
Motion Tasks and Force Control for Robot Manipulators

on Embedded 2-D Manifolds

Xanthi Papageorgiou, Savvas G. Loizou and Kostas J. Kyriakopoulos

Abstract— In this paper we present a methodology to drive
the end effector of a robotic manipulator across the surface of
an object in the workspace, and at the same time the manipu-
lator can apply a force to the object, through its end-effector.
Three typical tasks are considered, namely stabilization of the
end effector over the object’s surface and applying a specific
force on it, motion planning and eventually trajectory tracking
of the end effector across the object’s surface. The proposed
controllers utilize navigation functions and are based on the belt
zone vector fields concept. The derived dynamic controllers are
realized using an integrator backstepping methodology. The
derived feedback based controllers guarantee global conver-
gence and collision avoidance. The closed form solution provides
fast feedback rendering the methodology particularly suitable
for implementation on real time systems. The properties of
the proposed methodology are verified through non-trivial
computer simulations.

I. INTRODUCTION

Performing motion tasks across object surfaces constitutes

a challenging problem of the robotics field with many appli-

cations including robotic surface painting, surface cleaning,

surface inspection, etc. Our main motivation comes from

the field of neuro-robotics. One of the main tasks of neuro-

robotics is to make a robot execute a task by interfacing with

the neural system (Fig. 1) e.g. by processing electromyo-

graphic activity, etc. In most of the cases, these signals are

noisy and rather “incomprehensible” to directly control a

robot particularly in clattered environments. In those cases

we need a strategy to make the robot compliant with its

environment and at the same time avoiding obstacles. The

main difficulties of the above tasks arise when the considered

surface is not planar. Moreover the non-planar surface might

include “bad regions” that must be avoided.

Most of previous relevant research has focused on the

problem of automotive painting of surfaces that are convex

and have no holes, [1], [2], [3]. Also in [1], the authors

decompose the coverage trajectory generation problem into

three subproblems: selection of the start curve, selection

of the speed profiles along each pass, and selection of the

spacing between the passes. At the other hand literature is
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rich in the field of robot force control. The main approaches

in this area are impedance control, [4], hybrid position/force

control, [5], and parallel control, [6], [7]. All these schemes

are not applicable in the case of cluttered environment or in

appearance of “bad regions” during the constraint motion.

Fig. 1. The problem motivation.

In the present work, we have used navigation functions,

[8], to drive the manipulator safely in its environment and

at the same time to execute some specific tasks. The goal is

reached when several subtasks, in which we have divided

this work, are executed. The first phase is to make the

manipulator to approach a predefined surface which is called

the surface of interest. Once the end-effector is in the close

proximity of the surface, we have constructed a second

controller in order to succeed in the second phase of this

work. This phase is consisted of the stabilization of the

manipulator’s end-effector across the surface in order to

apply a specific force on it, while at the same time, depending

on the application, performs a motion planning or trajectory

tracking task across the surface, avoiding the “bad regions”.

Our basic idea is to use a navigation controller to drive the

manipulator’s end effector safely to the proximity area of the

surface of interest applying a specific force on it, and then

according to the required task (motion planning or trajectory

tracking), switch to a task specific controller. Each of those

two task specific controllers can successfully carry out the

task while making the manipulator’s end effector to produce

a predefined force to the surface of interest. This is achieved

through the use of appropriately constructed belt zone and

task specific vector fields, introduced in [9], [10], [11]. To

handle the volume and the articulated nature of the robot

manipulator we have used the methodology that was first

introduced in [12]. The main contributions of this paper can

be summarized as follows:

• A novel theoretically guaranteed compliant dynamic tra-

jectory tracking controller, achieving obstacle avoidance

and concurrent stabilization during tracking over 2-D

manifolds embedded in 3-D workspaces, for articulated

robot manipulators.
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• A provably correct compliant dynamic controller per-

forming motion planning and concurrent stabilization

tasks over 2-D manifolds embedded in 3-D workspaces,

for articulated robot manipulators.

The rest of the paper is organized as follows: Section

II formally states the considered problem, introducing pre-

liminary definitions, notation and some technical Lemmas,

required for further discussion. Section III describes the

navigation of an articulated non-point robot while section IV

presents the construction of the vector field that is used for

robot navigation. Section V introduces the proposed control

law. Section VI presents the simulation results and the paper

concludes with section VII.

