
Motion Planning of Multiple Agents
in Virtual Environments on Parallel Architectures

Yi Li and Kamal Gupta
Robotic Algorithms & Motion Planning (RAMP) Lab

School of Engineering Science
Simon Fraser University

Burnaby, BC, V5A 1S6, Canada
Email: {liyi|kamal}@cs.sfu.ca

Abstract— We proposed in a previous paper [1] a hybrid
two-layered approach for motion planning of multiple agents in
static virtual environments, consisting of open spaces connected
by multiple narrow passages. The discrete Generalized Voronoi
Diagram (GVD) of the environment is used to identify narrow
passages, and plan the global path of each agent independently
of other agents’ global paths. As each agent moves along
its global path, the agent’s path is locally modified using
the hybrid technique of combining steering behaviors with
Coordination Graphs (CG), where coordination graphs are used
for deadlock avoidance in the narrow passages. The planner in
the previous paper [1] was single threaded, and it was able
to plan the motions of 30 agents moving around in a simple
virtual environment with 3 narrow passages. If more agents
are moving in a more complex virtual environment (i.e., with
more narrow passages), we may not be able to construct and
process all the coordination graphs in real-time. In this paper,
we parallelize the single threaded planner in a supervisor-
worker paradigm with Unix processes who communicate with
each other using System V Interprocess Communication (IPC)
mechanism. We show that significant, scalable speedups are
obtained by constructing and processing coordination graphs
in parallel on a Symmetric Multiprocessing (SMP) system.

I. INTRODUCTION

We proposed in [1] a hybrid two-layered approach for
motion planning of multiple agents in static virtual envi-
ronments, consisting of open spaces connected by multiple
narrow passages. The hybrid two-layered approach was de-
signed to achieve two goals: very fast pre-processing plus
real-time motion coordination and obstacle avoidance. A fast
pre-processing is essential for a planner that plans motions of
multiple agents in virtual environments and games, because
a gamer may only tolerate a few seconds of delay while the
game is being loaded/started. Real-time motion coordination
and obstacle avoidance are critical in computer games,
because the games must be responsive to user’s inputs.

During the pre-processing phase, the hybrid two-layer
approach uses the discrete generalized Voronoi diagram
(generalized in the sense that it is applicable to general sites
such as polygons) of the static environment to identify all
narrow passages and compute the global path of each agent
independently of other agents’ global paths. Agents’ motions
are coordinated at runtime and locally (e.g., when two agents
want to to enter the same narrow passage), using a hybrid
technique combining steering behaviors [2], [3] with coor-
dination graphs [4]. Using the hybrid two-layered approach,

the single threaded planner in [1] planned motions for 30
agents in a virtual environment with 3 narrow passages, the
average frame rate was 117 fps and the percentage of all
frames updated at a lower speed than 24 fps was 4.27%.

Suppose that the virtual environment has n narrow pas-
sage. To avoid deadlocks in all narrow passages at a certain
time, we must perform n tasks, where each task constitutes
constructing a coordination graph for a particular narrow
passage and then performing a variable elimination algorithm
[4] to compute an optimal joint action that avoids deadlock
in that particular narrow passage. If there are more than 30
agents and more than 3 narrow passages, the single threaded
planner in [1] may not be able to perform all tasks in real-
time on a single processor. Because tasks associated with dif-
ferent narrow passages are independent of one another, they
can be performed in parallel on Symmetric Multiprocessing
(SMP) systems. An SMP system has two or more identical
processors connected to a single shared main memory. We
consider SMP systems because, first of all, the single shared
main memory allows the processors exchanging/sharing data
efficiently. Moreover, our work is motivated by computer
game applications and all next-generation game consoles
(i.e., Microsoft Xbox 360, Nintendo Wii, and Sony PlaySta-
tion 3) are SMP systems containing multi-core processers.
Although multi-core x86 processors are either dual-core or
quad-core, processor manufacturers are adding more cores
to their multi-core processors. Sun’s UltraSPARC T1 has
already eight cores, and Sun plans to release a processor
with sixteen cores in 2008 [5].

