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Abstract— A dance partner robot has been developed as an
example of platforms for realizing the effective human-robot
coordination with physical interactions. This robot could dance
together with a human by estimating the next step intended by
the human. If the robot would mistake the step estimation, the
human-robot coordination could not be continued. In this paper,
an error recovery method for step selections, which changes
robot’s behavior according to human’s behavior, is designed
using Hidden Markov Models. Experimental results illustrate
the validity of the proposed method.

Index Terms— Human-Robot Cooperation, Ballroom Dances,
Mobile Robot, Error Recovery of Dance Step Selection.

I. INTRODUCTION

Robots are expected to be used in human environments
in cooperation with a human or humans against the back-
ground of the coming of aging society. The human-robot
coordination problems for executing tasks have been studied
by several researchers. In most of the human-robot coordi-
nation systems, robots have been controlled so as to move
passively according to force/moment applied by a human
to the robots [1]-[3] etc.. These systems are effective to
execute simple tasks such as handling an object. On the
other hand, some researchers have proposed pet robots [4]
[5] etc. for entertainment or human mental healing, which
move actively based on information such as sound, light
and simple interactions with touch sensors, etc. If robots
could move not only passively but also actively based on
human intentions, environments, knowledge of tasks, etc.,
we could realize a more effective human-robot coordination
system than the conventional ones. Considering the case of
coordination among humans, each human would move not
only passively but also actively based on such information.
In this research, human-robot coordination with physical
interaction between a human and a robot is discussed to
execute tasks more effectively, in which the robot moves not
only passively but also actively based on such information.

As an example of human-robot coordination with physical
interactions, a dance partner robot is focused, which realizes
ballroom dances with a human. In the previous research [6],
the concept of the dance partner robot has been proposed,
and the robot referred to as “MS DanceR (Mobile Smart
Dance Robot)” shown in Fig.1 and its control architecture
referred to as “CAST (Control Architecture based-on Step
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Fig. 1. Dance Partner Robot -MS DanceR-

Transition)” have been developed. CAST is composed of
three modules, i.e. “Knowledge”, “Step Estimator”, and
“Motion Generator”. Knowledge stores the information on
dancing such as basic trajectories and transition rules of
dance steps. Step Estimator estimates the next step based on
the rules and human intention. Motion Generator generates
actual motions of the robot based on the trajectories and the
coordination with a human. In [7], Step Estimator, i.e. the
estimation module for the next dance step, has been improved
by considering time series data of interactive force/moment
applied between the human and the robot, and has made the
step estimations more successful. Success rates of the step
estimations, however, could not reach 100 [%] with the Step
Estimator, e.g. a success rate for one subject is 98.88 [%].
The reason why the success rates could not reach 100 [%]
would be that modeling human intentions and estimating it
completely would be very difficult problems.

Considering the case of coordination among humans,
however, they could not always estimate partner’s intention
correctly. The more important issues for continuing the
coordination would be detecting mistakes as soon as possible
and changing his/her behavior to a correct behavior by
perceiving his/her partner’s behavior rather than completing
the estimation of his/her partner’s intention. Therefore ad-
dressing the issues would be one of the keys to the effective
human-robot coordination. A human error recovery problem
for human-robot collaborative parts conveyance tasks [8]
have been studied by Y. Yamada et al., in which a robot
behaves passively according to force applied by a human.
In the error recovery process, the robot informs the human
of error occurrences by alarm signals, and urges the human
to change his/her behavior. Their error recovery could work
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Fig. 2. Step Transition of Waltz

successfully on the assumptions that the robot would behave
passively according to force applied by the human, and that
robot’s trajectory is the same as human’s.

The more effective human-robot coordination system
could be realized if error recovery problems for the coor-
dination system could be solved, in which a robot behaves
passively and actively according to human intention and
it is not assumed that robot’s trajectory is the same as
human’s. In the error recovery problems for such an active
coordination system, human’s motion and robot’s have to be
considered independently for detecting a mismatch between
human’s behavior and robot’s differently from the passive-
type human-robot coordination system because both of the
human and the robot behave actively and human’s motion
and robot’s motion are affected each other due to physical
interactions. Such an error recovery problem could be applied
to various human-machine systems with physical interac-
tions, e.g. human-robot collaborative tasks, welfare systems
and so on, in which the machine behaves not only passively
but also actively based on human intention.

