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Abstract— The reaction forces at the base of a robotic
manipulator contain model parameter information which can
be acquired and used towards improving manipulation per-
formance. The on–line extraction of this parameter content
and its use towards improving the performance of model–
based trajectory tracking controllers is examined. A modified
version of a previously proposed nonlinear adaptive control
scheme for rigid robots is also considered and the above source
of information is used to drive its parameters update law.
Simulation studies based on the model of a multilink rigid
robot are employed to demonstrate these approaches.

Index Terms— Base reaction forces/torques, on–line parame-
ter identification, adaptive control, composite adaptive control.

I. INTRODUCTION

Model–based controllers are typically used in robotics
for trajectory tracking applications. Dynamic models are
required for this purpose, the accuracy of which also de-
pends on the knowledge of the manipulator parameters. The
model parameters are often poorly known and this fact may
affect the stability or compromise the performance of the
controllers. A typical example is the well–known computed
torque method (CTM) [1], originally proposed by Luh et al.
[2]. It consists of a model–based feedforward and a feedback
part. The selection of the feedforward part renders the system
linear in closed loop and allows the design of a feedback
controller based on well–established linear techniques. If
there is uncertainty due to unmodelled dynamics or parame-
ter ignorance, the scheme fails to decouple and linearize the
closed–loop system, resulting in deterioration of performance
or even in instabilities. This is the “Achilles’s heel” of the
method.

The present work focuses on dealing with uncertainty
related to the inertial parameters of the links. The disas-
sembling of the robot and the measurement of the inertial
parameters of its components is in general not a feasible
option. One alternative for the estimation of model pa-
rameters is solid modelling using computer aided design
(CAD) packages, which is also difficult for robots with
numerous components of irregular shapes, made of a variety
of materials. Given the above difficulties various parameter
identification techniques have been proposed. From a control
perspective in order to deal with the parameter uncertainty
problem, robust and adaptive control techniques have been
developed. The former are characterized by the ability to

maintain stability and good performance in the presence
of parameter uncertainty, unmodelled dynamics and dis-
turbances. The latter are endowed with parameter learning
capabilities so that manipulation performance improves with
time [3].

Three different sources of parameter information for
robotic manipulators exist, which can be used to drive
parameter identification algorithms or adaptive controllers:

1) Trajectory tracking errors of model–based controllers.
Clearly, lack of parameter knowledge is reflected on
the tracking performance.

2) Joint torques (or power input). Given a set of parameter
estimates, the difference between the predicted and the
measured torques (or power input) at the joints is a
measure of parameter ignorance.

3) Base forces/torques. Having a set of parameter esti-
mates, the difference between the predicted and actual
forces/torques reflects the lack of parameter knowl-
edge.

The first source of parameter information, i.e., tracking
errors at the joint or task space of the manipulator, has
typically been the driving force for the parameter update laws
of various adaptive control schemes (e.g., [4], [5]). Extracting
parameter information from joint torques has attracted less
attention, due to practical difficulties typically associated
with the measurement of joint torques. This measurement can
be done through the torque constants of the actuators, whose
knowledge is usually not very accurate and also changes
with ageing. Another problem is that torque measurements
provided by this method do not include the friction at the
joints, which often plays a significant role in the dynamics.
Parameter identification methods using joint torques were
investigated by Atkeson et al. [6], Khosla [7], and Chan [8].

Identification of parameters using base forces/torques was
mainly based on the off–line processing of motion data [9],
[10], rather than on–line identification or adaptive control,
which are examined in this work. Techniques relevant to base
reaction forces/torques require the use of sensors external to
the manipulator. Sensors for the measurement of forces and
moments along all three cartesian axes are available commer-
cially. Alternatively, force sensors can be developed using
structures of suitable geometry on which strain–gauges can
be attached at specific locations. The reaction forces/torques
can then be derived from the set of strain measurements.
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II. SYSTEM MODELLING

The dynamics of a rigid robot are represented by the
following equation:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ (1)

with M the mass matrix and C the matrix with the nonlinear
terms. Matrix G is the vector with the gravitational torques
and τ the vector with the control torques. For the present
study it will be assumed that various unmodelled effects like
joint friction, backlash, joint and structural elasticity, and
rotor inertias are insignificant. An important property of the
system is that the model can be written as:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Y (θ̈, θ̇,θ)α, (2)

where Y is called the regressor matrix and α is the vector
of suitably selected parameters [3].