Some early parallel motion planning approaches (graph-
based, grid-based, potential fields, mathematical program-
ming, and ancillary algorithms) were reviewed in [6]. Parallel
formulations for exhaustive enumerative search in high di-
mensional spaces based on a static load-balancing scheme
and a dynamic load-balancing scheme were presented in
[7] and [8], respectively. Recently, parallelization of proba-
bilistic path planners, such as Probabilistic Roadmap (PRM)
[9] and Rapidly-exploring Random Trees (RRT) [10], has
been studied extensively. All parallel versions [11], [12],
[13], [14], [15] of these two planners aim to solve high-
dimensional problems and/or yield speedups by distributing
work to multiple processors. However, none of these planners
have real-time constraints. In this paper, we have to not only

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeC11.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1009

coordinate the motions of the agents online by computing
their optimal joint actions in real-time, but also render the
virtual environment and all agents in the environment using
OpenGL at a frame rate of at least 24 fps. These real-time
requirements impose strong constraints on parallelization, in
particular parallel overhead must be minimal.

The two main parallel programming models are: OpenMP
and Message Passing Interface (MPI). With OpenMP, the
sequential code can be parallelized easily. However, OpenMP
supports only loop-level parallelism, not task parallelism.
As other OpenGL programs, the single threaded planner in
[1] runs in an event loop accepting and handling events
(e.g., display event). The planner runs also in variable frame
rate mode (i.e., display events occur as fast as possible). If
we were to use OpenMP to parallelize the single threaded
planner, then multiple threads must be created and destroyed
when a display event occurs. The resulting parallel overhead
will be significant enough so that the parallelized version will
not yield desired speed-up. MPI supports task parallelism on
either SMP systems or distributed systems, but it requires
more programming changes to go from sequential to parallel.
Additionally, as a purely practical implementational issue,
we found it difficult to integrate MPI with OpenGL. Instead,
we implemented the task parallelism in a supervisor-worker
paradigm with Unix processes that communicate with each
other using System V Interprocess Communication (IPC)
mechanism. The main advantage of this approach is that it
minimizes the parallel overhead, because all processes are
created only once and destroyed only once and they can
communicate with each other very efficiently through the
System V IPC mechanism. We show that significant, scalable
speedups are obtained by constructing and processing coor-
dination graphs in parallel on a Symmetric Multiprocessing
(SMP) system.

This paper is organized as follows. We formally define
the problem to be solved in section II. The hybrid two-
layered approach is presented in section III. A parallel
procedure for construction of multiple coordination graphs
and computation of multiple optimal joint actions is pre-
sented in section IV. A simple scheduler and asynchronous
message delivery are used in section IV to improve the
parallel performance on multiple processors. In section V,
we describe the experiments, and the results obtained. We
conclude in section VI.

II. PROBLEM DEFINITION

Let k agents A1, . . . ,Ak be in a static two-dimensional
polygonal virtual environment, where each agent is modeled
by a disc of radius r with two degrees of freedom x and
y. The agents’ start positions Ps = {Ps1 , . . . ,Psk}, and goal
positions Pg = {Pg1 , . . . ,Pgk} are also defined. The virtual
environment consists of open spaces connected by n narrow
passages, and for now we assume that no narrow passages
intersect with each other. The task is to move each agent
from its start position to its goal position without colliding
with other agents and static polygonal obstacles.

III. THE HYBRID TWO-LAYERED APPROACH

First, we compute the discrete generalized Voronoi dia-
gram using the frame buffer of the graphics hardware [16].
The distance from any point on the GVD to its nearest
obstacle (called clearance) can be obtained in the Z-buffer.
With the GVD and the distance information, we not only
identify all narrow passages in the environments, but also
find all agents’ global paths.

A. Narrow Passage Identification

All narrow passages, openings, and expanded openings
shown in Fig. 1 have been identified automatically using
the GVD. Openings are drawn in darker gray (two differ-
ent greens in colored version) compared to the expanded
openings (yellow and orange in colored version) surrounding
them.

Fig. 1. A virtual environment with 3 narrow passages.

