
An Analysis of Wheeled Mobile Robots in the Presence of
skidding and slipping: Control Design Perspective

Danwei Wang*
Nanyang Technological University

School of Electrical and Electronics
Engineering

Singapore 639798
edwwang@ntu.edu.sg

Chang Boon Low
Nanyang Technological University

School of Electrical and Electronics
Engineering

Singapore 639798
cb@pmail.ntu.edu.sg

Abstract— This paper presents an analysis on Wheeled Mo-
bile Robots in the presence of wheel skidding and slipping
from the perspective of control design. The analysis is based on
the kinematic models that are recently developed from control
perspective [1]. Four generic mobile robots are considered in
this analysis. We relate the robot’s maneuverability with its
controllability which provides insights on the robot’s ability
to track a trajectory in the presence of wheel skidding and
slipping. These findings lay a base for the deployments of
various control design techniques to overcome mobile robot
control problems in the presence of wheel skidding and slipping.

I. INTRODUCTION

Wheeled Mobile Robots control problems have been in-
tensively studied; and apparently, most problems have been
properly addressed. However, most existing works assume
that the robots satisfy the non-slipping and non-skidding
conditions. In reality, these assumptions can’t be met due
to tire-deformation; hence, stability and control performance
of these controllers are not guaranteed in real running.

Several controllers have been proposed for the popular
Type (2,0) robot based on a kinematic model constructed in
[9] to address the issue of the skidding effect represented
by unknown bounded perturbation. Under the assumption of
the unknown perturbation being state-vanishing, an exponen-
tially stable robust stabilizing controller was proposed for the
robot [9]. Later the model was used in [10][11] and uniform
boundedness solutions were proposed for stabilization and
tracking problems without assuming the perturbation to be
constant or state-vanishing. In [12], Dixon et al. address
the skidding by designing robust tracking and regulation
controllers using the kinematic model. These controllers offer
uniform boundedness solutions by robust control approach.
However, if a high-precision control performance is desir-
able, these control laws would require high control input and
fast switching actions. These methods can be constrained by
implementation and mechanical issues.

In [7][14][15], another framework was proposed to address
the tracking control problem in the presence of both skidding
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and slipping effects. A dynamic model was proposed to
analyze the stability of a feedback linearization controller [6]
using singular perturbation analysis theory [7]. The analysis
shows that the control system remains stable for very mild
skidding and slipping. Another linear time varying controller
was proposed [14] to achieve uniformly locally exponential
stability for the Type (2,0) unicycle based on the dynamic
model. In [15], the model is applied to design a slow
manifold controller to solve an output-tracking problem. It
should be noted that these dynamic models rely on the
accurate dynamic inertial parameters and a factor ε which
are difficult to obtain in practice.

Based on the existing literature, we see that the avail-
able kinematic models do not provide sufficient insights
for control design where the perturbations due to wheel
skidding are regarded as general unknown terms. Recently,
we presented kinematic models for four generic mobile
robots that explicitly describe the perturbations due to wheel
skidding and slipping using meaningful descriptions [1].
This explicit description allows these perturbations to be
analyzed from control viewpoint. In this paper, these robots
with wheel skidding and slipping are further examined based
on the kinematic models. A unified framework in terms of
maneuverability index is used to address the controllability of
the four mobile robots. Tracking problem is also studied and
new insights are revealed. These findings lay a foundation
for the mobile robot control problem formulation and control
design in the presence of wheel skidding and slipping.

II. KINEMATIC MODELS

The four mobile robots considered in this paper are the
Type (2,0), (2,1), (1,1) and (1,2) robots. Each mobile robot
has a body frame with a body axes {Xb, Yb} attached on
it (Figure 1). We define the vector ξ = (x, y)T as the
coordinates of the reference point P in global coordinates
{X,Y }; θ denotes the orientation of the body frame with
respect to the global axes. The posture of the robot q
is defined as q = (ξ, θ). v denotes the velocity of the
reference point P , vy represents the velocity along Yb and vl

denotes v along Xb direction. Geometrically, these velocities
(vl, vy) are related with the slip angle δ by the geometric
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Fig. 1. A Wheeled Mobile Robot body frame

relationships

tan δ =
vy

vl
, sin δ =

vy

v
, cos δ =

vl

v
. (1)

The maneuverability of a Type (m, s) robot is defined as the
sum of the indexes (m, s) [5]. In this paper, all considered
mobile robots have either maneuverability two (M2) or
maneuverability three (M3). Without loss of generality, the
kinematic model of a robot can be written in the form

ξ̇ = f1
m+s(θ, U) (2)

θ̇ = f2
m,s(θ, U) (3)

U denotes the robot’s control input and vectors f1
m+s ∈ R2

and f2
m,s ∈ R are given as follows depending on the robot’s

maneuverability index.