In the case of ballroom dancing, the error recovery issues
would correspond to problems that he/she detects errors of
step selections as soon as possible and that he/she changes
his/her step motion to his/her partner’s. In order to solve
the problems for the dance partner robot, the robot has
to execute error detections of step selections and has to
change robot’s own step motion according to human’s motion
with keeping physical interactions even if the robot starts
executing another step motion. In [9], the error detection
method for dance step selections has been proposed, which
completely detects selection errors. This paper proposes
the error recovery method for dance step selections, which
changes robot’s step to human’s step after the error detec-
tions.

This paper is organized as follows. In the next section,
error recovery problems of dance step selections for the
dance partner robot are explained. In Section III, a step
reestimation model, which is a part of the error recovery
method, is designed using Hidden Markov Models (HMMs)
[10]. And experiments on the error recovery are performed
and discussions on the results are described in Section IV.
Finally, Section V contains a conclusion of this paper and a
description of future works.

II. ERROR RECOVERY OF DANCE STEP SELECTION

In this paper, the error recovery of dance step selections is
realized by two processes, i.e. reestimation of human’s step
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Fig. 4. Control Architecture -CAST-

and modification of robot’s trajectory. In this section, first of
all, review of the previous research is described. Next, the
step reestimation and the modification are explained.

A. Review of Previous Research

In ballroom dancing, a male dancer selects his own next
step from selectable steps limited by transition rules of dance
steps. A male dancer leads a female dancer, and she executes
a step motion actively by estimating a step intended by him.
MS DanceR acts as a female dancer, and dances with a
human. Therefore the robot has to estimate the next step
intended by the human before the robot starts executing the
step motion. In this paper, a waltz is selected as an example
of ballroom dances. For the simplicity of modeling the waltz,
five basic steps in the waltz are used, i.e. Closed Change
Left (CCL), Closed Change Right (CCR), Natural Turn (NT),
Reverse Turn (RT) and Square Turn (ST). Transition rules
for these steps referred to as “Step Transition” in CAST are
shown in Fig.2. According to male dancer’s lead and the
transition rules shown in Fig.2, the robot selects the next
step from selectable steps.

The step estimation problem has been addressed in [7].
Step Estimator outputs the estimated next step at a transition
from the current step to the next step. The robot estimates the
next step intended by a human according to lead applied by
the human, which is mainly communicated to the robot by
interactive force/moment measured by a force/torque sensor
installed between the upper body and the lower body of the
robot (Fig.3). Although the estimation method could work
successfully, success rates of the estimations could not reach
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Fig. 6. Feature Extraction of Human Step Motion [9]

100 [%]. And the case that the estimation is failed is not
considered in the method.

In [9], an error detection problem for dance step selections
has been addressed. A new module “Step Detector” has
been added to CAST (Fig.4), which detects errors of dance
step selections by observing human motions in dancing.
In the error detection method, the human motions have
been modeled stochastically. The error detection method
has detected the step selection errors completely using the
human motion models. Although the human motion models
would be expected to realize not only the error detections but
also reestimations of a correct step selected by the human,
the models could not achieve high success rates of the
reestimations. The reason is described in section II-B.

B. Description of Step Reestimation

The human motion models have been designed using
human legs’ motion trajectories (Fig.6), which are observed
by a laser range finder installed at the robot (Fig.3) when
the robot estimates human’s step correctly and dances the
same step as human’s. The human motion models, however,
could not include human motions affected by robot motions,
which would arise from a mismatch between human step
motion and robot step motion when the robot mistakes the
step estimation. The mismatch arises from the facts that the
robot moves actively based on the estimated step, and that the
human and the robot dances with keeping physical contacts
(Fig.5). Therefore the reliability of the human motion models
is not enough to reestimate a correct step when the robot
mistakes the step selection.

Paying attention to the step estimation, the physical in-
teraction, i.e. force/moment applied by the human, would
include not only information on the most possible step

Trajectory of Reestimated Step

Modified Trajectory

Trajectory of Estimated Step

Time

Timing of Error Detection and Step Reestimation

D
is

p
la

c
e
m

e
n

t

Fig. 7. Modification of Step Motion Trajectory

but also information on the second possible step when the
estimation is failed. Therefore the interactive force/moment
is useful information on the step reestimation if the most
possible step selected by the robot in the step estimation is
removed from selectable steps in case of the step estimation
failure. However the reliability of the physical interaction
would not be enough to reestimate a correct step because the
first step estimation is failed due to the physical interaction.

In the error recovery method, both of the physical interac-
tions and the human motions are utilized in order to increase
the reliability of data used for the reestimation. And the
physical interactions and the human motions are integrated
into HMM [10]. HMM models time series data with human
uncertainty, which arises from the fact that a human can not
always apply the same force/moment and move along the
same trajectory.

