
 
 

 

  

Abstract—The CCD camera and the 2D laser range finder are 
widely used for motion estimation and 3D reconstruction. With 
their own strengths and weaknesses, low-level fusion of these 
two sensors complements each other. We combine these two 
sensors to perform motion estimation and 3D reconstruction 
simultaneously and precisely. We develop a motion estimation 
scheme appropriate for this sensor system. In the proposed 
method, the motion between two frames is estimated using three 
points among the scan data, and refined by nonlinear 
optimization. We validate the accuracy of the proposed method 
using real images. The results show that the proposed system is 
a practical solution for motion estimation as well as for 3D 
reconstruction. 

I. INTRODUCTION 
OTION estimation and 3D reconstruction are 
fundamental problems in computer vision and robotics. 

The most popular sensors are CCD cameras and laser range 
finders. The CCD camera provides the projected image of an 
entire 3D scene. However, we cannot obtain the depth 
information of the scene from an image without constraints. 
The 2D laser range finder provides the depth information of 
the scanning plane. However, we cannot obtain the depth 
information of the entire 3D structure from scan data without 
an additional device such as a tilting module. 

Several methods have been proposed to estimate motion in 
3-D space using CCD cameras. The 5-point algorithm [1] and 
3-point algorithm [2][9][10] estimate the initial motion using 
some point correspondences and minimize the reprojection 
error. Probabilistic approaches based on the extended Kalman 
filter (EKF) or particle filter provide good motion estimation 
results [3]. Calibration methods using constraints also have 
been proposed [16]. However, the 3D reconstruction results 
are not very accurate because of the limitation of image 
resolution. 

To obtain and utilize accurate depth information, laser 
sensors can be used. A method for SLAM (simultaneous 
localization and mapping) using a 2D laser sensor is proposed 
in [4]. This method requires the 2D laser sensor to be tilted 
slowly. 

A method for using both sensors, camera and laser, is 
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proposed in [5]. A 3D laser sensor is hung under a balloon to 
scan the upper part of ruins. A camera is attached to the laser 
sensor to refine the distorted scan data due to the motion of 
the balloon. The motion of the balloon is estimated using the 
image sequences captured by the camera, and refined using 
several constraints from the camera motion and the laser data. 
Both sensors are also used in [11]. In an indoor environment, 
a robot's motion is estimated using a 2D laser sensor. The 
image is then transformed based on this result to facilitate 
feature matching. 

As mentioned above, cameras and laser sensors have 
different characteristics. If two sensors are combined, their 
weaknesses can be complemented by each other; e.g. the 
unknown scale of the single-camera-based approaches can be 
estimated by scan data, and the 3D motion of a 2D laser 
sensor also can be estimated by images. 

We present a new sensor system, the combination of a 
camera and a 2D laser sensor. We also present a noble motion 
estimation method appropriate for this system. The motion 
estimation and 3D reconstruction are achieved 
simultaneously using the proposed sensor system. 

This paper is organized as follows: Section 2 introduces the 
proposed sensor system. Section 3 presents the proposed 
motion estimation algorithm for the system. Experimental 
results are given in Section 4. 

II. COMBINATION OF CAMERA AND LASER 

A. A New Sensor System 
We propose a new sensor system. The sensor system 

consists of a CCD camera and a 2D laser range finder. We 
attach a camera at the top of a laser sensor, as shown in Fig. 1. 
The following algorithms are independent of sensor 
configuration, but the sensors need to be pointed in the same 
direction because the scanned points need to be seen by the 
camera. The relative pose between the sensors is assumed to 
be fixed.  

B. Extrinsic Calibration 
To use images and range data simultaneously, it is 

necessary to transform data into a common coordinate system. 
Therefore, the relative pose between the sensors should be 
computed. A method of extrinsic calibration between a 
camera and a 2D laser sensor was proposed in [6]. The 
camera is calibrated first using a pattern plane [7] with 
concentric circles [8]. Then the position of the plane in the 
camera coordinate system is computed. While the camera 
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captures the images of the plane, the laser sensor also scans 
the same plane. The relative pose between the sensors can be 
estimated because some points of the scanned data are on the 
pattern plane. 

III. MOTION ESTIMATION 

A. Basic Idea 
The basic concept of motion estimation for the proposed 

sensor system is 3D-to-2D matching. This means that we 
minimize the projection error of 3D points on the image plane. 
The most important feature of the system is that the laser data 
are used as the 3D points. The 3D points obtained from a 
single or stereo camera system are inaccurate due to the 
limitation of image resolution. On the contrary, laser points 
have a very small noise, which is independent of the 
measured range. (For example, the sensor used in this paper 
has ±10 mm error at all distances.) This configuration is equal 
to that of the conventional 3-point algorithm, but the 
measured 3D points are very accurate. 

B. Correspondence Search 
To find the location of the current scan data in the 

following image, we project the current scan data onto the 
current image and find the corresponding point in the 
following image, as shown in Fig. 2. Several methods for 
image matching have been proposed in the literature. 
Template matching, KLT [13] and descriptor matching of 
features such as SIFT [12] and G-RIF [15], are good 
examples. In this paper, we use the KLT tracker. 
 