When systems of interconnected bodies are considered
not all the mass properties of the mechanism are required
for a complete description of the dynamics, as a result of
the kinematical constrains imposed on the relative motion of
the members. In other words, some of the parameters have
no effect on the kinetic or potential energy of the system.
Moreover, in multilink robots some of the parameters are
redundant in the sense that they appear in linear combina-
tions with other parameters [6], [11], [12], [13]. Therefore,
when constructing the regressor matrix the dynamics can
be formulated on the basis of a minimal number of inertial
properties which are called base parameters. This problem
was treated analytically by Mayeda et al. [11] for the case of
rigid manipulators with rotational joints having the adjacent
joint axes either parallel or perpendicular to each other.
Gautier and Khalil [12] presented a systematic way for the
determination of the minimal set of inertial parameters of
serial robots.

The reaction forces and torques along each one of the three
cartesian axes at the base of the manipulator can be collected
in a vector F = [Fx, Fy, Fz, Tx, Ty, Tz]

T . An important
property of the dynamics of the rigid robot is that this vector
can be written as [9], [10]:

F = W (θ̈, θ̇,θ)β, (3)

with β a vector with suitably selected parameters. Moreover,
the base parameters vector α of Eq. (2) and β of Eq. (3) are
related as follows: (1) Num. of elements in α ≤ Num. of
elements in β, (2) The values of the parameters in α can be
deduced from the values of the parameters in β. A systematic
procedure for the minimal parameterization of both Eqs. (2)
and (3) was presented by Fisette et al. [13].

III. PREVIOUS WORK ON PARAMETER IDENTIFICATION

USING BASE REACTION FORCES/TORQUES

The linear relationship described by Eq. (3) is well–suited
for parameter identification purposes. It has been used by
Raucent et al. [9] to experimentally determine the mass
properties of a PUMA robot. The required base forces/torques
were measured using a sensing platform and the joint motion

using an external vision system. Processing of the recorded
data yielded estimates for the model parameters. Validation
tests were based on the identification of a known load which
was attached to the robot.

Another relevant study is the experimental work of Liu et
al. [10] (also involving a PUMA manipulator) where base
force measurements and joint motion data were recorded
during maneuvering. Off–line processing using the least–
squares method yielded an estimated set of parameters. A
verification test involved using the estimated parameters to
predict the forces and torques at the base of the robot while
in motion. In order to avoid the measurement of accelerations
needed for the construction of W , a filtered version of the
linear relationship (Eq. (3)) was used instead [14], which
does not include the accelerations.

The combination of base reaction forces/torques together
with joint forces/torques measurements in order to improve
the accuracy of the identification was proposed in [15].
Experimental results involved the off–line parameter identifi-
cation followed by validation tests, which were based on the
prediction of the actual joint and base reaction forces/torques.

The identification of parameters as required for gravity
compensation purposes was examined by West et al. [16].
For this purpose, a manipulator was mounted on a six–DOF

force/torque sensor, which was attached to a Stewart platform
so that its orientation can be varied. The method involved the
recording and processing of the static reactions due to gravity
forces for different postures of the manipulator as well as for
various orientations of the base.

Finally, base reaction forces can also provide information
relevant to joint friction. In Morel et al. [17], a motion control
method was developed and examined experimentally, which
allows compensation for joint friction using base force/torque
measurements. The method exploits the fact that the net
torques applied to the system can be “seen” by the base
forces.

IV. ON–LINE PARAMETER IDENTIFICATION USING BASE

FORCES/TORQUES

Given a vector of estimates β̂(t) for the parameters in Eq.
(3), the parameter estimation error is defined as:

β̃(t) ∆= β̂(t) − β. (4)

The base forces prediction error can be expressed on the
basis of Eq. (3):

ε(t) = F̂ (t) − F (t)

= W (θ̈, θ̇,θ)β̂ − W (θ̈, θ̇,θ)β
= Wβ̃(t), (5)

with F̂ (t) the estimated base forces and F (t) the measured
ones. Obviously, perfect knowledge of the inertial parameters
results to zero base forces prediction error.