B. Motion Coordination with Coordination Graph

Because the agents are moving in a 2D virtual environ-
ment, the medial axis of the free space is a one dimensional
entity; hence, the GVD can be used as a roadmap. Using
the GVD, the global paths between Ps and Pg are computed
sequentially and independently of each other.

Having generated a global path for each agent, we want
it to follow its path while avoiding obstacles and other
agents. This goal can be accomplished by steering behaviors
[3]. All steering behaviors are based on local information;
therefore, the agents get easily stuck if they are located in
cluttered environments, such as narrow passages. To avoid
deadlocks in narrow passages, we presented in [17] a hybrid
technique, combining local steering behavior and an efficient
AI technique for decision making and planning cooperative
multi-agent dynamic systems called a Coordination Graph
(CG) [4]. We do not discuss details here, but just present
some broad essentials.

Suppose that m agents A = {A1, . . . ,Am} are located inside
a narrow passage and its two openings at time t. These agents
must coordinate their actions in order to pass through while
avoiding deadlocks. All agents are acting in a space described

WeC11.1

1010

by a set of discrete state variables, X = {X1, . . . ,Xn}. A state
x = {x1, . . . ,xn} is an assignment to each state variable Xi.
Each agent is assigned a local value function Q j(x,a), where
a = {a1, . . . ,am} ∈ Dom(A) is a joint action. A local value
function is basically a set of value rules, where each value
rule describes a context — an assignment to state variables
and actions — and a value increment. Next, a coordination
graph is automatically constructed with the information in the
local value functions. Each node of the coordination graph
represents one agent, and two nodes are connected only
if the corresponding agents must coordinate their actions;
hence, the coordination graph can capture local coordination
requirements between agents and the action space is reduced.
Finally, all the agents’ states are observed and all value
rules which are not consistent with the current states are
deleted. The variable elimination algorithm is then used in
combination with a message passing scheme [4] to find
one joint action that maximizes the total utility function
Q = ∑ j Q j(x) called optimal joint action. The value rules
in [17] are designed in such a way that that optimal joint
actions eliminate deadlocks in narrow passages.

C. Summary

The overall procedure for the hybrid two-layered approach
is given below as Procedure 1. The most expensive com-
putation in this procedure is the computation of optimal
joint actions (step 8). This computation must be done in
real-time regardless of the number coordination graphs. In
order to handle more agents and more narrow passages, we
must speed up the computation of optimal joint actions by
constructing and processing coordination graphs in parallel.

Procedure 1 The Hybrid Two-layered Approach
1: Input: a static virtual environment with polygonal ob-

stacles, agents’ start positions Ps and goal positions Pg

2: Pre-processing: Compute the GVD.
3: Pre-processing: Identify all narrow passages.
4: Pre-processing: Compute the agents’ global paths se-

quentially and independently.
5: loop
6: Wait for an OpenGL display event.
7: Observe each agent’s state.
8: Tasks: Construct coordination graphs (once for each

narrow passage). For each coordination graph, com-
pute an optimal joint action.

9: Compute each agent’s local path using steering behav-
iors and the optimal joint actions.

10: Render the virtual environment and all agents.
11: end loop

IV. PARALLEL APPROACH

A. Supervisor-Worker Paradigm

We implemented the task parallelism in a supervisor-
worker paradigm: a single supervisor, also called master, asks
multiple workers, also called slaves, to perform the tasks (i.e.,
constructing and processing coordination graphs).

The supervisor-worker paradigm can be implemented with
either threads or processes. Threads should be used when
the same complex data structures must be processed concur-
rently, and processes should be used instead for less tightly
coupled applications [18]. Therefore, we choose processes
for implementation of the supervisor-worker paradigm, be-
cause all workers perform their tasks independently of one
other; consequently, no data is passed between workers. Al-
though creating processes costs more than creating threads,
note that no processes are created or destroyed during
runtime. We create and destroy processes only when the
supervisor and the workers initialize and terminate, respec-
tively. Another advantage of processes over threads is that
developing and testing processes separately is easier. How-
ever, each process has its own set of memory pages; hence,
two processes need to use Interprocess Communication to
communicate with one another. We use System V IPC for
interprocess communication, in particular message queues
and shared memory segments.