C. Initial Solution 
A degeneracy exists in the conventional 3-point algorithm 

because of the use of a 2D laser sensor. If the laser sensor 
scans a plane, the scanned data lie on a line. To avoid this 
degeneracy, we use the laser data from both frames. 

We have two frames of data, and each frame consists of an 
image and range data. Three laser points are selected from 

two frames. In Fig. 3, 1Q  and 2Q  are from frame 1, and 3Q  
is from frame 2. Transforming them into their own camera 
coordinates gives us 3D coordinates of each point, and then 

1L , 2L  and 3L  are computed. The angles between the 

camera rays, 1θ , 2θ , 3θ , 1φ , 2φ  and 3φ , are also 
computed if we find the corresponding image points of 
projected laser points. (Solid lines and dotted lines represent 
the 3D-to-2D correspondences; the former shows the 
correspondence between images and scan data of the same 
frame while the latter shows that of the other frame.) The 

unknown lengths are 1l , 2l  and 3l . Applying the second law 
of cosines, (1), (2) and (3) are derived from Fig. 3. 
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Solving the equations, we know the coordinates of 1Q , 

2Q  and 3Q  in each camera coordinate system. The motion 
between the frames is computed using these points. 

D. Nonlinear Optimization 
We refine the initial solution by the nonlinear optimization 

of a cost function: 
 

Fig. 3.  Initial solution for the proposed sensor system 

Fig. 2.  Example of correspondence search 

 
Fig. 1.  Sensor configuration 
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where q  and 'q  are the corresponding feature points on the 
images. P  and p  are the laser point and its correspondence 
in the other image. The first term of (4) is the distance 
between the epipolar line and the corresponding point on the 
image. The second term is the projection error onto the image. 
R  and T  are the rotation and translation matrices, and E  is 
the essential matrix. To reduce the ambiguity due to the 
narrow field of view, we use corner features extracted by the 
Harris operation [14]. 

E. 3D Reconstruction 
The 3D reconstruction problem is easily solved with the 

proposed sensor system. If the motion of the system is 
estimated, the scan data are transformed into common 

coordinates. In (6), the rotation iR  and translation iT  are the 
motion from the i-th frame to the (i+1)-th frame. The scan 

data iL  of i-th frame are transformed to the data il1  in the 
laser coordinate system of the first frame. In addition, the 
texture mapping is easy because all of the scan data are 
projected onto the images. 
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Feature points of the images can also be added to the 3D 

points. If the matching is correct, triangulation generates the 
3D information of a wider range than the laser data. However, 
the 3D points generated by the feature points have large 
uncertainty in their positions along the viewing direction of 
the camera. If reducing this uncertainty is impossible using 
many images, only the laser points should be included in the 
3D reconstruction. 

F. Algorithm Accuracy 
To validate the proposed motion estimation algorithm in a 

degenerate case, we compare the accuracy of the algorithm to 
conventional algorithms, perspective 3-point [9] and 
generalized 3-point [10], using synthetic data. We generate 
1,000 motions and 240 3D points similar to the laser data, 
assuming that the laser sensor scans a plane. Three points are 
selected randomly 100 times and supplied to the algorithms 
estimating motion. The Euclidean distance of the translation 
error is computed as the motion error. To make the synthetic 
data more realistic, we add Gaussian noise (mean = 0, 
variance = 15) to the laser data. (This noise is similar to the 
noise in real sensor data.) For the first experiment, we add 

round-off noise and Gaussian noise to the images. The result 
is shown in Fig. 4. In this case, the proposed algorithm works 
much better than the other algorithms because it is designed 
to avoid this kind of degenerate case. In the second 
experiment, we also generate 3D points like the second 
experiment, but we adjust the distance between the laser 
sensor and the plane. Fig. 5 is the result with round-off noise 
on the image. These experiments using synthetic data show 
that the proposed algorithm proved to be more reliable than 
the conventional algorithms as the initial motion estimator. 

IV. EXPERIMENTAL RESULTS 

A. Motion Estimation 
We fix the sensors on a tripod and move the tripod as in Fig. 

6(a). The check pattern in Fig. 6(a) is placed on the floor. 
Several examples of captured data are shown in Fig. 6(b). Fig. 
6(c) shows the result of motion estimation. The total length is 
about 5.7 m and the resulting error using the proposed method 
is less than 50 mm, as shown in Table I.  

To compare results, we perform the same experiment using 
a stereo camera whose baseline is about 330 mm. We extract 
the 3-D coordinates of the image point correspondences by 
triangulation and estimate the initial motion using the ICP 
[17] algorithm. The initial solution is refined to minimize the 
projection error. The distances between the true position and 
estimated position of the tripod are displayed in Fig. 7. The 
results show that the algorithm using a camera and laser 
sensor is better than the algorithm using stereo cameras. 

Fig. 5.  Motion error using laser points (Plane depth vs. Error) 
Round-off noise is added to the image. 

