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Abstract— This paper presents a scheme for high-update
rate Wheel Mobile Robot (WMR) posture, velocities, and
perturbation estimation using Real-time Kinematic Global
Positioning System (RTK-GPS) and inertial sensors for WMR
control in the presence of wheel skidding and slipping. An
outdoor estimation system based on Kalman Filtering combines
the inertial measurements with centimeter accuracy RTK-
GPS measurements to provide essential posture, velocities, and
perturbation information. The particular contribution of this
paper is in designing an estimation system to be able to deal
with WMR control problems in the presence of wheel skidding
and slipping. The experimental results suggest that with careful
modelling of WMR, the estimation scheme is able to provide
reliable and high update rate information for WMR control
applications in the presence of wheel skidding and slipping.

I. INTRODUCTION

Wheeled Mobile Robots control problems can be grouped
into path following, stabilization and trajectory tracking [1],
and many solutions to these problems have been proposed.
However, most of these proposed control designs assume no
wheel skidding and slipping.

In practice, wheel skidding and slipping effects are com-
mon since tire deformation is essential to provide longitu-
dinal traction force for motion; hence, it is important to
consider these factors in a WMR control design for safe
and reliable maneuvers. Some works have been proposed
to address the WMR control problems in the presence of
wheel skidding and slipping [2], [3], [4]. However from the
literature review, these control solutions impose restrictive
assumptions either on the skidding perturbations or on the
WMR’s control inputs to achieve stability and performances.
Recently, a control scheme has been proposed to address the
issue [5], [6], [7], [8]. The control scheme exploits centimeter
accuracy RTK-GPS measurements and inertial measurements
to compute the skidding perturbations information which is
utilized to achieve exponential converging solution based
on the WMR kinematic model. However, the approach of
perturbation computation only deploys observation equations
which suffers from under utilization of these sensor data.
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Consequently, the low-update rate GPS measurements limits
the control system’s performance. Moreover, measurement
noise has not been considered in these works.

To enhance information updating rate and reliability, the
RTK-GPS measurements can be fused with other high-update
rate navigation sensors to estimate the posture and pertur-
bation information in a systematic way. These high-update
rate navigation measurements must not be affected by the
wheel skidding and slippage. This requirement suggests that
Odometry methodology is unreliable to be used to estimate
the vehicle posture. A review of navigation literature [9], [10]
shows that GPS and inertial sensors have complementary
properties, and they can be fused using Kalman Filter to
provide high-update rate navigation information. Most im-
portantly, these devices provide measurements that are not
corrupted by wheel skidding and slipping effects. The com-
bination of GPS and inertial sensors has also been utilized
in automotive industry to estimate vehicle’s sideslip angle
for automobile stability control [11], [12], [13]. In these
works, GPS doppler velocity measurements provided by a
stand-alone GPS receiver is used to estimate the vehicle’s
sideslip and tire-slip angle. In WMR control problem in the
presence of wheel skidding and slipping, the control system
requires not only high-update rate perturbation information,
but also high-update rate posture, e.g., the WMR’s posture
with respect to a global coordinate frame, which is not
critical in automobile stability control applications. Other
relevant work has also been found in [14] where a navigation
system based on laser scanner and inertial navigation system
was proposed for an autonomous underground load, haul, and
dump truck. In the work, wheel skidding parameters of the
vehicle are modelled as random white noise which may not
be sufficiently accurate in representing the wheel skidding
parameters.

RTK-GPS has also been used to compute the skidding
parameters of a farm tractor for path-following problem
[15], [16]. In these works, they utilized several versions of
path following models for the estimation. However, these
estimations suffer from several deficiencies. First, the es-
timators used a parameterized path following model for
computing the perturbations. The computations utilize lateral
deviation which requires accurate instantaneous curvilinear
information to compute. A mild error in the position mea-
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surement could possibly lead to an erroneous and noisy
estimates. Additionally, the update rates of these estimators
are limited by the low-update rate GPS measurements. The
perturbation estimator should be developed using a WMR’s
kinematic description rather than restrictive path-following
models since the skidding parameters are properties of the
WMR and should be problem independent.