We divide Procedure 1 into two programs: a supervisor
program and a worker program. Once the supervisor program
is launched, we make a system call fork to create a second
process. The original process is called the parent, and the
new one is called child. In order to create multiple worker
processes, we launch the worker program multiple times. The
number of the worker processes depends on the number of
available processors. The supervisor processes communicate
with the worker processes through two message queues (Fig.
2): the supervisor sends messages to the workers through
message queue A, and the workers send back the results
through message queue B.

Supervisor

Shared Memory

Parent Process

Child Process

OS

OS

Data Sent

Data Sent

Message Queue A

Message Queue B

Worker Processes

Process No. 1

Fig. 2. The supervisor and its workers communicate through System V
message queues and shared memory.

Each time a display event occurs (i.e., step 6 in Procedure
1), the parent process observes all agent’s states (step 7).
For each narrow passage, the parent process stores the
relevant agents’ states inside a message before the message
is appended to message queue A. Once all messages are
sent to the worker processes, the parent process continues on
executing step 9 and step 10. As soon as a worker process is
free, it pops the first message in message queue A. Using the
data stored inside the message, the worker process performs
one task from step 8, and sends back the corresponding
optimal joint action to the child process of the supervisor
through message queue B. When the child process pops a

WeC11.1

1011

message in message queue B, it writes the data (i.e., an
optimal joint action) in the message into the same memory it
shares with the parent process (Fig. 2). The shared data are
only written by one process (i.e., the child process); hence,
there is no need to use semaphores for restricting access to
the data.

We use message queues for communication between the
supervisor and the workers, because small messages (100
bytes or so) can be passed between two processes quickly
[18]. However, the size of a message and the number of
messages in the queue are limited [18]. For example, we
are able to send 40 messages to message queue A on an SGI
UltimateVision. If there are more than 40 narrow passages in
the virtual environment, shared memory can be used instead
of message queue for communication between the supervisor
and its workers. Shared memory should also be used for big
messages [18].

B. Job Scheduling

n tasks (i.e., construct n coordination graphs, and then
compute an optimal joint action for each one of them) are
performed each time a display event occurs. A task can
only be processed by one processor, and a task cannot
be interrupted. All processors available for processing are
identical. We want to minimize the length of time required to
complete all tasks denoted by M. This is a classical schedul-
ing problem of parallel identical processors and independent
jobs (tasks). We use a fast and effective heuristic procedure
for minimizing M, Longest Processing Time (LPT). The
schedules produced by LPT are close-to optimal [19].

In general, processing time for a coordination graph grows
with the number of nodes in it. Therefore, an LPT ordering of
the tasks can be obtained by sorting the coordination graphs
according to the number of nodes.

C. Asynchronous Message Delivery

With multiple processes running in parallel, once all
messages are sent by the parent process (in the supervisor
program) to the worker processes, the parent process contin-
ues (to step 9 and step 10 Procedure 1) without waiting for
the results from the worker processes via the child process.
This is called asynchronous message delivery. With it, we can
achieve a smoother simulation (i.e., maintain at least a frame
rate of 24 fps) than the single threaded program. However, on
average, the worker processes still need to compute optimal
joint actions in less than one-tenth of a second in order to
avoid deadlocks in the narrow passages.

During the simulation, the parent process maintains a table
of boolean variables, with each variable corresponding to a
single agent. The size of the table is therefore equal to the
number of agents. The initial values of all table entries are
true. Whenever an optimal joint action is received, the parent
process checks whether an agent is allowed to enter a narrow
passage or not. If not, the agent’s corresponding entry in
the table is set to false. Each time a display event occurs,
the parent process checks all entries of the table. If an entry
contains value false, the corresponding agent makes a U-turn

away from the narrow passage in front it; hence, a deadlock
inside the narrow passage is prevented. Whenever a narrow
passage is empty, all entries corresponding to the agents that
intend to enter the narrow passage are reset to true.