C. Description of Modifying Step Motion Trajectory

Although there would exist many kinds of methods for
modifying robot’s trajectories, a modification method illus-
trated in Fig.7 is used as an example of them. According
to the error detection method [9], time required for the
error detections is short if the difference between human
step motion expected by the robot and actual human motion
is quite large. And the time is long if those two motions
are similar. Therefore the modification method could work
enough for the robot not to affect human’s dancing terribly.

III. STEP REESTIMATION MODEL

A. Time Series Data used for Step Reestimation

Three processes, i.e. the step estimation [7], the error
detection [9], and the step reestimation, are executed for
step selections. Fig.8 illustrates time series data used for the
processes. Data used for the step estimation are time series
of force/moment applied by the human, which are observed
before a transition of step. In the error detection, the human
legs’ motion trajectories are used, which are observed after
the transition. In order to use both of the force/moment and
the trajectories effectively, time series data observed before
and after the transition are modeled in the step reestimation.
Therefore each step reestimation model is designed for each
step transition.
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Fig. 9. Left-to-Right Continuous Hidden Markov Models

The error detection method was designed so as to execute
the error detection in each time segment because the step
estimation failures should be detected as soon as possible for
the active coordination in dancing and a timing of the error
occurrence is unknown. For the same reason, the reestimation
method should be designed so as to output the reestimated
step at the timing of the error occurrence.

B. Designing HMM-based Step Reestimation Model

In this paper, the force/moment applied by the human
and the human step motions are modeled by left to right
continuous HMM [10] shown in Fig.9, which is composed of
states s1, s2, ..., sN . A set of HMM parameters is expressed
by λ = (Π, A, B), where Π is the probability distribution
for the initial state, A is the probability distribution for state
transitions, and B is the probability distribution for observed
data. Concerning left to right type HMM, Π is obviously
expressed as Π = {π1 = 1, πi = 0(i = 2, 3, .., N)}. The
detail of setting parameters A and B is described in [9]. Each
HMM corresponds to each step transition, and input to the
HMM is a set of observed data O = {o(t)|t = 1, 2, ..., T},
i.e. time series of the force/moment and the human legs’
motion trajectories measured in dancing the previous step
and the current step. In this paper, discrete time is expressed
as time = t × ∆t, where t is a time index and ∆t is the
sampling rate [sec].

A forward variable αi(t) [10] expressed in eq.(1) is
focused in the step reestimation, which evaluates the validity
of observed data o(1), o(2), ..., o(t) and the possibility that
a state at time = t × ∆t, i.e. q(t), exists at state si.

αi(t) = P (o(1), o(2), ..., o(t), q(t) = si|λ) (1)
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Fig. 10. Simulation Results for Forward Variables

The HMM is designed so that a forward variable has a
characteristic as shown in Fig.10. Fig.10(a) is a simulation
result for forward variables when observed data in dancing
a step are inputted to HMM corresponding to the step.
And Fig.10(b) is a simulation result for forward variables
when the observed data are inputted to HMM that does not
correspond to the step. According to Fig.10, αi(t) would be
high in the case that a state index i is close to a time index
t if the robot selects the same step as human’s, and would
be low if robot’s step is incorrect.

In order to evaluate forward variables αi(t), reference
likelihood L(t) in eq.(2) is introduced, which is the sum
of αt−∆(t), αt−∆+1(t), ..., αt+∆−1(t), αt+∆(t).

L(t) =
t+∆∑

i=t−∆

αi(t) (2)

The reference likelihood L(t) evaluates αi(t) effectively,
whose state index i is close to a time index t. A step is
selected as a result of the step reestimation, whose reference
likelihood L(tdetect) is the largest, where tdetect is a time
index corresponding to the timing of the error occurrence.
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IV. EXPERIMENT

Experiments on error recovery of dance step selections are
performed in order to illustrate the validity of the proposed
method. In the experiments, the robot reestimates human’s
step and modifies own motion according to the step when
the robot mistakes the step estimation.

A. Condition

The step estimation method proposed in [7] works suc-
cessfully when the robot dances with a subject using step
estimation parameters of that subject. Therefore step es-
timation failures rarely occurred. In order to evaluate the
step reestimation method effectively, the experiments are
performed on the condition that the failures will occur. This
condition is implemented in the experiment, where subject
A uses step estimation parameters of another subject B. In
this experiment, subject A, for whom the success rate of the
step estimations is 98.88[%], has performed the experiment
with the step estimation parameters of another subject B, for
whom the success rate of the step estimations is 89.29[%].

In the experiments, a subject intends to select the following
two step sequences.