In this paper, we proposed a kinematic estimator to provide
reliable and high-update rate posture, velocities, and per-
turbations information for WMR control in the presence of
wheel skidding effect. The WMR considered in this paper is
a car-like WMR where control schemes have been proposed
in [5], [6], [7], [8]. This article aims to demonstrate that
the Kalman filters can be applied to estimate the WMR’s
posture, velocities, and kinematic perturbations for WMR
control in the presence of wheel skidding and slipping. The
remainder of this paper is organized as follows: Section II
briefly describes the kinematic model of the robot. Section III
presents the state-space modeling for the estimation. Section
IV describes the estimation scheme, Section V presents the
experimental results, and Section VI concludes the paper.

II. WMR POSTURE KINEMATIC MODEL

Fig. 1. Type (1,1) car-like WMR

In this paper, we consider a car-like WMR, as shown in
Figure 1. This class of WMR is equipped with centered front
steerable wheels and fixed parallel rear wheels. {Xb, Yb}
denotes a body frame attached on the WMR reference point
P and {X,Y } represent the global coordinate frame. γ1

denotes the WMR’s front steering angle, a denotes the
WMR’s wheelbase, and θ represents the orientation of the
WMR with respect to the {X} axis. We define the vector
ξ = [x, y]T as the coordinates of point P .

In the ideal case where no-skidding and no-slipping as-
sumptions hold, a wheel’s velocity is constrained along its
wheel’s plane axis. When these assumptions are not satisfied,
the wheel’s velocity deviates from its plane axis by a slip
angle. To apply this characterization to the WMR, we let
{δ1, δ2} denote the front and rear wheels’ slip angles as
shown in Figure 2. V denotes the velocity of the reference
point P , ψ denotes the orientation of the velocity with respect
to the {X} axis, Vl denotes the longitudinal velocity and Vy

denotes the lateral velocity due to wheel skidding which is

Fig. 2. Type (1,1) car-like WMR in the presence of skidding effects

related with the slip angle δ2 by geometric relations

sin δ2 =
Vy

V
, tan δ2 =

Vy

Vl
. (1)

The posture kinematic model of the WMR in the presence
of wheel skidding and slipping effects is

ẋ = Vl cos(θ) − Vy sin(θ) (2)

ẏ = Vl sin(θ) + Vy cos(θ) (3)

θ̇ =
Vl

a
tan(γ1 + δ1) − Vy

a
. (4)

The WMR’s longitudinal slippage d is related with the
WMR’s velocity control input rwϕ̇ by Vl = rwϕ̇ − d. The
control input of the WMR is U(t) = [rwϕ̇ γ1]T whereas
the perturbations parameters due to wheel skidding and
slipping are {Vy, d, δ1, δ2}. In brief, the estimation problem
considered in this paper is to utilize the high-update rate
inertial sensors measurements and the lower update rate
RTK-GPS measurements to estimate the WMR’s posture
{x, y, θ}, velocities {Vl, Vy}, and perturbation parameters
{d, δ1, δ2} at an update rate that the inertial sensors can
provide.

III. KINEMATIC MODELING FOR ESTIMATION

In this section, we derive a state-space model for Kalman
filtering. The velocity of the WMR can be expressed as

ξ̇ = A(θ)η (5)

where

A(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, η =

[
Vl

Vy

]
. (6)

To relate ξ̇ with acceleration, we differentiate equation (5).
By some algebraic manipulations, we have

η̇ = P̄ η + ua + wa + εa (7)

where

P̄ =
[

0 r
−r 0

]
, ua =

[
ax

ay

]
, εa =

[
εax

εay

]
. (8)

ua is the reference point acceleration measurements ex-
pressed in the WMR’s body frame. wa denotes the ac-
celerometer measurement noise which is assumed to be
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gaussian white with a sampled variance of {σ2
a,x, σ

2
a,y}, εa is

the accelerometer’s bias, and r denotes the WMR’s turning
rate. Similarly, we can relate the gyroscope measurement
with the WMR’s orientation via

θ̇ = rm + wr + εr. (9)

rm represents the gyroscope measurement, εr is the gyro-
scope’s bias, and wr denotes gyroscope’s measurement noise
which is assumed to be zero mean gaussian white noise with
sampled variance of σ2

r . We consider the slow drifting biases
{εa, εr} are constant and known; hence, equations (5),(7),(9)
can be written in the following state-space form.