A. Recursive identification and model–based trajectory
tracking controllers

Given that ˙̂
β = ˙̃

β, the unknown parameters can be
identified through the above error equation by the real–time
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or off–line integration of:

˙̂
β = −Γ−1W T ε (6)

with Γ = ΓT > O the parameter updates gain. For the above
least–squares estimator it is ensured that β̂ is bounded and
ε belongs to L2. This can be proved using the Lyapunov
function V = 1

2 β̃
T
Γβ̃, the derivative of which is V̇ =

−εTε ≤ 0. The convergence of the parameter estimates
to their actual values depends on persistency of excitation
issues [3], loosely speaking on how “sufficiently exciting”
the trajectories are.

Often some of the inertial parameters of the manipulator
are known with adequate accuracy and only the rest need to
be identified. In such case the vector β can be divided into
a known parameters part, β1, and an unknown part, β2. The
regressor matrix W in Eq. (3) can be partitioned consistently
as:

β =
[

β1

β2

]
, W =

[
W 1 W 2

]
. (7)

The base forces and the prediction error can be written as:

F = W 1β1 + W 2β2, (8)

ε =
(
W 1β1 + W 2β̂2

)
− (W 1β1 + W 2β2)

= W 2β̃2 (9)

and Eq. (6), which gives the parameter estimation law,
changes to:

˙̂
β2 = −Γ−1W T

2 ε (10)

with the base forces prediction error ε(t) = (W 1β1 +
W 2β̂2) − F (t).

The above estimator can supply a suitable model–based
trajectory tracking controller with parameter estimates. As a
representative of this class of model–based controllers it will
be considered the following scheme:

τ (t) = M̂(θ)θ̈d + Ĉ(θ, θ̇)θ̇d + Ĝ(θ) −
Kp(θ − θd) − Kd(θ̇ − θ̇d) (11)

with θd the desired trajectory, Kp and Kd the proportional
and derivative gains respectively. Matrices M̂ and Ĉ are
the mass and nonlinear terms matrices, and Ĝ the vector
with the gravitational torques evaluated using the parameter
estimates provided by Eq. (10). The above control scheme
is a modification of the CTM originally proposed by Paden
and Panja [18]. It was named as “PD+” controller given that
its structure consists of a PD feedback controller augmented
by a nonlinear feedforward term. Proofs of global asymptotic
stability exist and also an interpretation of the scheme on the
basis of passivity theory is possible [19]. Given the passivity
foundation of the scheme, better robustness characteristics
are expected when compared to the CTM, the success of
which relies on the exact linearization of the dynamics.
In Christoforou and Damaren [20], the scheme was shown
to maintain stability and reasonably good joint trajectory

tracking performance when tested experimentally on a three–
DOF flexible–link arm.

The implementation of the PD+ controller with parameter
values supplied by the estimation law (Eq. (10)) in real–
time will be considered here. This is effectively an adaptive
control scheme and the tracking performance is expected to
improve with time while better parameter estimates become
available. However, given the lack of stability proofs for this
control scheme one can only rely on the good robustness
characteristics of the PD+ controller. Finally, it is worth
mentioning that implementation of the CTM with parame-
ters values provided in real–time by a simple least–squares
estimation law based on Eq. (2) is an adaptive controller for
which the stability proof can be found in Ciliz and Narendra
[21].

V. ADAPTIVE CONTROL USING BASE FORCES/TORQUES

A. Classification of adaptive controllers in robotics

In the adaptive control literature, one of the classifications
that have been proposed is on the basis of the signal that
drives the parameter update, according to which adaptive
techniques can be divided into three broad categories [22].
The first includes the schemes that extract parameter infor-
mation from the tracking errors and they are called direct.
The second category includes the schemes which are using a
model of the plant and its parameters are updated so that the
difference between the predicted and the actual input/output
behavior is driven to zero, and they are called indirect (for the
case of robotic manipulators see the second and third sources
of parameter information mentioned in Section I). Finally,
controllers that exploit both the tracking and prediction errors
are called composite adaptive controllers.