II. PROBLEM STATEMENT

Our analysis is demonstrated by considering the motion

planning problem of a robotic manipulator in a workspace

with obstacles under additional task constraints. Consider a

manipulator of m-dof, which is described dynamically as:

B (q) · q̈ + C (q, q̇) + gr (q) + JT (q) · F = τ (1)

where B(q) is the inertia matrix, C(q, q̇) is the Coriolis term,

gr(q) is the Gravity term, J(q) is the geometric Jacobian

matrix, F ∈ R
6 denotes the wrench (vector of forces and

torques) exerted by the end-effector of the robot manipulator

on the environment, the q = [q1 . . . qm]T ∈ R
m is the vector

of arm joint variables and τ ∈ R
m the joint torque inputs,

[13]. Let the admissible and feasible configuration space

(workspace) for the manipulator be W ⊂ R
m. The obstacle

free subset of the workspace is denoted Wfree ⊆ W , and

ϕ : W → R is the potential (navigation) function. Let

O ∈ W\Wfree be the set of all obstacles in 3-D workspace.

Let now define the closed surface of interest, which is

represented by the vector valued C2 function:

g(s1, s2) : R × R → R(g) (2)

The range R(g) ⊂ Wfree of the function will serve as the

boundary of the surface across which the surface processing

task will take place. Let us define the following topology

(Fig. 2):

1) The surface’s internal, G−.

2) The surface’s boundary, ∂g.

3) The surface’s external, G+.

We can now define the tangent vectors on the surface

w.r.t parameters s1 and s2 as gs1
(s1, s2) = ∂g(s1,s2)

∂s1

, and

gs2
(s1, s2) = ∂g(s1,s2)

∂s2

.

Due to the C2 continuity of g(s1, s2), we have [14] that

(gs1
× gs2

) 6= 0, ∀s1, s2 ∈ R, and the vectors gs1
, gs2

are

linearly independent everywhere. Therefore, every tangent

vector to the surface is a linear combination of the vectors

gs1
and gs2

, (Fig. 2).

We now define the vector valued function

a(s1, s2) = g(s1, s2) + ρ · N(s1, s2) (3)

where N =
gs1

×gs2

‖gs1
×gs2‖

is the normalized perpendicular

vector to the surface.

Following the same line of thought as in our previous

work, [9] we have proved, we need the function a(s1, s2),
from (3) to be bijective.

Fig. 2. Representation of tangent’s and perpendicular’s vectors, of a surface,
variations w.r.t parameter’s modification.

This implies that locally, in order to satisfy the needed

condition of the function a(s1, s2), we must choose 0 <
ρ < ρm as in [9]. This justifies the selection of the maximum

curvature, so a non-negative ρ can always be defined.

The problem can now be stated as follows:

Given a robot manipulator driven by (1), and a closed

surface g(s1, s2), (2), find a feedback dynamic control law

τ = τ(q), that stabilizes the end-effector of the manipulator

over the given surface and making it compliant to the

surface, while steering it across the surface to either

• navigate to any feasible surface point, or

• track a predefined trajectory across the surface

The environment is considered known, static and bounded.

III. NAVIGATION OF AN ARTICULATED

NON-POINT ROBOT

The main goal of this section is to construct a potential

function in order to use it at an articulated non-point robot.

By using this potential function it would be possible to

navigate a robotic manipulator into a cluttered by obstacles

environment, in order to execute a task, while a collision

avoidance with obstacles is occurred (in both end-effector

and robot links point of view). Based on this scope this

potential function is including the volumes of the links and

the singularity points of the manipulator.

A. A Potential Field for Non-Point Robots

For constructing a potential field it is necessary to repre-

sent mathematically the system and its environment. Most

of previous works are based on the assumption that we

can represent the system as a point in the workspace, [9].

To apply the methodology to an actual articulated robotic

manipulator, though, we need to also consider the volume

occupied by the manipulator. To this extend we have used

the method proposed in [12] which extends the navigation

function approach of [15] to articulated non-point robots

using a series of diffeomorphic transformations.

According to [12], the shape of the robotic system R and

the obstacles O in a 3-D workspace W ⊂ R
m are considered

as a unions of generalized n-ellipsoids: R = ∪j∈JRj and

O = ∪i∈IOi, where J = {1, . . . , nR} and I = {1, . . . , nO}
the number of ellipsoids covering the volume of robot and

obstacles, respectively.
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In W , a sequence of smooth transformations is used to

create spaces where the robot and all obstacles are rep-

resented by points. Therefore, we have a workspace W∗

where the robot and obstacles are represented by points.