ξ̇ = A(θ)η (10)

η̇ = P̄ η + ua + wa (11)

θ̇ = rm + wr (12)

When GPS measurements (both position and velocities)
are available, the observation equations that relate the mea-
surements with the states (ξ, η) can be described by

zx = x+ vx (13)

zy = y + vy (14)

zẋ = cos θVl − sin θVy + vẋ (15)

zẏ = sin θVl + cos θVy + vẏ (16)

where measurement noise {vx, vy, vẋ, vẏ} are assumed to
be zero mean and gaussian white with sampled variance
{σ2

x, σ
2
y, σ

2
ẋ, σ

2
ẏ}. Similarly, if an absolute orientation mea-

surement is available, the observation equation of state θ is
simply

zθ = θ + vθ (17)

where vθ is also zero mean gaussian white noise with
sampled variance σ2

θ . Sensors that provide absolute orien-
tation measurement are: magnetic compass, gyrocompass,
and a two-antenna GPS system. Equations (10)-(12) and
observation equations (13)-(17) lead to a continuous state-
space model.

IV. WMR POSTURE, VELOCITIES, AND PERTURBATION

ESTIMATION SYSTEM

A. Estimation system

Figure 3 shows the architecture of the estimation sys-
tem based on Kalman filtering. At time k, the states
{x, y, θ, Vl, Vy} are estimated by the Extended Kalman Filter
(EKF). This is achieved by using the inertial, RTK-GPS, and
absolute orientation measurements.

At any time instant where there is no absolute observation,
the state prediction predicts the states by integrating the
kinematic model (10)-(12) using the high bandwidth iner-
tial measurements. In this manner, the prediction estimates
has a maximum update rate that the inertial sensors can
offer. However, integrating inertial measurements result the
velocity and orientation estimate errors to grow linearly with
time and the position error to grow quadratically with time

Fig. 3. Structure of the Estimation Scheme

[19]. The error growth rate depends on the quality of the
inertial measurements. A high quality inertial sensors can
provide estimates using integration without any online error
calibration for a longer duration. At any time instant when
the low-update rate absolute GPS and orientation measure-
ments are available, the integration errors accumulated by
the integration are reset by the observation prediction based
on the respective absolute measurements and observation
equations. Once the states {x, y, θ, Vl, Vy} are estimated, the
scheme computes the skidding and slipping perturbations
{δ1, δ2, d} based on the states, control input U(t), and the
WMR’s kinematic model. The control inputs are usually
known or measurable. For this configuration of WMR, the
control inputs are the angular rotation rates of the rear wheels
and the front steering angle. These inputs are measurable
by high bandwidth sensors, e.g., incremental encoders and
absolute encoder. In this way, the estimation system is able
to provide posture, velocities, and perturbation estimates at
an update rate that the inertial sensors can offer.

B. Discrete kinematic model

To implement the EKF, we discretize the continuous model
(10)-(12), where the observation equations are sampled at
a regular interval. The discrete state-space model of equa-
tions (10)-(12) can be established using first order Euler
integration and is written in the form (18). A higher order
integration may be used to enhance the accuracy of the
discrete model. k denotes the discrete time index.

The discretized state transition vector equation is

xk+1 = f(xk, k) + wk (18)

where

f(xk, k) =




xk + �tVl,k cos(θk) −�tVy,k sin(θk)
yk + �tVl,k sin(θk) + �tVy,k cos(θk)

Vl,k + �tVy,krk + �tax,k

Vy,k −�tVl,krk + �tay,k

θk + �trm,k


 ,

(19)
xk = [xk yk Vl,k Vy,k θk]T , and the process noise vector

wk = [0 0 �twa,x �twa,y �twr]T . The time-varying
parameters {ax,k, ay,k, rm,k} at time k are provided by the
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accelerometer and gyroscope. �t denotes the sample time
of the discrete system. We assume the instantaneous yaw
rate rk is measurable by a low-noise gyroscope; hence, let
rk = rm.

The observation vector zk = [zx,k zy,k zẋ,k zẋ,k zθ,k]T

consists of absolute position, velocity and orientation read-
ings. Vector zk is related with the states xk via the obser-
vation equations (13)-(17) sampled at time k which can be
written as

zk = h(xk) + vk, (20)

where

h(xk) =




xk

yk

cos θkVl,k − sin θkVy,k

sin θkVl,k + cos θkVy,k

θk


 , (21)

and observation noise vk = [vx,k vy,k vẋ,k vẏ,k vθ,k]T .

