another novel approach to multidimensional
path planning for holonomic mobile robots is demonstrated.
The most notable characteristic of this approach is its path
representation. In contrast to most path planners which use
a fixed resolution, they use a multiresolution representation
to cope with a variety of different environments. Not all the
applications on evolutionary computation in motion planning
focus on mobile robots. Nikolos et al. [10] demonstrate an
evolutionary approach able to solve the planning problem for
an aerial vehicle in both known and unknown environments.
The path planner generates the solutions as curved paths in
a 3D terrain environment by using B-Splines.

IV. THE GENETIC ALGORITHM

This section describes the different components needed
to implement the proposed genetic algorithm. The reader
is referred to [11] for a comprehensive introduction to the
subject.

A. Encoding

Genetic algorithms evolve a population of candidate solu-
tions, called chromosomes over time. The encoding process
establishes how solutions are represented in chromosomes.
It is important to observe that in the studied motion planning
problem candidate solutions do not necessarily lie entirely in
Cfree, but can intersect obstacles. We extended the encoding
defined in [7] into a structure where a chromosome represents
a path as a linked list of nodes. In genetic algorithms jargon
nodes are called genes. Each gene includes the following
information: a configuration q = (x, y, θ) and two action
variables (us, uφ). The action variables are such that if ni

and ni+1 are two successive nodes, then the configuration
qi+1 associated with ni+1 is obtained from qi applying the
inputs stored in ni. Finally, a boolean variable bi carrying
the information about the feasibility of the node is included
in the structure. The feasibility of the node is determined by
two factors: 1) q ∈ Cfree 2) the path connecting the current
node to the next one lies entirely in Cfree. A solution is said
to be feasible when all its nodes are feasible, and infeasible
otherwise. The resulting encoding can be seen in Figure 1.

ThA6.5

1844

Fig. 1. The structure of a chromosome representing a path.

B. Creation of the initial population

An initial population in which each chromosome corre-
sponds to a path has to be created to be evolved iteratively.
The paths will be recombined and mutated during the evo-
lution process. Hence, during the evolution either the local
constraints are satisfied all the time, while global constraints
are abandoned, or both constraints can be ignored. Satisfying
both constraints is an option, but then the algorithm would be
so restrained that it could not create enough variations during
the evolution. Our approach is to start with paths satisfying
the nonholonomic constraints and assure that during the
evolution no path violating them is ever generated. In order
to create the initial chromosomes the RRT algorithm is used.
This planner is well suited because it indeed generates paths
complying with the nonholonomic constraints. However, in
order to make the computation faster and to explore a vaster
spectrum of candidate solutions, the algorithm is run without
the collision checker, i.e. configurations lying in Cobs are
not discarded. The planner therefore creates solutions that in
general cross obstacles. In the following, whenever we say
generating a path between two points we mean running the
RRT algorithm without collision checking.

C. Genetic operators

Genetic operators are used to generate new offspring and
evolve the solution population. The success of an operator
mainly depends on the integration of the domain specific
knowledge into the design of the operator. As stated in
Michalewicz’s book [11], empirical studies show that prob-
lem representations closer to the natural representation of the
problem do better than the others. With this idea in mind we
propose four mutation operators in addition to the one-point
crossover operator, that evolve chromosomes into possibly
better ones by manipulating intermediate nodes. Please note
that the defined genetic operators may result in feasible
or unfeasible chromosomes which eventually increase the
diversity in the population. A discussion about the firing
probabilities and their effectiveness will be provided in
section V.

1) Crossover: The crossover operator takes two feasible
or unfeasible chromosomes and produces two new ones. The
two paths are cut at random switch points and are recombined
as shown in figure 2. Since different solutions in general
do not feature the same number of nodes, and due to the
fact that paths must be continuous and compatible with the
kinematic constraints, parts cannot be seamlessly attached
to each other. Junctions are rather obtained by running the
bidirectional RRT planner in Cfree.