Step Sequence 1 :
CCL ⇒ NT ⇒ CCR ⇒ RT ⇒ CCL ⇒ ST ⇒

CCL ⇒ CCR ⇒ CCL
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Fig. 13. Human Step Motion Trajectory measured by Motion Capture
System

Step Sequence 2 :
NT ⇒ NT ⇒ ST ⇒ RT ⇒ RT

All step transitions are executed by dancing the sequences.
Ten trials are repeated in each experiment.

The real time OS QNX is utilized to control the robot,
whose control frequency is 1 kHz. The laser range finder
(Fig.3) sends data to QNX on 10 Hz. Whole time of all steps
is fixed at 2.5 [sec], and the sampling rate for the reestimation
is ∆t = 0.1 [sec].

B. Results

The error recovery method completely selects a correct
step selected by the subject and modifies robot’s trajectory
successfully according to the step. Fig.11 illustrates results of
the step reestimations. In Fig.11(a), for example, step ST was
selected as the third step in the step estimation, which was an
incorrect step. After the human and the robot started moving,
the error detection method judged that the step estimation
was failed, and the reestimation method selected a correct
step CCR. ”9/10” and ”0.10 [sec]” denoted at the lower
part of the ”ST” in Fig.11(a) mean that an incorrect step
ST is selected nine times in ten trials and a correct step
CCR is selected once in ten trials, and that the average of
time required for the error detection in the nine trials is 0.10
[sec] respectively.
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The longest average time is 0.70 [sec] at the second step
in Fig.11(b), i.e. error recovery from step CCR to step NT,
which is the average of the required time in eight trials. In
order to evaluate the modification method for step motion
trajectories, robot’s trajectory in the error recovery from step
CCR to step NT are shown in Fig.12, which are measured by
motion capture system. Human motions are also measured by
motion capture system in order to investigate human motions
affected by the robot motions in the error recovery. Fig.13(a)
shows human trajectories when the human and the robot
dance the same step. And Fig.13(b) shows human trajectories
when the robot executes the error recovery from step CCR
to step NT.

C. Discussion

Experimental results on the step reestimations illustrate
the validity of the step reestimation method. This success
would be achieved by using both of the physical interactions
and the human motions. Paying attention to likelihoods for
the step estimations and the step reestimations, the above
hypothesis could be ensured. At a transition NT → NT in
Step Sequence 2, for example, log likelihoods for the step
estimation are -189.6 for CCR and -224.3 for NT, and an
incorrect step CCR is selected consequently. On the other
hand, log likelihoods for the step reestimation are -1027.0
for CCR, which is removed from selectable steps in the error
detection before the reestimation, and -483.3 for NT. The
difference between likelihoods for CCR and NT in the step
reestimation, i.e. -1027.0 and -483.3, is much larger than the
difference between likelihoods for CCR and NT in the step
estimation, i.e. -189.6 and -224.3. This fact explains that only
force/moment is not enough for a correct step selection to
increase success rate of step selection, and that a complete
step selection is achieved by taking both of the physical
interactions and the human motions into consideration.

Concerning the modification method, Fig.12 shows that
the robot modifies own trajectory according to a reestimated
step, which is selected by the subject. In order to investigate
human motions affected by the robot’s motions, human
motions are measured by motion capture system. Compared
with Fig.13(a), it is observed from Fig.13(b) that human
motions are affected by robot’s motions at the beginning
of the step because the robot dances different step from
subject’s with keeping physical contact with the subject.
After the error detection and the step reestimation, however,
human motions in Fig.13(b) are similar to ones in Fig.13(a).
Although the modification method would be simple, it could
work successfully enough to continue dancing and not to
disturb human motions terribly. These successes are obtained
by the facts that the error detection method [9] judges the
step estimation failures quickly, and that the step reestimation
method selects correct steps completely.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this research, human-robot coordination with physical
interaction was discussed. As an example of the effective

human-robot coordination, ballroom dances were focused. A
dance partner robot referred to as MS DanceR and its control
architecture referred to as CAST were introduced. Although
the step estimation system in CAST worked successfully,
it could not achieve complete step estimations because
modeling human intention and estimating it completely were
very difficult problems. It would be considered that the more
important issues for realizing the coordination were detect-
ing estimation failures and changing the robot’s behavior
according to human’s behavior. This paper addressed error
recovery of step selections for the dance partner robot in
order to continue dancing even if the robot could not estimate
human’s step. In order to realize the error recovery, the error
recovery method was designed using HMM that models both
of the physical interactions and the human motions. The
experimental results illustrated the validity of the proposed
method.

B. Future Works

In this paper, experiments are performed by one subject.
In order to inspect the proposed method more strictly, the
same experiments will be performed by multiple subjects in
future works.
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