A most important direct adaptive robotic controller was
proposed by Slotine and Li [5], [23], and is a globally
convergent passivity–based [19] control scheme. Due to its
relevance to the present work it will be briefly described.
The scheme belongs to the generation of adaptive controllers
which exploit the linearity property of the manipulator
dynamics expressed by Eq. (2). When some of the model
parameters are known with adequate accuracy, only the rest
need to be adaptively identified. In that case, the vector α
can be divided into a part with the known parameters, α1,
and a part with the unknown parameters, α2. The regressor
matrix Y can be partitioned consistently:

α =
[

α1

α2

]
, Y =

[
Y 1 Y 2

]
. (12)

The control law takes the following form:

τ = M̂(θ)θ̈r + Ĉθ̇r + Ĝ(θ) − Kds (13)

= Y 1

(
θ̈r, θ̇r, θ̇,θ

)
α1 + Y 2

(
θ̈r, θ̇r, θ̇,θ

)
α̂2 − Kds

coupled with a parameter estimation law:

˙̂α2(t) = −PY T
2 (θ̈r, θ̇r, θ̇,θ)s, (14)

with Kd = KT
d > O and P = P T > O being the matrices

with the feedback and adaptation gains respectively. For the
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feedback part of the controller a simple proportional term
was selected and the following quantities were defined:

θ̇r = θ̇d − Λθ̃,

θ̈r = θ̈d − Λ ˙̃
θ,

s = θ̇ − θ̇r = ˙̃
θ + Λθ̃ (15)

where θ̃(t) = θ−θd is the tracking error and Λ = ΛT > O
is a weighting matrix. The estimation law extracts parameter
information from the tracking errors so that tracking perfor-
mance improves with time.

B. Composite adaptive control driven by tracking errors and
base forces prediction errors

In Slotine and Li [22], the adaptive control scheme sum-
marized above was enhanced by incorporating a prediction
error term to the adaptation law, yielding a composite
adaptive controller. The additional term uses joint torques
(or power input) prediction error. In order to avoid the
need of acceleration measurements, a filtering technique was
effectively employed [14]. The composite adaptive scheme
was shown to exhibit faster parameter convergence when
compared with the corresponding direct controller. The com-
posite version of the scheme will be considered here, and it
will be examined how it can be implemented using the joint
trajectory tracking errors together with the base forces/torqes
prediction error instead of the joint torques prediction error.

The partitioning of the sets of parameters α and β into a
known and an unknown part as given by Eqs. (12) and (7)
respectively, is also considered here. The dynamics of a rigid
robot (Eq. (2)), and the base forces (Eq. (8)) can be written
as:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = Y 1(θ̈, θ̇,θ)α1 +
Y 2(θ̈, θ̇,θ)α2, (16)

F = W 1β1 + W 2β2 (17)

with the sets of parameters α1 and β1 known, and the α2

and β2 unknown. Taking α2 ≡ β2, the adaptive control
scheme can be implemented as:

τ = Y 1

(
θ̈r, θ̇r, θ̇,θ

)
α1 + Y 2

(
θ̈r, θ̇r, θ̇,θ

)
α̂2 − Kds,

(18)
˙̂α2 = P (t)

[
Y T

2 s + W T
2 R(t)ε

]
(19)

with the error quantities ε and s defined by Eqs. (9) and (15)
respectively.

The composite adaptation law yields parameter informa-
tion by effectively fusing information from two different
sources: trajectory tracking errors and base forces prediction
error. How much emphasis the adaptation process gives to
each one of the two sources of information is determined by
the uniformly positive definite matrix R(t). The values of the
entries of this matrix should reflect the quality of the sensory
information provided by each one of the two sources. Taking
R(t) = O the control scheme reduces to the original direct
adaptive version [5] summarized in the previous paragraph.