Fig. 4.  Motion error using laser points (Noise variance vs. Error) 
Round-off noise and Gaussian noise are added to the image. 
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B. Outdoor 3D reconstruction 
We attach the proposed sensor system to the side of an 

outdoor vehicle shown in Fig. 8(a). The sensor is rotated 90 
degrees to scan vertically and pointed to the side of the 
vehicle, as shown in Fig. 8(b). The data are obtained in the 
environment shown in Fig. 9, and several examples of 
captured data are given in Fig. 10. The results of motion 
estimation and 3D reconstruction are shown in Fig. 11. The 
black points are the location of the sensor system in each 
frame, and gray points are the scanned points transformed 
into the first frame's camera coordinate system. The laser data 
include the wall of the building and a part of the ground. To 
verify the accuracy of the results, we extract the wall part 
from the reconstruction result and compare it to the floor plan 
of the building. The result in Fig. 12 shows that the 3D 
reconstruction result overlaps the floor plan very well. The 
length of the path is about 110 m and the closed-loop 

translation error is 3.68 m, as shown in Table II. For realistic 
reconstruction results, we can add texture onto the structure. 
Fig. 13 shows several parts of the result in Fig. 11 with 
texture mapping. 

C. Error Analysis 
To compute the accumulated error using real data with 

unknown true motion, we estimate motion using a part of the 
sequence used in Subsection 4.B in both directions. If a part is 

    
Fig. 10.  Example of data captured in outdoor environment 

(Green: projected laser data, Image size: 640×480) 

 
Fig. 9. Outdoor environment 

(The white points on the ground have no relation with this paper.) 

 
(a) Vehicle 

 
(b) The proposed sensor system attached to the vehicle 

Fig. 8.  Vehicle for outdoor experiment 

 
Fig. 7.  Position error compared to a stereo based method 

TABLE I 
INDOOR MOTION ESTIMATION ERROR 

Frame Length Error Error rate 

10 5.7m 50mm 0.9% 

    
(a) Sensor position                    (b) Examples of captured data 

 
(c) Motion estimation result 

Fig. 6.  Motion estimation in indoor environment 
(Red: projected laser data, Image size: 320×240) 
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connected to itself in reverse order, a closed-loop sequence, a 
sequence with known true motion, can be obtained. We 
estimate motion of the generated sequence while adjusting 
the length of it. The result is shown in Fig. 14. The error is 
nearly proportional to the length of the sequence, and the 
error rate is below 1%. 

D. Computation Time 
We check the computation time needed for our proposed 

method. The computer used for this paper has a 2 GHz CPU. 
The total process consists of three major parts: matching, 
computation of initial solution, and nonlinear optimization. 
The average computation time needed for each process is 
given in Table III. More than one second is needed to estimate 
motion of a frame. However, this time can be reduced; e.g. 

the time for matching decreases if the amount of data to be 
matched is smaller, and the time for the initial solution 
decreases if the number of iterations in the RANSAC [18] 
process is lower. Table IV shows the reduced computation 
time using 1/2 of the laser and feature points and 1/10 of the 
number of iteration. The time for initial solution considerably 
decreases, but the time for matching doesn’t decrease because 
of the KLT implementation. If the time for matching 
decreases by using other method, this system can be adapted 
to real time applications. 

TABLE IV 
REDUCED COMPUTATION TIME 

Matching Initial Solution Optimization 

0.688 sec 0.076 sec 0.002 sec 

TABLE III 
AVERAGE COMPUTATION TIME 

Matching Initial Solution Optimization 

0.709 sec 0.947 sec 0.003 sec 

 
Fig. 14.  Closed-loop error using real data 

 
 

 
Fig. 13.  Parts of the result with texture mapping 

 
Fig. 12.  Overlapping the result with the floor plan of the building 

(Yellow: reconstructed walls, Black: estimated motion) 

TABLE II 
OUTDOOR MOTION ESTIMATION ERROR 

Frame Length Error Error rate 

300 110m 3.68m 3.3% 

 

Fig. 11.  Outdoor result of motion estimation and 3D reconstruction 
(Black: estimated motion, Gray: reconstructed 3D structure) 
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V. CONCLUSION 
In this paper, we present a new sensor system for motion 

estimation and 3D reconstruction. Using a camera-based 
motion estimation method, we cannot compute accurate 3D 
structures due to the limitation of image resolution without 
any constraints. Using a 2D laser range finder, we cannot 
compute 3D motion without a tilting module. We combine a 
camera and a 2D laser sensor to complement each other. For 
this system, we propose a new algorithm that uses scan data 
as 3D points of the conventional 3D-to-2D method. This 
algorithm is structured to avoid the degenerate case of the 
conventional 3-point algorithm. Our algorithm proved to be 
more reliable for the proposed system than other algorithms. 
Our sensor system and algorithm provided accurate results in 
both indoor and outdoor experiments. 

The proposed system fusing two different types of sensors 
can be a practical solution for motion estimation and 3D 
reconstruction. 
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