The following represents a measure of proximity of the

robot to the obstacles in the transformed workspace βO ,
∏

j∈J

∏

i∈I ‖h
∗
Rj

− h∗
Oi

‖
2
, where h∗

Rj
is the position of the

transformed robot part j in W∗ and h∗
Oi

the position of the

transformed obstacle i in W∗. For details on the construction,

the reader is referred to [12].

B. Singularities Avoidance

An introduction of a number of virtual obstacles can be

used in order to avoid the manipulator’s singularities. Singu-

larity regions S = ∪k∈KSk are sets of measure zero within

the configuration space. Singularities can be considered as

solutions of the equation: det(JT J) = 0, with J the Jacobian

of the robot. Thus, it is feasible to enclose the singularity

regions inside ellipsoids Osk
, representing virtual obstacles

affecting the motion of the robot end-effector. Following the

approach of [12], each ellipsoid Osk
is reduced into a point

h∗
sk

. Therefore, the singularity avoidance is achieved by in-

troducing virtual obstacles βs ,
∏

j∈J

∏

k∈K ‖h∗
Rj

− h∗
sk
‖2.

C. Navigation Vector Field

Let us now construct the navigation function that achieves

the predefined requirements. Assume that ϕ : Wws → R

according to [8], is the navigation function with the following

form:

ϕ(q) =
γd(q)

(γκ
d (q) + βws(q) · βO(q) · βs(q))

1

κ

(4)

where γd(q) = ‖k(q) − pd1
‖2 is the distance to the goal

function, ‖ · ‖ is the Euclidean norm, p = k(q) is the

end effector position, with k(q) the manipulator kinematics.

Also, pd1
= [xd1

θd1
]
T

is the target configuration for

the navigation function, where xd1
∈ R

3, and θd1
∈ R

3

are the desired position and orientation of the robot’s end-

effector. Furthermore, Wws ⊂ Wfree is the set where the

task takes place, and the function βws(q) := β0(q) =
−‖k(q) − p0‖

2 + r2
0 provides the workspace potential for

the navigation in G+ (i.e. k(q) ∈ G+), βO(q) and βs(q)
as are described above, and κ > 0 is a parameter. Thus,

for the navigation task in G+, the vector field is given by

∇ϕτ = ∇ϕ|βws:=β0
.

The surface described by the function g(s1, s2), defined

in (2) is modeled in the navigation function as an obstacle

for the robot’s links.

This navigation function ∇ϕτ = ∇ϕ|βws:=β0
of (4), is

implemented to drive the end-effector towards g(s1, s2). This

is achieved by placing the destination configuration, pd1
in

G− (inside of the surface of interest). Since our goal is

to perform compliant motion tasks across the boundary of

g(s1, s2), when the robot’s end-effector reaches a certain

distance from the boundary of g(s1, s2), a switch to an

appropriate task (navigation or trajectory tracking) specific

controller occurs in order to allow the interaction between the

robot and its environment. To construct such a vector field

we are going to use the concept of belt zones, [9]- [11].

IV. TASK SPECIFIC VECTOR FIELDS

A. Belt Zones

The “belt zone” is the region close to the ∂g, and is

thought to be composed of an “internal belt” (I), and an

“external belt” (E) region, which is represented in Fig. 3.

For the motion tasks considered in this paper the widths of

the internal and external belt regions are considered to be

fixed.

Assume that the surface of interest g(s1, s2) is modeled as

a spring with Ke its (homogenous) stiffness matrix. When

the robot’s end-effector interact with this surface, in order

to apply a constant force on it, it is assumed that the robot

penetrate the surface by the meaning of ǫ⊥ displacement

from the surface’s boundary (Fig. 3). Let F d ∈ R
6 is the

desired wrench that we would like the robot apply to the

surface, that denote a displacement from the boundary of

the surface ǫ⊥d = K−1
e F d.

Thus, we can now define the above regions of the belt

zones, by using the vector functions, g′(s1, s2) = g(s1, s2)−
ǫ⊥d ·N , β(s1, s2) = g(s1, s2)− (δ + ǫ⊥d ) ·N , and γ(s1, s2) =
g(s1, s2)+ (δ− ǫ⊥d ) ·N , where 0 ≤ ǫ⊥d < δ, 0 < 2 · δ < ρm,

and N is the normalized perpendicular vector to the surface.