The global asymptotic convergence of the above con-
troller can be shown using the Lyapunov function V =
1
2 (sT Ms + α̃T

2 Pα̃2). Differentiating this expression and
using the skew–symmetry property of the matrix (Ṁ −2C)
[3], the derivative of the Lyapunov function becomes: V̇ =
−sT Kds − α̃T

2 W T
2 W 2α̃2 = −sT Kds − εTε ≤ 0. Using

equivalent arguments as in [22] it follows that both the
tracking as well as the prediction error will converge to
zero, and the parameter estimation error remains bounded.
Moreover, if the desired trajectory is persistently exciting the
parameter estimates will converge to their actual values.

VI. SIMULATION STUDIES

The model of a planar, three–DOF manipulator operating
in the horizontal plane (i.e., gravity does not affect its motion
dynamics) was used for the simulation studies, as shown in
Figure 1. For simplicity, the gravity torques vector, G(θ),
in Eq. (1) was excluded from the simulation model, i.e., the
resulting base reaction force Fz and the reaction torques Tx

and Ty are zero. Measurements of the two reaction forces in
the horizontal plane and the torque about the vertical axis, as
well as availability of joint position, velocity and acceleration
measurements is assumed.

Fig. 1. Schematic representation of the arm.

Given that each link of the manipulator is restricted
to move on the horizontal plane and only rotate about
a vertical axis (links are further assumed to have sym-
metric cross section about the axis along their length),
the parameterizations of Eqs. (2) and (3) involve: α =
[m2, m3, I1, I2, I3, cx2, cx3]T , and β =
[m2, m3, I1, I2, I3, cx1, cx2, cx3]T , where mi is the
mass, cxi is the first moment of inertia measured along the
length and Ii is the second moment of inertia about the
vertical coordinate axis of the i–th link. It should be pointed
out that the set of elements in α is a subset of the set of
parameters in β. However, the above vectors α and β do
not correspond to minimal parameterizations of Eqs. (2) and
(3). For a minimal parameterization the following parameter
sets can be used [13]:

α = [α1, α2, α3, α4, α5]T , (20)

β = [α1, α2, α3, α4, α5, α6]T , (21)

with α1 = I3, α2 = cx3, α3 = I2 +m3l
2
2, α4 = cx2 +m3l2,

α5 = I1 + (m2 + m3)l21, and α6 = cx1 + (m2 + m3)l1. For
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the simulation model all links (i = 1, 2, 3) were considered
to be identical with length li = 1 m, mi = 1 kg, Ii = 0.333
kg·m2, and cxi = 0.5 kg·m.

For all simulation studies the desired joint trajectory, θd,
is such that all three DOF of the arm follow a quintic
polynomial between an initial, θi, and a final position, θf :

θd(t) =

[
10

(
t

tf

)3

− 15
(

t

tf

)4

+ 6
(

t

tf

)5
]

(θf−θi)+θi.

(22)
The initial joint configuration is taken to be θi = [0, 0, 0]T

rad, the final one θf =
[

π
2 , π

2 , π
2

]T
rad and the duration of

the motion tf = 3 seconds. This maneuver is then reversed
to bring the arm back to its initial position and the whole
motion is repeated two times. The above quintic polynomial
is characterized by smooth velocities and accelerations and
has been useful in motion planning for manipulators.
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Fig. 2. Parameter identification scheme: Parameter updates (−−− actual
values, —— estimated values).

0 5 10 15

0

1

2
Joint Tracking

time (sec)

θ 1 (
ra

d)

0 5 10 15
−0.2

0

0.2
Tracking Error

time (sec)

θ 1,
er

ro
r (

ra
d)

0 5 10 15

0

1

2

time (sec)

θ 2 (
ra

d)

0 5 10 15
−0.1

0

0.1

time (sec)

θ 2,
er

ro
r (

ra
d)

0 5 10 15

0

1

2

time (sec)

θ 3 (
ra

d)

0 5 10 15
−0.5

0

0.5

time (sec)

θ 3,
er

ro
r (

ra
d)

Fig. 3. PD+ controller with real–time update of inertial parameters: Joint
tracking (−−− desired trajectory, —— actual motion) and tracking errors.