2) Mutation-1: This operator is applicable to both feasible
and unfeasible paths and attempts an optimization in path
length. It selects a first random node from a given path.

Fig. 2. (a) Two chromosomes before applying the crossover operator are
shown where the crosses present the switching points. (b) The emergence
of new chromosomes after the crossover. New subpaths between the crosses
are obtained running the RRT algorithm.

Then, by parsing the chromosome it makes a list of genes
that are located in a local neighborhood whose shape is
a ball of radius ε centered on that node and depicted as
region A in Figure 3. After randomly selecting a second
node from this list, all the nodes in between the first and the
second are deleted. An intermediate path segment is created
by a bidirectional RRT connecting these two nodes. The new
generated path segment replaces the old segment.

Fig. 3. (a) The upper curve is the chromosome before the application of
Mutation-1. Inside the ball shaped neighborhood centered on a randomly
chosen point represented by the upper cross, another point, the lower cross,
is selected and a path segment connecting these two is generated. (b) The
resulting chromosome is shown.

3) Mutation-2: This operator is like Mutation-1, but the
location of the second node is randomly selected without
being bounded to any region except the borders of the
configuration space.

4) Mutation-3: This operator is applied only to chro-
mosomes encoding unfeasible solutions. It first identifies
a subpath C crossing an obstacle. Let B1 be a set of
consecutive nodes of predefined length preceding C and B2

be a set of equal size of consecutive nodes following C. The
length of B1 and B2 are chosen according to the dimensions
of the environment and the vehicle. The operator randomly
selects two genes, p1 ∈ B1 and p2 ∈ B2. Then, a random-
walk starting from p1 and consisting of a preset number of
steps is generated. At each step a randomly chosen input
is applied for a fixed time interval. At last a path segment
is generated by running a bidirectional RRT initiating from
the last point of the random-walk and ending at p2 and
concatenated to the random-walk segment. The mutation

ThA6.5

1845

process finishes replacing the original segment between p1

and p2 with the resulting path segment. The process is
depicted in Figure 4.

Fig. 4. A sample application of random-walk mutation. The small circle
on the left is the point in the path where the random-walk starts, while the
upper circle is where it ends. The final point in the random walk is then
connected to the node indicated by the small circle on the right.

5) Mutation-4: The last mutation operator is also to be ap-
plied to unfeasible paths and inspired from TangentBug [12],
which is a local sensor-based obstacle avoidance algorithm.
Our algorithm mimics the movements of a bug by following
the contours of the obstacles until it is able to move directly
towards the target. It uses a virtual finite range sensor called
Antenna instead of a contact sensor used in traditional Bug
algorithms. In this mutation operator regions B1 and B2 are
defined as for Mutation-3. In addition, the set containing
the last n genes in B1 is classified as deadzone, D1. A
symmetric definition applies for defining the set D2 ⊂ B2.
The operator selects one gene from B1 \D1 and one from
B2 \ D2. With equal probability it then randomly decides
from which one it starts. Before initiating the movement,
first the Antenna is created by applying each input for a
fixed number of times. After each application of each input
the resulting configuration is checked for collision. Figure 5
depicts how the antenna looks like. In case of a collision,
the extension of that arc is stopped. If there is no collision
in any nodes of the extended antenna, then it means there is
a direct visibility of the goal point in the local perspective
so the robot can move towards it. In this way, after trying

Fig. 5. A schematic representation of the antenna virtual sensor used to
implement the TangentBug algorithm.

all possible inputs, the one that causes the robot to move
toward the goal point is selected and applied. On the other
hand, if a collision occurs during one of the extensions of
the arcs, then the robot realizes that an obstacle is in the
range. Thus, it tries to get away from it by applying the
input resulting in the maximum deviation from the direction
of the obstacle. In other words, if one of the left arcs of the
antenna hits the obstacle, then the rightmost input is applied.
If the obstacle is right ahead, then one of the extreme inputs
is selected with a 0.5 probability. The movement procedure
is carried out for a preset number of times. At the end of the
local navigation the end point is connected to the rest of the
solution by running a bidirectional RRT in between. Figure
6 illustrates an example of application.