Both surface processing tasks require stabilization of the end-

effector on distance ǫ⊥d from the surface g(s1, s2).

Fig. 3. Representation of Belt Zones,
in a part of a surface.

Fig. 4. Representation of the
workspace obstacle function.

The sets of “internal belt”, I, and “external belt”, E are

denoted (Fig. 3), I = {q : k(q) = (1 − λ) · g′ + λ · β, λ ∈
[0, 1]}, and E = {q : k(q) = (1 − λ) · g′ + λ · γ, λ ∈ (0, 1]}.

Since functions g, β, γ are bijective [9], [11], for every

k(q) ∈ {E
⋃

I} there is a unique couple (s1, s2).
Using the above belt zones, we can now define the

appropriate vector field, that will be used so that the robot

end-effector navigates across the surface of interest to reach

a specified destination point pd2
= [xd2

θd2
]
T

, while at the

same time the force requirement is held.

B. Vector Field on a Surface

To this extend we need to define a navigation function

across the 2-D surface, in order to execute the force control

task, that will provide the navigation vector field. Although

theoretically a system that flows according to the tangent

space of the 2-D, surface-wrapped navigation field, remains

in that 2-D surface, various sources of uncertainty, like

sensor noise, model uncertainties and numerical diffusion
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cause the system to deviate from this surface. To compensate

for this problem, we designed an additional vector field

perpendicular to the 2-D surface wrapped vector field, which

attracts the system on the surface of interest, and which

makes it compliant to the surface. Such an attractive vector

field is provided by (4), through an appropriate construction

of the γd function and by introduction of an additional

“perpendicular” workspace function that prohibits exiting the

belt zone and allows applying force on the 2-D surface.

Assume that h(x, y, z) is the distance from the surface

β(s1, s2) on the belt zones. For h0 = 0 we have that the

end-effector is on the surface defined by β (boundary of

internal region), and for hext = 2 · δ we have that the end-

effector is on the surface defined by γ (boundary of external

region). Also, the desired distance from the surface g(s1, s2)
is at hd = δ, that is, when the end-effector is in the surface

g′(s1, s2), at ǫ⊥d distance inside of g. Thus, we can define

the distance to the goal function as:

γd(q) =

∥

∥

∥

∥

[

k(q)
h (k(q))

]

−

[

pd2

hd

]∥

∥

∥

∥

2

(5)

where the second term of the vectors is used to at-

tract the end-effector to the surface g′. Also the “per-

pendicular” workspace function is given from β⊥(q) =
(hext−hd)2−(h(k(q))−hd)2

(hext−hd)2
.

The function β⊥(q) in this case guarantees that the

robot’s end-effector cannot leave the belt zone, (Fig. 4). The

workspace boundary for the navigation task is thus defined

in both the 2-D workspace, where we usually place it to

cover a “bad” region (incorporated in the βO function) and

in the “perpendicular” direction to prohibit exiting the belt

zone. The vector field in this case is provided by ∇ϕτ =
∇ϕ|βws:=β⊥ for the surface navigation task.

Now we are in position to define the control law in order

to drive the robot’s end-effector towards the predefined tasks.

V. CONTROL STRATEGY

We assume that we have a stationary environment and

the robot manipulator can be described trivially by a fully

actuated, second order dynamic model. In the workspace,

the volume of the manipulator is represented by a point,

using a series of transformations. The obstacles present in

the environment are modeled by the navigation function.

The goal is for the robot to be able to navigate using the

navigation function constructed on a 3-D space, to move its

end-effector across the surface g′(s1, s2) and perform a task

on the surface, avoiding entering “bad” regions or colliding

with obstacles.

A. Reaching a point on a surface

Assume that the robot’s initial configuration is q(0) ∈ R
m,

with p(0) = k(q(0)) ∈ G+, and we would like the end-

effector move towards the surface, in order to reach a specific

point on it and the same time apply force on it.