C. State Prediction

The state prediction x̂−
k+1 based on information up to time

k is given by
x̂−

k+1 = f(x̂k, k). (22)

The error covariance between the true state and the predicted
state x̂−

k+1 is given by

P−
k+1 = ∇f(x̂k)Pk∇fT (x̂k) + Qk. (23)

∇f(.) denotes the Jacobian of f(.) at time k, and Qk is
the covariance matrix of the discretized noise vector wk.
Note that x̂k and Pk are chosen as x̂+

k and P+
k if there are

measurements available at time k; and x̂k and Pk are chosen
as x̂−

k and P−
k if there is no measurement zk available at time

k;

D. Observation Prediction

Assuming that there is a predicted state x̂−k , we have the
predicted observation

ẑk = h(x̂−
k ). (24)

Suppose the measurements zk at time k are available, the
prediction observation error which is also known as residual
is defined as αk = zk − ẑk with the covariance

Sk = ∇h(x̂−
k )P−

k ∇hT (x̂−
k ) + Rk. (25)

∇h(.) denotes the Jacobian of h(.) where Rk is the
covariance matrix of the measurements noise. The state
estimate and covariance update equations of a EKF is as
follows:

x̂+
k = x̂−k + Kk(αk) (26)

where Kk is the Kalman gain given by

Kk = P−
k ∇hT (x̂−k )S−1

k (27)

and the state estimate covariance matrix is

P+
k = (I − Kk∇h(x̂−

k ))P−
k . (28)

To improve the reliability of the estimation scheme, a
validation mechanism under the framework of Kalman filter
can be applied to inspect the measurements so that occasional
bad measurements will not affect the estimates [18]. This
approach has been implemented to improve the reliability of
the estimation system [19]. Here, we may also implement
this validation mechanism to increase the integrity of the
estimator. To implement the validation gate, a threshold λi

which to be selected by the designer such that

Prob{α2
i > λi (Si)} = µi (29)

where αi is the ith element of αk, Si is the ith diagonal
term of matrix S, and a constant µi ∈ (0, 1) is usually quite
small. Then if condition

α2
i > λi (Si) (30)

is satisfied, the corresponding measurement will be declared
as faulty measurement. Note that the parameter λi should
be tuned by experimental trials. In the case where the
measurements zk are not available or faulty, the estimator
simply applies state prediction to estimate using inertial mea-
surements until the next absolute measurements zk arrive.

E. Perturbation computation

With the knowledge of x̂k, whether is by state prediction
or by observation prediction, we can make use of the estimate
to compute the kinematic perturbations {d, δ1, δ2} at time k
using the following equations.

d̂ = rwϕ̇− V̂l (31)

δ̂1 = tan−1(
rma+ V̂y

V̂l

) − γ1 (32)

δ̂2 = tan−1 V̂y

V̂l

(33)

Since control input U(t) of the WMR is assumed to be
known or measurable, and the the slip angles satisfy |δi| < π

2
for i = 1, 2, the perturbations can be uniquely computed
using equations (32) and (33).

V. EXPERIMENTS

A. Experimental setup

Experiment was conducted in an open and flat area at
our school. The open area was selected so that the effects of
inertial sensor bias due to gravitational effect was minimized,
and the consistency of the line of sights between the receiver
and the GPS satellites was maintained during the trial.
The proposed algorithm was tested on a car-like mobile
robot platform named Cycab (see Fig. 4). The mobile robot
has four wheels which are driven by four independent DC
motors. Two incremental encoders are fitted on the rear
DC motors to measure the WMR velocity input rwϕ̇. An
absolute encoder is installed on the WMR’s steering system
to measure the steering angle γ1. The WMR is equipped
with a MS-750 RTK-GPS receiver which is able to provide
both position and velocities measurements simultaneously.
The accuracies of the position and velocity measurements
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Fig. 4. A Type (1,1) car-like WMR