A. Maneuverability Two Robots

Fig. 2. Type (2,0) robot: In the presence of skidding and slipping effects

We present in Figures 2 and 3, pictures of Type (2,0) and
Type (1,1) robots where control inputs of each robot are
explicitly figured. For mobile robots with M2, i.e., for each

Fig. 3. Type (1,1) robot: In the presence of skidding and slipping effects

(m, s) ∈ {(2, 0), (1, 1)}, the vectors f1
m+s and f2

m,s are

f1
2 =

[
v cos(θ + δ2)
v sin(θ + δ2)

]
(4)

f2
2,0 = γ1 + δ1 (5)

f2
1,1 =

vl

a
tan(γ1 + δ1) − vy

a
(6)

where v = vl

cos δ2
and vl = rϕ̇ − d. d is the wheel’s

longitudinal slipping velocity, and r denotes the wheel’s free-
rolling radius. The robot’s control input is U = (rϕ̇, γ1)
and the perturbations due to wheel skidding and slipping are
{δ1, δ2, vy, d}.

B. Maneuverability Three Robots

Fig. 4. Type (2,1) robot: In the presence of skidding and slipping effects

Similarly, Type (2,1) and Type (1,2) robots are shown in
Figures 4 and 5 where the control inputs of each robots are
explicitly figured. The vectors f1

m+s and f2
m,s for maneuver-

ability three robots are

f1
3 =

[
v cos(θ + γ2 + δ2)
v sin(θ + γ2 + δ2)

]
(7)

f2
2,1 =

v sin(γ2 + δ2 − α − δ1) − γ1b cos(δ1)
a cos(α + δ1) + b cos(δ1)

(8)

f2
1,2 =

v

a
(tan(γ1 + δ1) cos(γ2 + δ2) − sin(γ2 + δ2)) (9)
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Fig. 5. Type (1,2) robot: In the presence of skidding and slipping effects

The longitudinal wheel velocity v̄l is related with the
wheel’s slip velocity via v̄l = rϕ̇ − d where r denotes the
wheel’s free-rolling radius. Similarly, v = v̄l

cos δ2
. The robot’s

control input is U = (rϕ̇, γ1, γ2) and the perturbations due
to wheel skidding and slipping are {δ1, δ2, d}.

III. CONTROLLABILITY

This section presents the controllability of the robots in
the presence of wheel skidding and slipping effects. The
assumption and definitions utilized in this paper are listed
below.

Assumption 1: Perturbations δ1, δ2, d and δ̇2 are bounded
and measurable with |δ2| < π

2 .
Assumption 1 implies the perturbations are bounded and

measurable. Many theoretical and experimental works have
been developed in measuring these perturbations for control
using RTK-GPS and other aiding sensors [2], [3], [4]. For
now, we proceed the analysis by assuming these perturba-
tions are measurable. In the ideal case where non-slipping
and non-skidding assumptions are satisfied, the controllabil-
ity of a mobile robot is referred as the ability to steer it from
an initial posture to a final posture in a finite time [8]. This
definition can be stated as follows.

Definition 1: A wheeled mobile robot is said to be
posture controllable if there exists a piecewise continu-
ous input to steer the robot’s reference point P from an
initial posture {x(t0), y(t0), θ(t0)} to a final posture
{x(tf ), y(tf ), θ(tf )} in a finite-time interval.

In the presence of wheel skidding, robots with M2 do
not have posture controllability. Nevertheless, these robots
should be able to achieve point control by performing ap-
propriate steering action to compensate the skidding slipping
perturbations.

Definition 2: A wheeled mobile robot is said to be point
controllable if there exists a piecewise continuous input to
steer the robot’s reference point P from an initial point
{x(t0), y(t0)} to a final point {x(tf ), y(tf )} in a finite-
time interval.

Next, we show that the kinematic model of a robot with
M2 can be transformed into a form similar to the ideal

kinematic model of a Type (2,0) [16] without wheel skidding
and slipping.

Lemma 1: Consider a wheeled mobile robot with M2.
Suppose that the perturbations (δ1, δ2, d) satisfy Assumption
1, then there exists an invertible coordinates transformation
and a corresponding invertible input change,

q̄ = φ(q, δ2), (10)

u = β1(q, δ1, δ2, d, U), (11)

such that the transformed system becomes

˙̄q = G(q̄)u (12)

where

q̄ =


 x

y
θ̄


 , G(q̄) =


 cos θ̄ 0

sin θ̄ 0
0 1


 , u =

[
u1

u2

]

(13)
with θ̄ = θ + δ2.
Proof: The proof is straightforward and constructive. Define
q̄ and u as

q̄ = [x y θ + δ2]
T (14)

u =
[

1
cos δ2

(rϕ̇ − d) f2
m,s

]T

(15)

By inspection, the coordinates transformation (14) is invert-
ible. We show that the input change (15) is also invertible. It
is clear from (15) that the auxiliary u1 is invertible with
respect to rϕ̇. As for u2, we need to show that f2

m,s is
invertible. For the Type (2,0) case, f1

2,0 = γ1+δ1 is invertible
with respect to γ1 since f2

2,0 is a linear function. As for Type
(1,1), f2

1,1 is defined as

f2
1,1 =

v

a
tan(γ1 + δ1) cos(δ2) − v

a
sin(δ2). (16)

With some manipulations, we have

γ1 = tan−1

{
u2a

v cos δ2
+ tan δ2

}
− δ1. (17)

For any nonzero v, f2
1,1 is invertible; hence, the kinematic

model of a robot with M2 can be converted into (12).