Fig. 6. A sample application of a successful Bug mutation where small
circles demostrate the limits of the path segment altered by the mutation.

D. Fitness function

The role of the fitness function is to rank the chromo-
somes, i.e. candidate solutions to the given motion planning
problem. Within the fitness function it is then possible to
embed different quality criteria. The fitness of a solution is
defined as the reciprocal of the cost, which is the weighted
sum of four contributions:

cost(s) =
4∑

i=1

cicosti(s) (2)

Each of the four terms accounts for one quantity to be
minimized. The first one computes the path length, i.e.

cost1(s) =
k∑

i=1

RKI(us(i), uφ(i)) (3)

where k is the number of nodes composing the given
chromosome and RKI denotes the length of the arc obtained
applying a Runge-Kutta integration. The second term ac-
counts for safety. Due to unavoidable execution errors, it is
preferable to avoid paths with small clearance from obstacles.
Let d(q) be the distance between the robot at configuration q

ThA6.5

1846

and the closest obstacle. The safety penalty at configuration
q is defined as follows:

a(q) =

 0 if d(q) ≥ ds

1/d(q) else if ds > d(q) > dl

1/dl otherwise
(4)

where ds and dl are two suitable constants depending on
the robot. The overall safety cost is taken by summing up
the safety penalty accrued by all configurations composing
a candidate solution:

cost2(s) =
k∑

i=1

a(q(i)) (5)

The third aspect is smoothness. Sharp turns are less prefer-
able to smooth ones, because they imply a lower velocity in
order to be executed. A cumulative cost is defined as follows:

cost3(s) =
k∑

i=1

|uφ(i)| (6)

Finally, since candidate solutions crossing obstacles are
allowed during the evolutionary process, a feasibility cost
is added. The penalty for infeasible solutions measures the
effort necessary to make the path feasible. In order to
calculate this measure, a visibility graph of the environment
is created in the initialization process of genetic algorithm
to be used through all the iterations. The effort is then
measured by using Dijkstra’s algorithm to compute the length
of the shortest path in the visibility graph shortcutting a
subpath crossing an obstacle. Figure 7 shows an example
of the outcome of this procedure. The summation of this

Fig. 7. The illustration of the infeasibility penalty calculation. The dashed
path represents the path of the mobile robot, while the solid lines are the
outcome of the visibility graph approach.

measure for all obstacles intersected by the path symbolizes
the minimum effort to change the path in order to make it
steer around the obstacle as if it was a holonomic path. The
greater this cumulative measure is, the more difficult it is to
make the path feasible.

E. Termination condition

Genetic algorithms are iterative processes that need a
terminating condition to stop the optimization process. After
having tried different alternatives, we have found that the
most effective one consists in identifying when the first
feasible solution is found and then still continuing for a
fixed number of iterations. An upper bound on the overall
number of evolved generations is also introduced. Due to
the elitist strategies clarified in the next subsection, the
first valid solution found is unlikely to be discarded during
these additional iterations, although in theory this could
happen. The additional iterative cycles performed after the
first solution was found aim to its further optimization.