are 1σ = 0.02m and 1σ = 0.03ms−1 respectively. We let
the {X,Y } axes of the global coordinate system be the
East and North axes. Additionally, a KVH RA1100 Fibre
Optic gyroscope and a CXL01LF3 tri-axial accelerometer are
attached on the WMR’s reference point P to provide high-
update rate inertial information. The low-noise gyroscope
has a low measurement error of 1σ = 0.1deg/sec and the
accelerometer’s measurement error is 1σ = 0.01ms−2. A
Pentium PC with Window operating system hosts the vehicle
control software. The software is written using Visual C++
to communicate with the Cycab’s onboard for steering and
driving actions. The software is interfaced with a 12-bits
DAQ card to acquire the signals from the inertial sensors
and the absolute encoder. The GPS receiver is programmed
to provide measurements at an update rate of 10Hz where
the higher update rate sensors were sampled at 20Hz. The
WMR is not equipped with an absolute orientation sensor
that measures the WMR’s orientation θ. Since, the WMR
is to maneuver at a low speed about Vl = 1.0 ms−1, the
rear slip angle δ2 of the WMR is negligent; hence, we let
the velocity orientation ψ measurement provided by the GPS
receiver be the absolute WMR orientation measurement zθ

for the estimation scheme. Note that the ψ measurement error
is inversely proportional to the receiver’s velocity [11].

B. Experimental results

During the trial run, the WMR maneuvered in a circular
path while the sensors data was collected for the fusion.
Both velocity and position measurements are provided by
the RTK receiver and are used in this fusion. Figure 5
shows the position and velocity estimates. Figure 6 depicts
the kinematic perturbations estimates computed by equations
(31) and (32). These estimates have an update rate of 20Hz.
The spikes occurred in δ̂1 estimate during 0 < t < 3 sec
were due to the zero velocity when the WMR was stationary.
We can simply let δ̂1 = 0 when the robot is stationary
since there should have no wheel skidding when the WMR
is motionless. The sharp spikes of the d̂ estimates were
due to the high frequency incremental encoder measurement
noise which can be eliminated by implementing a low-pass
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Fig. 7. Variances of the estimates

filter. Figure 7 depicts the approximated variances of the
estimates computed by the filter. The bounds of these error
variances indicate that the EKF is well-behaved and stable.
Finally, Figure 8 presents the measurement residuals of the
estimator with 2σ plot. The whiteness and zero bias of these

ThB11.1

2359



0 5 10 15 20
−0.2

−0.1

0

0.1

0.2
Measurement x residual 

m

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2
Measurement y residual

m
0 5 10 15 20

−1

0

1
Measurement θ residual 

ra
d

sec
0 5 10 15 20

−0.4

−0.2

0

0.2

0.4

Measurement V
l
 residual 

m
/s

0 5 10 15 20
−0.4

−0.2

0

0.2

0.4

Measurement V
y
 residual 

m
/s

2σ 2σ

2σ
2σ

2σ

Fig. 8. Measurement residuals

residual indicates the consistency of the filter. The large
spikes occasionally occurred in the orientation measurement
residual is mainly due to the initial noisy measurement zθ

when the WMR is stationary. The sudden increments of the
position and velocity residuals during the run were caused
by the GPS multipath error when the WMR crossed some of
the palm trees along the path. Due to the space limitation,
the measurement rejection mechanism is not implemented to
rejected the occasional faulty measurements. Nevertheless,
a threshold level λ of condition (30) may be defined for
the measurement validation condition to reject these faulty
GPS measurements whenever the residuals exceeds the pre-
defined threshold level. The validation implementation will
enhance the reliability of the estimation system, especially in
areas where multipath error is dominant. These results show
the effectiveness of the estimator.

VI. CONCLUSIONS

This paper has developed a reliable and high-update rate
estimation system to provide critical posture, velocities, and
kinematic perturbation estimates in the presence of wheel
skidding and slipping for a car-like WMR. A kinematic
estimator is proposed to combine the low-update rate RTK-
GPS measurements with high-update rate inertial measure-
ments based on Kalman Filter. In this way, the update rate
of the estimates is now limited by the inertial sensor’s
bandwidth instead of the low-update rate GPS measurements.
One advantage of this kinematic estimator is that the inertial
parameters of the robot, which are usually unknown, are not
required to estimate the kinematic perturbations. Another
advantage is that the system can continue to provide esti-
mates using inertial sensors for short durations where the
GPS signals are unavailable or corrupted by high frequency
multipath error. With these high-update rate estimates, WMR
control laws that are designed to compensate the kinematic

perturbations due to wheel skidding and slipping can be
applied more effectively for precise automatic maneuvers.
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