We will consider the system as operating in two pos-

sible modes: Mode Φ where p ∈ Wext, where Wext =
{Wfree

⋂

G+} \ {(E − δE)
⋃

I}, with p = k(q) and δE =

{q : k(q) = (1 − λ) · g′ + λ · γ, λ ∈ (1 − ǫE , 1]}, ǫE > 0,

and Mode B, where p ∈ {E
⋃

I}. We define the following

vector fields for each mode:

fΦ(q) = −(∇ϕ|βws:=β0
− FT ) = −(∇ϕΦ − FT )

fB(q) = −(∇ϕ|βws:=β⊥ − FT ) = −(∇ϕB − FT )
(6)

where FT =

{

Ø , p ∈ {Wext

⋃

E ′}

− q̇
‖q̇‖ · tanh(‖q̇‖) , p ∈ {I ′}

, denotes

the dissipative forces of the system, E ′ = {q : k(q) = (1 −
λ)·g+λ·γ, λ ∈ [0, 1]}, I ′ = {q : k(q) = (1−λ)·g+λ·β, λ ∈
[0, 1]}, q̇ is the vector of joint velocities and tanh(·) is the

hyperbolic tangent function.

The dynamic representation of the system is given from

(1). Using the inverse dynamics control law with force

measurements τ = B(q) · u + C(q, q̇) + gr(q) + JT (q) · F
we have the linear representation of the system:

q̈ = u (7)

The convergence to the point on the surface is considered

in a two step fashion: First a navigation controller brings the

end effector in the belt zone and then a second controller

takes over to navigate the system across the surface. We

have the following:

Proposition 1: Consider the system (7) and the control

law:

u = −c · (q̇ − fi) +
∂fi

∂q
· q̇ + fi (8)

where c a positive tuning constant. For initial conditions in

{Wfree

⋂

G+}\{E
⋃

I} and with the vector field as defined

for i = Φ, the system converges to the set {E
⋃

I}, a.e.1.

When the system is in {E
⋃

I}, the vector field as defined

for i = B is activated and the system converges globally

asymptotically to the destination configuration, a.e.

Proof: The control law construction is inspired by the

backstepping controller design proposed by [16].

Assume that the robot’s initial conditions are in

{Wfree

⋂

G+}\{E
⋃

I}. Then the vector field is fΦ from

(6).

We form the Lyapunov function V (q, q̇) = ϕΦ(q) +
1
2 · (q̇ − fΦ(q))

2
where ϕΦ = ϕ|βws:=β0

is given from

(4). Taking the time derivative of the Lyapunov function

V̇ = ∇ϕΦ · q̇ + (q̇ − fΦ) ·
(

u − ∂fΦ

∂q · q̇
)

. Substituting

the control law u as it is defined in (8), we have that:

V̇ = −‖fΦ‖
2−c·(q̇−fΦ)2+ q̇ ·FT ≤ −‖∇ϕΦ−FT ‖

2 since,

q̇ ·FT =

{

0 , p ∈ {Wext

⋃

E}
−‖q̇‖ · tanh(‖q̇‖) ≤ 0 , p ∈ {I ′}

, ∀q̇ ∈ R
m.

Hence, LaSalle’s Invariance Principle, [17] guarantees

convergence of q to the largest invariant set contained in

the set {q | ‖∇ϕΦ(q)‖ = 0}, since ‖∇ϕΦ−FT ‖ = 0 ⇒ q̇ =
0 ⇒ FT = ∇ϕΦ = 0. The critical points of the navigation

function are isolated, [8]. Thus the set of initial conditions

that lead to saddle points are set of measure zero. Thus, the

largest invariant set contained in the ‖∇ϕΦ‖ = 0 consists of

the target configuration pd1
and the saddle points.

1i.e. everywhere except a set of initial conditions of measure zero.
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Since the robot’s end-effector initial condition is p0 ∈ G+

and by construction it holds that pd1
∈ G−, the solutions

of (7), which are absolutely continuous, intersect the surface

g(s1, s2), using standard topological arguments. Therefore

there exists finite time T for which the system enters the

belt zones. When in the belt zone a mode switch occurs

that activates mode B and the control law (8) changes to

ufi=fB
. Once the robot end-effector enters the belt zone, it

remain there as the boundaries of the belt zone are repulsive

due to the construction of the workspace. Following the

same procedure as for the mode Φ, by choosing a Lyapunov

function V (q, q̇) = ϕB(q) + 1
2 · (q̇ − fB(q))

2
where ϕB =

ϕ|βws:=β⊥ , and with the vector field fB from (6), it holds

that the system converge to the target configuration pd2
a.e.

B. Tracking

Now, let us consider a tracking task across the surface

β(s1, s2). The task is described by a known trajectory qd(t)
on it (e.g. for neuro-robotic set-up, a manipulator keep a pen

and we would like it to write something on a paper). Let us

now define the appropriate control law in order to track the

predefined trajectory.