F. The evolutionary process

We now have the elements to describe how the opti-
mization process evolves. The algorithm initially creates
a population p consisting of P elements. Every iteration
evolves as follows, and starts assuming that chromosomes in
p have been sorted according to their fitness. Let p′ be the set
consisting of the T < P elements with the highest fitness (we
call this process truncation). S chromosomes are selected
from p′ through a fitness based wheel selection process, and
inserted in a set p′′. S new chromosomes are then generated
from the elements in p′′ applying the genetic operators
formerly described. The newly generated S chromosomes are
then added to the initial population p. In order to keep the
population at a constant size P , p is sorted according to the
fitness and only the best P chromosomes are retained. Then
a new iteration can start, unless the termination condition
is met. Algorithm 1 provides the pseudocode for the overall

1: p ← initializePopulation(P)
2: calculateFitness(p)
3: sort(p)
4: while Termination Condition is NOT met do
5: p′ ← Truncate(p, T)
6: p′′ ← RouletteWheel(p′, S)
7: Crossover(p′′)
8: Mutations(p′′)
9: p′′′ ← p ∪ p′′

10: calculateFitness(p′′′)
11: sort(p′′′)
12: p ← Select(p′′′, P)
13: end while
14: bestSolution ← getBest(p)
15: return bestSolution

Algorithm 1: Algorithmic procedure

optimization procedure. The Select step (line 12) implements
an elitist strategy, i.e. it aims to retain the chromosomes
exhibiting the best fitness in the next generation. Therefore,
the average population fitness never decreases during the
evolutionary process.

ThA6.5

1847

V. EXPERIMENTAL RESULTS

In this section we first examine the effectiveness of the
proposed algorithm and contrast it with the RRT and FDP
algorithms illustrated in section III. The algorithm has been
coded within the Motion Strategy Library software [13], an
open source package offering off-the-shelf implementations
of the above algorithms, as well as a set of test environments.
Tests were executed on a 2.2Ghz Pentium IV with 512 Mb of
RAM running Linux. Displayed results for the presented ge-
netic algorithm are the average of 100 independent runs. Due
to space limitations, the whole result set is not presented. The
interested reader is referred to [14] for a thorough discussion.
Table I provides the default values for the parameters in the
algorithm.

TABLE I
DEFAULT VALUES FOR THE PARAMETERS

P T S w1 w2 w3 w4

10 8 4 0.5 0.01 0.25 5

A. Application of genetic operators

After the set p′′ has been created through wheel selection
from the set of fittest chromosomes, crossover and the four
mutation operators are applied in order to generate the new
offspring. Currently, we use fixed firing probabilities, i.e. the
probability to apply operators is fixed throughout the entire
evolutionary process. To be specific, crossover is applied with
probability pcross = 0.6, while the mutation operators have
probability 0.2, 0.1, 0.1 and 0.4. These values were chosen
after an extensive set of preliminary experiments. In addition
to firing probabilities, the order in which genetic operators
are applied is also important. We have experimented four
different mutation schemas. Each of them starts by applying
crossover with probability pcross, but then differ in the
application of mutation operators.

1) Mutation schema 1: each mutation operator is applied
independently according to the given firing probabilities. The
order of application is fixed (first Mutation-1, then Mutation-
2 and so on).

2) Mutation schema 2: acts like schema 1, with the dif-
ference that after mutation took place, the resulting offspring
replaces its input only if a fitness improvement is observed.

3) Mutation schema 3: like mutation schema 1, but the
order is randomly chosen (each permutation has equal prob-
ability).

4) Mutation schema 4: in this case one operator is chosen
randomly, with probability proportional to its firing proba-
bility, and then applied. Only one mutation takes place.

We have experimentally observed that the second mutation
schema shows the best trade off in terms of path quality and
computation time, therefore in the comparative evaluation
with other motion planners this mutation schema is used.