A. PD+ control coupled with real-time parameter estimation

On–line parameter identification based on Eq. (6) was im-
plemented while the manipulator was maneuvering. The mo-
tion of the manipulator was controlled under the PD+ scheme
(Eq. (11)), the feedforward part of which was constantly
updated with the current parameter estimates. The estimation
algorithm was implemented based on vector β given by Eq.
(21). The initial estimates of the updated parameters were all
considered to be zero. For the identification gains a diagonal
matrix was selected, Γ−1 = diag {12, 3, 10, 3, 55, 15}, and
the feedback gains were Kp = diag{10, 10, 10} N·m/rad and
Kd = diag{5, 5, 5} N·m·s/rad. Moderate gains were selected
for this example so that the effect of feedback does not mask
the role of feedforward, due to which tracking performance
is expected to improve with time. Fig. 2 shows the parameter
updates (continuous line) provided by the identification al-
gorithm and used for the calculation of the feedforward part
of the controller. All updates converge to the actual values
of the parameters (dashed line). Fig. 3 shows the tracking of
the desired joint trajectories and the corresponding tracking
errors. Clearly, tracking performance improves with time
while better parameter information becomes available. The
tracking errors approach zero and remain very close to it.

B. Composite adaptive control

For the implementation of the composite adaptive con-
troller presented in Section V, the feedback gain matrix
was selected as Kd = diag{10, 10, 10} N·m·s/rad. The
weighting matrix was taken to be Λ = 5 · 1 s−1. The
adaptation was based on the parameters vector α given by
Eq. (20), and the adaptation gains matrix was selected to be
diagonal, P = diag {5, 5, 20, 5, 20}. The size of each entry
was tuned manually. The weighting matrix in the adaptation
law was taken as R(t) = 1. It was assumed that no a
priori information is available relevant to the set of adaptively
updated parameters and their initial estimates were all set to
zero.
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Fig. 4. Composite adaptive controller: Joint tracking (−−− desired
trajectory, —— actual motion) and tracking errors.
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Fig. 5. Composite adaptive controller: Parameter updates (−−− actual
values, —— estimated values).
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Fig. 6. Composite adaptive controller: Base forces/torques prediction
errors.

The tracking of the desired trajectories and the correspond-
ing tracking errors are shown in Fig. 4. The time histories of
the updated parameters are shown in Fig. 5. All parameters
estimates initially increase and converge to their nominal
values. Clearly, the extraction of parameter information is
reflected on the tracking performance which improves with
time, while the tracking errors approaching zero. The base
forces/torques prediction errors also converge to zero as can
be seen in Fig. 6.

VII. CONCLUSIONS

One of the sources of inertial parameters information for
rigid robots is the base reaction forces, which can be ex-
ploited for on–line parameter identification or drive a suitable
adaptive control scheme. On–line parameter identification
coupled with a model–based trajectory tracking controller
(effectively an indirect adaptive control scheme) was shown
to improve manipulation performance. It was also shown that
a composite adaptive controller previously proposed for rigid

robots can be modified in order to effectively extract parame-
ter information both from tracking errors (direct source) and
base forces prediction errors (indirect source).

REFERENCES

[1] C. Canudas de Wit, B. Siciliano, and G. Bastin (Editors), “Theory of
robot control,” Springer–Verlag, London, 1996.

[2] J.Y.S. Luh, M.W. Walker and R.P.C. Paul, “Resolved–Acceleration
Control of Mechanical Manipulators,” IEEE Trans Automatic Control,
vol. AC–25, no. 3, pp. 468–474, 1980.

[3] R. Ortega, and M. Spong, “Adaptive motion control of rigid robots: a
tutorial,” Automatica, vol. 25, no. 6, pp. 877–888, 1989.

[4] J.J. Craig, P. Hsu and S.S. Sastry, “Adaptive control of mechanical
manipulators,” Int J of Robotics Research, vol. 6, no. 2, pp. 172–184,
1987.

[5] J.–J.E. Slotine and W. Li, “On the adaptive control of robot manipula-
tors,” Int J of Robotics Research, vol. 6, no. 3, pp. 49–59, 1987.