We introduce a navigation function of the form:

ϕtr(q, t) =
γd(q, t)

(γκ
d (q, t) + β⊥(q) · βO(q) · βs(q))

1/κ
(9)

where γd is similar to (5), and represents the distance to the

trajectory.

We consider convergence of the system to a small ball of

radius ε > 0 containing the target.

To define the tracking controller we will use the

P1 region introduced in [18]. This set is used to

identify sets of points that contain measure zero sets

whose positive limit sets are saddle points: P1 ,

{p : (λmin < 0) ∧ (λmax > 0) ∧ (|υ̂λmin
· ∇ϕ| ≤ ε1)} with

ε1 < min
C={p:‖p−pd‖=ε}

(‖∇ϕ (C)‖), where λmin, λmax are

the minimum and the maximum eigenvalues of the Hessian

∇2ϕ, and υ̂λmin
the unit eigenvector corresponding to the

minimum eigenvalue of the Hessian. If |υ̂λmin
· ∇V | = 0

then the set P1 consists of the measure zero set of initial

conditions that lead to saddle point, [18], [9], [11]. In view

of this, ε1 can be chosen to be arbitrarily small so the sets

defined by P1 eventually consist of thin sets containing sets

of initial conditions that lead to saddle points.

Now consider that the system is operating in tracking

mode. Then the task specific vector field is f tr = −(∇ϕtr−

FT ) − ∂ϕtr

∂t · (∇ϕtr−FT )

sw(‖∇ϕtr−FT ‖2,ε2)−ε2·σ( ∂ϕtr
∂t )·σ(‖∇ϕtr−FT ‖2)

with FT denotes the dissipative forces of the system, in the

same notation as in the previous subsection, σ (x) = x
1+|x| ,

sw(x, e) =

{

x, x ≥ e
e, x < e

, and ϕtr is given from (9).

Proposition 2: Consider the system (7) with initial con-

ditions in {E
⋃

I}\P1. Then the control law

u = −c·(q̇−f tr)+

(

∂f tr

∂q
· q̇ +

∂f tr

∂t

)

−(∇ϕtr−FT ) (10)

converges to the set T = {q : ‖k(q) − pd‖ < ε}, a.e.

Proof: We form the Lyapunov function

V (q, q̇) = ϕtr(q) + 1
2 · (q̇ − f tr(q))

2
and take its

time derivative V̇ =
(

∂ϕtr

∂t + ∇ϕtr · q̇
)

+ (q̇ −

f tr) ·
(

u − ∂ftr

∂q · q̇ − ∂ftr

∂t

)

. Substituting the control

law u as it is defined in (10), we have that:

V̇ =
[

∂ϕtr

∂t + (∇ϕtr − FT ) · f tr
]

− c · (q̇ − f tr)2 + q̇ · FT

⇒ V̇ ≤ ∂ϕtr

∂t + (∇ϕtr − FT ) · f tr = V̇tr

since, q̇ · FT ≤ 0, ∀q̇ ∈ R
m, as has proved in the previous

subsection.

Substituting f tr to V̇tr, and since we pursue convergence

in the set T, we get: V̇tr = −‖∇ϕtr − FT ‖
2 + ∂ϕtr

∂t ·
(

1 − ‖∇ϕtr−FT ‖2

‖∇ϕtr−FT ‖2−ε2·σ( ∂ϕtr
∂t )·σ(‖∇ϕtr−FT ‖2)

)

. We can now

discriminate the following cases:

•
∂ϕtr

∂t = 0 ⇒ ˙Vtr = −‖∇ϕtr − FT ‖
2 ≤ 0

•
∂ϕtr

∂t > 0 ⇒ 0 < σ(∂ϕtr

∂t ) < 1 ⇒ ‖∇ϕtr−FT ‖
2−ε2 <

‖∇ϕtr − FT ‖
2 − ε2 · σ

(

∂ϕtr

∂t

)

· σ
(

‖∇ϕtr − FT ‖
2
)

<

‖∇ϕtr − FT ‖
2 ⇒ ˙Vtr ≤ 0

•
∂ϕtr

∂t < 0 ⇒ −1 < σ(∂ϕtr

∂t ) < 0 ⇒ ‖∇ϕtr − FT ‖
2 <

‖∇ϕtr − FT ‖
2 − ε2 · σ

(

∂ϕtr

∂t

)

· σ
(

‖∇ϕtr − FT ‖
2
)

<

‖∇ϕtr − FT ‖
2 + ε2 ⇒ ˙Vtr ≤ 0

Hence, LaSalle’s Invariance Principle, guarantees conver-

gence of q to the largest invariant set contained in the set

P = {q | ‖∇ϕtr − FT ‖ ≤ ε1}. We have assumed that the

system’s initial conditions are in the set {E
⋃

I} \P1. Since

the set P1 is repulsive, it holds that V̇
a.e.
< 0.