B. Comparison with other motion planners

As stated in the introductory section, our goal is to obtain
an algorithm that obtains solutions of increasing quality when

more and more computation time is allotted. We have chosen
to compare it with the RRT (specifically the RRTExtExt
version) and with FDP, two algorithms offering antithetical
characteristics, as outline before. For RRT we have gathered
statistics in two ways. The first one runs the algorithm 100
times and computes the average path length, as well as the
average executing time. The second one, indicated as RRT-
best runs the algorithm 100 times and produces as output the
best solution found. The time needed to run the algorithm
100 times is therefore charged to the best solution. For what
concerns FDP, we have run it with different grid resolutions.
FDP−y indicates that FDP has been run on a grid obtained
by dividing each dimension in y equal parts. For the proposed
genetic algorithm, we run three different versions. The first
one, indicated as GA-20 evolves 20 additional generations
after the first feasible solution is found, while GA-50 and
GA-100 continue for 50 and 100 additional generations.
Figures 8 and 9 compare the path length and the execution
time of the algorithms. It is evident that the proposed
technique positions itself between RRT and FDP with respect
to both computation time and path length.

VI. CONCLUSIONS

Inspired from work done on the integration of genetic
algorithms with holonomic planning, the scientific challenge
of using genetic algorithms for solving nonholonomic motion
planning problems is addressed in this paper. We aimed to
experimentally assess the applicability of genetic algorithms
to this task, by recasting it as an optimization problem.
With this purpose in mind, by incorporating domain specific
knowledge into the fitness function and genetic operators,
an algorithm focused on mobile robots has been developed.
As presented in section V, the success of the algorithm is
empirically proven on several problems in comparison to
the existing planners which can solve nonholonomic motion
planning problems so the target is achieved. In most of
the four benchmark problems used to contrast the proposed
genetic algorithm with the state of the art RRT and FDP
algorithms, the algorithm shows a good tradeoff between
path quality and computation time, thus reaching the goals
we had fixed in the beginning. In the future we aim to extend
the proposed technique to a broader class of systems, like
the Reeds Shepp car, or vehicles featuring additional differ-
ential and nonholonomic constraints like bounded curvature
derivatives and the alike.

REFERENCES

[1] J.-P. Laumond, “Trajectories for mobile robots with kinematic and
environment constraints,” in Proceedings International Conference on
Intelligent Autonomous Systems, 1986, pp. 346–354.

[2] J. F. Canny, The Complexity of Robot Motion Planning. Cambridge,
MA: MIT Press, 1988.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006, available at http://planning.cs.uiuc.edu/.

[4] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, pp. 121–155, 1993.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

ThA6.5

1848

Fig. 8. Comparison of the output qualities of the existing methods with GA where the quality of a path is set to its path length.

Fig. 9. Comparison of running times of all algorithms.

[6] H. S. Lin, J. Xiao, and Z. Michalewicz, “Evolutionary navigator for
a mobile robot,” in Proceedings IEEE International Conference on
Robotics and Automation, 1994, pp. 2199–2204.

[7] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive
evolutionary planner/navigator for mobile robots,” IEEE Transactions
on Evolutionary Computation, vol. 1, no. 1, pp. 18–28, April 1997.

[8] C. Hocaoglu and A. C. Sanderson, “Planning multiple paths with
evolutionary speciation,” IEEE Transactions on Evolutionary Com-
putation, vol. 5, pp. 169–191, June 2001.

[9] ——, “Multi-dimensional path planning using evolutionary computa-
tion,” in IEEE World Congress on Computational Intelligence, May
1998, pp. 165–170.

[10] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N.
Kostaras, “Evolutionary algorithm based offline/online path planner
for UAV navigation,” IEEE Transactions on Systems, Man and Cyber-
netics, Part B, vol. 33, no. 6, pp. 898–912, December 2003.

[11] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed. Springer Verlag, 1994.

[12] I. Kamon, E. Rivlin, and E. Rimon, “New range-sensor based globally
convergent navigation algorithm for mobile robots,” in Proceedings -

IEEE International Conference on Robotics and Automation., vol. 1,
1996, pp. 429–435.

[13] S. LaValle, “Msl - the motion strategy library software, version 2.0,”
http://msl.cs.uiuc.edu.

[14] G. Erinc, “Nonholonomic motion planning with genetic algorithms
for car-like robots,” Master’s thesis, International University Bremen,
2006.

ThA6.5

1849