V. EXPERIMENTS AND RESULTS

A. Hardware and Software Setup

The experiments were performed on two different systems:
an SGI UltimateVision and a Dell OptiPlex GX620. The SGI
UltimateVision has 24 MIPS R16000 processors and runs
IRIX 6.5.28. Each MIPS processor runs at 700 megahertz,
and has 4 megabyte L2 cache. The system has 14 gigabytes
of global shared memory, and it is visible to all 24 proces-
sors. The Dell OptiPlex GX620 has one Intel Pentium D
Processor 820 with two execution cores running at 2.8GHz
and each core having 1MB level 2 cache (2MB in total),
one 256MB ATI Radeon X600 PCIe video card, 4 gigabytes
of RAM, and runs Red Hat Enterprise Linux 4. The code
was written in ANSI C/C++ and compiled using GNU GCC
3.4.3 on the Dell OptiPlex GX620 and GNU GCC 3.3 on
the SGI UltimateVision.

B. Performance Analysis

1) The SGI UltimateVision: An important performance
metric is speedup S, which is defined as

S(N,P) =
Tseq(N)
T (N,P)

, (1)

where N is the size of the problem, P is the number of
processors, Tseq is the runtime of the sequential program, and
T (P) is the runtime of the parallel program.

To measure the parallel efficiency, we created a simplified
supervisor that enables us to perform some experiments in
a controlled environment using the SGI UltimateVision. The
simplified supervisor generates jobs of different sizes, but it
does not perform rendering, because the rendering and all
agent steering behaviors are handled by a single process in
the supervisor (i.e., the parent process), we found that the
700 megahertz MIPS processors in the SGI system are not
powerful enough. A job consists of one or multiple tasks.
The size of the job varies not only with the number of the
tasks, but also with the size of each task, which is equal to the
number of nodes of the coordination graph inside the task,
and it ranges from 1 to 6 in our experiments. Depending on
the experiment, the simplified supervisor generates a job with
a certain number of tasks, where the sizes of the tasks may
be equal to one another or different. To measure runtime, a
timer is started before the parent process in the simplified
supervisor sends messages to the workers through message
queue A; it is stopped once the parent process receives all
optimal joint actions from the child process.

First, we measured how the runtime of one task varies with
the size of the task. For each job, the simplified supervisor
sent 40 tasks of the same size to the workers for processing.
The average runtime for 1 task is shown in Table I.

Next, we investigated how the size of a task (i.e., the
number of nodes in a coordination graph) affects the speedup.

WeC11.1

1012

TABLE I

RUNTIME OF ONE TASK.

Task Size (No. of CG nodes) 1 2 3 4 5 6
Time in msec 2 10 20 64 107 160

Three different numbers of nodes were tested: 2, 4, and 6. For
each test, the simplified supervisor sent 40 tasks of equal size
to the workers. Runtimes for 1, 2, 5, 10, and 20 workers are
shown in Table II and Fig. 3. The speedups for coordination
graphs with 4 and 6 nodes are almost linear. However, for
coordination graphs with 2 nodes, the speedup is just over 10
when using 20 workers, due to the communication overhead.
The effect of the communication overhead is especially
evident when the jobs are small, and they are distributed
to many processors (e.g., when 40 coordination graphs with
2 nodes are processed by 20 workers).

TABLE II

RUNTIMES OF 40 EQUAL-SIZE TASKS.

No. of Processors (P) 1 2 5 10 20
Time in msec (2 nodes) 412 210 86 51 33
Time in msec (4 nodes) 2568 1279 521 268 149
Time in msec (6 nodes) 6326 3148 1272 647 338

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

No. of Processors

S
pe

ed
up

s

6 nodes
4 nodes
2 nodes

Fig. 3. Speedups for 40 equal-size tasks.