Remark 1: In practice we can choose an ε1, such that

ε1 < min {ε0, ‖∇ϕtr(q0, t0)‖}, so we can be sure that the

system’s initial conditions are not in P .

VI. SIMULATION RESULTS

Computer simulations have been carried out to verify the

feasibility and efficacy of the proposed methodology. The

robot manipulator that we have used for the implementation

of the simulations, is the model of PUMA-560 Unimate, with

m = 6 d.o.f. The scenario of the simulation contains two 3-

D (ellipsoid) obstacles centered at O1 : (−0.2,−0.5, 0.0)
and O2 : (0.2,−0.4,−0.5). The surface of interest g(s1, s2)
is assumed to be an ellipsoid, centered at (0, 0, 0, ) with

semi-axes lengths (0.5, 0.3, 0.2), and uniform stiffness Ke =
103N/m. In order to be able for the robot’s end-effector to

apply a constant force in the perpendicular to the surface

direction, F d = 5N , we have adjusted the displacement

from the surface’s boundary, ǫ⊥d = 5 · 10−3m. The “bad”

region’s obstacles are centered at Og1 : (−0.25, 0.15, 0.14),
Og2 : (0.25, 0.15, 0.14) and Og3 : (−0.25,−0.15,−0.14).
The robot manipulator’s initial configuration was p(0) =
(−0.33,−0.41,−0.08, 0.0, 0.0, 1.5), the first target was set

at pd1
= (0, 0, 0, 0, 0, 0) and the second target was set at

pd2
= (0.2475,−0.1475,−0.1375, 1.03, 0.50,−1.03). After

the end-effector of the robot manipulator reaches its destina-

tion point (pd2
), it starts a tracking task, to track a predefined

trajectory which is the yellow colored line in Fig. 5-6, and the

same time to apply the specific force profile on the surface.
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Fig. 5. Simulation Results: reaching
a point on the surface and tracking.

Fig. 6. Simulation Results: collision
avoidance during tracking.
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Fig. 7. Simulation Results: End-
Effector’s (cartesian) position, blue -
x, red - y, green -z.
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Fig. 8. Joint’s angles, blue - q1, red
- q2, green - q3, cyan - q4, magenta
- q5, yellow - q6.
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Fig. 9. Cartesian position error between the real position of the robot and
the predefined trajectory during trajectory tracking, which is bounded by
ǫ = 0.01, blue - x, red - y, green - z .

The scenario of the simulation include a path, in a part of

which, it penetrate a surface obstacle, Fig. 5-9. Figures 5-6,

present the results from a different point of view, since there

are 3-D view simulations.

Figures 7-8, present the cartesian and joint position. Our

algorithm successfully converges to the goal configuration

and track the predefined trajectory avoiding obstacles. More

specifically, in Fig. 6,9 is depicted clearly, that when the

trajectory is passing through an obstacle, the robot can avoid

it by leaving the trajectory until this is out of the obstacle

again.

VII. CONCLUSIONS AND FUTURE WORK

We presented a methodology for performing navigation

and tracking tasks over a 2-dimensional manifold embed-

ded in a 3-dimensional workspace, with concurrent force

control across the surface, applicable to articulated robotic

manipulators. After safely navigating the manipulator’s end-

effector to the 2-D manifold, task specific vector fields direct

the end-effector towards accomplishing a navigation or a

trajectory tracking task across the 2-D manifold, and the

same time these fields make the robot complaint to the 2-

D manifold. The methodology has theoretically guaranteed

global convergence and collision avoidance properties. Due

to the closed form of the dynamic feedback controller, the

methodology is particularly suitable for implementation on

real time systems with limited computation capability.

Further research includes the implementation of the

methodology to real neuro-robotic systems taking into ac-

count their dynamics and kinematic constraints. Furthermore,

another future idea is to restate the whole problem in a

spatially “distributed” fashion as the manipulator will be

interacting in multiple points/surfaces with the environment.
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