[6] C.G. Atkeson, C.H. An and J.M. Hollerbach, “Estimation of inertial
parameters of manipulator loads and links,” Int J of Robotics Research,
vol. 5, no. 3, pp. 101–119, 1986.

[7] P.K. Khosla, “Estimation of robot dynamics parameters: theory and
application,” Int Journal of Robotics and Automation, vol. 3, no. 1, pp.
35–41, 1988.

[8] S.P. Chan, “An efficient algorithm for identification of robot parameters
including drive characteristics,” J Intelligent and Robotic Systems, vol.
32, pp. 291–305, 2001.

[9] B. Raucent, G. Campion, G. Bastin, J.C. Samin and P. Y. Willems,
“Identification of the barycentric parameters of robot manipulators from
external measurements,” Automatica, vol. 28, no. 5, pp. 1011–1016,
1992.

[10] G. Liu, K. Iagnemma, S. Dubowsky and G. Morel, “A base
force/torque sensor approach to robot manipulator inertial parameter
estimation,” IEEE Int Conf Robot and Automat, Leuven, Belgium, May
16–20, pp. 3316–3321, 1998.

[11] H. Mayeda, K. Yoshida and K. Osuka, “Base parameters of manipula-
tor dynamic models,” IEEE Int Conf Robot and Automat, Philadelphia,
Pennsylvania, April 24–29, vol. 3, pp. 1367–1372, 1988.

[12] M. Gautier and W. Khalil, “Direct calculation of minimum set of
inertial parameters of serial robots,” IEEE Trans Robot Automat, vol.
6, no. 3, pp. 368–373, 1990.

[13] P. Fisette, B. Raucent and J.C. Samin, “Minimal dynamic character-
ization of tree–like multibody systems,” Nonlinear Dynamics, vol. 9,
pp. 165–184, 1996.

[14] R.H. Middleton and G.C. Goodwin, “Adaptive computed torque con-
trol for rigid link manipulators,” Systems & Control Letters, vol. 10,
pp. 9–16, 1988.

[15] W. Verdonck, J. Swevers and J.–C. Samin, “Experimental robot identi-
fication: Advantages of combining internal and external measurements
and of using periodic excitation,” J Dynam Sys Measurement and
Control, vol. 123, pp. 630–636, 2001.

[16] H. West, E. Papadopoulos, S. Dubowsky and H. Cheah, “A method
for estimating the mass properties of a manipulator by measuring the
reaction moments at its base,” IEEE Int Conf Robot and Automat,
Scottsdale, Arizona, May 14–19, pp. 1510–1516, 1989.

[17] G. Morel, K. Iagnemma and S. Dubowsky, “The precise control of
manipulators with high joint–friction using base force/torque sensing,”
Automatica, vol. 36, no. 7, pp. 931–941, 2000.

[18] B. Paden and R. Panja, “Globally asymptotically stable ‘PD+’ con-
troller for robot manipulators,” Int J Contr, vol. 47, no. 6, pp. 1697–
1712, 1988.

[19] R. Ortega, A. Lorı́a, P.J. Nicklasson, and H. Sira–Ramı́rez, “Passivity–
based control of Euler–Lagrange systems,” Springer–Verlag, London,
1998.

[20] E. Christoforou and C.J. Damaren, “A passivity–based control case
study of flexible–link manipulators,” IEEE Int Conf Robot and Automat,
Barcelona, Spain, Apr 18–22, pp. 1005–1010, 2005.

[21] K. Ciliz and K. S. Narendra, “Adaptive control of robotic manipulators
using multible models and switching,” Int J of Robotics Research, vol.
15, no. 6, pp. 592–610, 1996.

[22] J.–J.E. Slotine and W. Li, “Composite adaptive control of robot
manipulators,” Automatica, vol. 25, no. 4, pp. 509–519, 1989.

[23] J.–J.E. Slotine and W. Li, “Adaptive manipulator control: A case
study,” IEEE Trans Automatic Control, vol. 33, no. 11, pp. 995–1003,
1988.

FrE11.6

4961