Another factor affecting speedups is the load balance
between different processors. Ideally each processor should
perform the same amount of work. Given multiple tasks
with mixed sizes, we use the LPT scheduler to distribute
tasks evenly among the available processors for a good load
balance. We tested the effect of the LPT scheduler with 20,
30, and 40 tasks. The size of each task was determined
randomly by the simplified supervisor, and it ranged from
1 to 6. Each task was performed first without the LPT
scheduler, and then with the scheduler. Runtimes (averaged
over 10 runs) are shown in Table III. Speedups are shown in
Fig. 4.

The data in Table III and Fig. 4 indicates that the parallel
performance improves significantly when the LPT scheduler

TABLE III

RUNTIMES OF UNEQUAL-SIZE TASKS (WITH AND WITHOUT

SCHEDULING).

No. of Processors (P) 1 2 5 10 20
without scheduling

Time in msec (20 tasks) 1081 569 270 171 157
Time in msec (30 tasks) 1625 842 378 231 164
Time in msec (40 tasks) 2139 1098 482 290 194

with scheduling
Time in msec (20 tasks) 1079 525 223 155 150
Time in msec (30 tasks) 1620 812 332 184 153
Time in msec (40 tasks) 2139 1071 434 231 176

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

No. of Processors

S
pe

ed
up

s

20 tasks without scheduling
30 tasks without scheduling
40 tasks without scheduling
20 tasks with scheduling
30 tasks with scheduling
40 tasks with scheduling

Fig. 4. Speedups for unequal-size tasks (with and without scheduling).

is used. Observe that the speedups are limited by the pro-
cessing time of the biggest task (i.e., a task with size 6).
Because it takes abut 160 msec (Table I) to process a task
with size 6, multiple tasks can not be processed in less time
than 160 msec regardless of the number of processors used
to process these tasks.

2) The Dell OptiPlex GX620: Finally, we ran the
supervisor-worker paradigm on the OptiPlex with a faster
Pentium D processor (compared to the MIPS processors)
using a full version of the supervisor, which not only ob-
serves all agents’ states and distribute works to the workers,
but also renders the agents and the virtual environment using
OpenGL.

We used the virtual environment shown in Fig. 5 to
test the runtime performance. To make sure that an agent
(shown as a solid triangle) passes through at least one narrow
passage while moving along its global path, each agent’s start
position and goal position are located in two different open
spaces. Once an agent reaches its goal position, it makes
U-turn and heads back to its start position.

In addition to the two supervisor processes (i.e., the parent
and the child), we created two worker processes. Because the
single Pentium D processor has two cores, the four processes
we created are simply multiplexed over the two cores by
the system. However, running with fewer processors than
processes can hinder performance [20]. In order to maintain
a sufficient frame rate, we gave the worker processes lower

WeC11.1

1013

Fig. 5. A virtual environment with 5 narrow passages and 50 agents. See
the accompanying short video clip.

priorities than the supervisor processes by setting worker
processes’ and supervisor processes’ nice values to 39 and
20, respectively. A process with higher nice value runs at a
lower priority [18].

We ran the simulation (see the accompanying short video
clip) for 10 minutes. By processing two coordination graphs
in parallel utilizing the dual-core processor, we can now plan
motions of 50 agents (instead of 30 [1]) in a more complex
virtual environment shown in Fig. 5. The average frame rate
is 106 fps and the standard deviation is 54. Only 0.95% of
all frames were drawn at a frame rate slower than 24 fps.

VI. CONCLUSIONS

In this paper, we parallelized a hybrid two-layered ap-
proach for motion planning of multiple agents in virtual
environments we proposed in [1] on a SMP system. We
implemented the task parallelism in a supervisor-worker
paradigm with Unix processes who communicate with each
other using System V Interprocess Communication mecha-
nism. The supervisor not only renders, but also distributes
works to the workers and receives results (i.e. optimal joint
actions) from the workers. A worker takes order from the su-
pervisor, then constructs a coordination graph and computes
an optimal joint action.

The main advantage of our approach is that the parallel
overhead is reduced to a minimum, because all processes
are created only once and destroyed only once, and the
processes can communicate with each other very efficiently
using the System V IPC mechanism. Parallel efficiency of
our approach is further improved by job scheduling algorithm
LPT and asynchronous message delivery. The experiments
show that significant, scalable speedups are obtained. By
constructing and processing multiple coordination graphs in
parallel on a SMP system, the hybrid two-layered approach
can now handle more agents and more complicated virtual
environments.

ACKNOWLEDGMENT

The authors would like to thank Brian Corrie at the
IRMACS Centre, Simon Fraser University for his help and

support. This research has been enabled by the use of
WestGrid computing resources, which are funded in part by
the Canada Foundation for Innovation, Alberta Innovation
and Science, BC Advanced Education, and the participating
research institutions. WestGrid equipment is provided by
IBM, HP and SGI. This research was supported in part,
by a grant from Natural Sciences and Engineering Research
Council (NSERC) of Canada.

REFERENCES

[1] Y. Li and K. Gupta, “A hybrid two-layered approach to real-time
motion planning of multiple agents in virtual environments,” in Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2006.

[2] C. W. Reynolds, “Flocks, herds and schools: a distributed behavioural
model,” Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[3] ——, “Steering behaviors for autonomous characters,” in Proceedings
of Game Developers Conference, 1999, pp. 763–782.

[4] C. E. Guestrin, “Planning under uncertainty in com-
plex structured environments,” 2003. [Online]. Available:
http://ai.stanford.edu/ guestrin/Publications/Thesis/thesis.pdf

[5] A. Vance, “Sun cheers two sparc advances in one
week (true),” January 18, 2007. [Online]. Available:
http://www.theregister.co.uk/2007/01/18/sun rock tape/

[6] D. Henrich, “Fast motion planning by parallel processing – a review,”
Journal of Intelligent and Robotic Systems: Theory and Applications,
vol. 20, no. 1, pp. 45–69, 1997.

[7] D. Henrich, C. Wurll, and H. Worn, “6 dof path planning in dynamic
environments – a parallel online approach,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1, 1998,
pp. 330–335.

[8] B. Taati, M. Greenspan, and K. Gupta, “A dynamic load-balancing
parallel search for enumerative robot path planning,” Journal of
Intelligent and Robotic Systems, vol. 47, pp. 55–85, 2006.

[9] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[10] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in Proceedings of IEEE International Conference on Robotics and
Automation, vol. 1, 1999, pp. 473–479.

[11] M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E.
Kavraki, Probabilistic Roadmaps of Trees for Parallel Computation
of Multiple Query Roadmaps, ser. Robotic Research: The Eleventh
International Symposium. Springer, STAR 15, 2005, pp. 80–89.

[12] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki,
“Sampling-based roadmap of trees for parallel motion planning,” IEEE
Transactions on Robotics, vol. 21, no. 4, pp. 597–608, 2005.

[13] S. Carpin and E. Pagello, “On parallel RRTs for multi-robot systems,”
in Proceedings of the 8th Conference of the Italian Association for
Artificial Intelligence, 2002, pp. 834–841.

[14] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are
embarrassingly parallel,” in Proceedings of IEEE International Con-
ference on Robotics and Automation, vol. 1, 1999, pp. 688–694.

[15] P. Isto, “A parallel motion planner for systems with many degrees of
freedom,” in Proceedings of International Conference on Advanced
Robotics, 2001, pp. 339–344.

[16] K. E. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Inter-
active motion planning using hardware-accelerated computation of
generalized voronoi diagrams,” in Proceedings of IEEE International
Conference on Robotics and Automation, vol. 3, 2000, pp. 2931–2937.

[17] Y. Li, K. Gupta, and S. Payandeh, “Motion planning of multiple agents
in virtual environments using coordination graphs,” in Proceedings of
IEEE International Conference on Robotics and Automation, 2005,
pp. 380–385.

[18] M. J. Rochkind, Advanced UNIX Programming. Addison-Wesley
Professional, 2004.

[19] K. R. Baker, Introduction to Sequencing and Scheduling. John Wiley
and Sons Inc, 1974.

[20] R. Chandra, L. Dagnum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel programming in OpenMP. San Francisco, CA:
Morgan Kaufmann Publishers, 2001.

WeC11.1

1014