�
With the help of Lemma 1, we can state the following result.

Theorem 1: Suppose that the perturbations {δ1, δ2, d} of
a wheeled mobile robot with M2 satisfy Assumption 1, then
the robot is point controllable, but not posture controllable.
Proof: By Lemma 1, the kinematic model of a mobile robot
with M2 can be transformed into (12) where input vector
fields are

g1 =


 cos θ̄

sin θ̄
0


 , g2 =


 0

0
1


 . (18)

Let �C be the accessibility distribution generated by the
vector fields {g1, g2}. The distribution has a rank of
rank{�C} = 3 for all θ̄. By applying controllability test
condition [8], rank{�C} = 3 indicates that the system
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is controllable in coordinates q̄. Since ξ is a subvector
of q̄, controllability in q̄ implies controllability in [x, y]T

coordinates.
To show that a robot with M2 is not posture controllable

in the presence of skidding and slipping, we express the point
subsystem of a robot with M2,[

ẋ
ẏ

]
= v

[
cos(ū)
sin(ū)

]
(19)

where we let ū = θ + δ2 be a directional control input.
If the reference point of the wheeled mobile robot ξ is to
be steered from an initial point ξ(0) to a final point ξ(tf ),
then the directional input control ū is constrained along a
feasible ūs(t) to achieve this goal. This implies that the
orientation of the robot must satisfy θ(t) = ūs(t) − δs(t)
to reach the desired point ξf . Since in general, the desired
orientation θd(t) of a path that the robot is required to follow
is not ūs(t) − δs(t), we conclude that the orientation of
the robot cannot approach θd(t) in order to maintain point
controllability. Hence, the robot is not posture controllable.

�
Contrast to robots with M2, the additional orientation input
γ2 of a robot with M3 suggests that this class of wheeled
mobile robot can handle the skidding perturbation more
effectively. To confirm this intuition, we examine the con-
trollability of the robots with M3.

Lemma 2: Consider a wheeled mobile robot with M3.
Suppose that the perturbations {δ1, δ2, d} satisfy Assumption
1, then there exists an invertible input change,

u = β2(q, U) (20)

such that the kinematic model of a wheeled mobile robot
with M3 becomes

q̇ = G(q)u, (21)

where

q̇ =
[

ξ̇

θ̇

]
, G(q) =


 cos θ 0

sin θ 0
0 1


 , u =

[
u1

u2

]
.

(22)
Proof: By choosing γ2 = −δ2 and auxiliary input

u1 =
1

cos δ2
(rϕ̇ − d), (23)

the point subsystem of a robot with M3 becomes

ẋ = u1 cos(θ) (24)

ẏ = u1 sin(θ) (25)

Similarly, the auxiliary input (23) is invertible. Consider the
orientation subsystem for a wheeled mobile robot with M3.
For Type (1,2) robot, the auxiliary inputs are defined as

u2 =
v

a
tan(γ1 + δ1). (26)

It is clear that auxiliary input (26) is invertible

γ1 = tan−1(
u2a

v
) − δ1 (27)

for v �= 0.
As for Type (2,1) robot, the auxiliary input for the robot’s

orientation subsystem is

u2 =
−v sin(α + δ1) − γ1b cos(δ1)

a cos(α + δ1) + b cos(δ1)
. (28)

We can see that the auxiliary input (28) is invertible since
|b cos(δ1)| > 0 for |δ1| < π

2 and the condition |a cos(α +
δ1) + b cos(δ1)| > 0 can be easily met in practice.

�
Similarly, Lemma 2 leads to the following result.

Theorem 2: Suppose that the perturbations {δ1, δ2, d} of
a wheeled mobile with M3 satisfy Assumption 1, then the
robot is posture controllable.
Proof: By Lemma 2, the kinematic model of a mobile robot
with M3 is input-equivalent to a nominal Type (2,0) kine-
matic model (22) which has a rank 3 accessibility distribu-
tion, i.e., dim�C = 3 for all θ; hence, the controllability test
condition [8] shows the mobile robot is posture controllable.

�
IV. WHEELED MOBILE ROBOT TRACKING PROBLEM

In this section, we study the tracking and path following
control problems under the influence of the kinematic per-
turbations due to skidding and slipping. Path following is a
special case of tracking control problem in the sense that
path following problem only considers lateral and orienta-
tion errors; whereas tracking control problem encompasses
lateral, longitudinal and orientation errors [8]. Hence, it is
sufficient to focus on the tracking problem.

A tracking control problem is to maneuver the robot to
follow a trajectory. In this paper, we consider the posture
tracking error

q̃ =
[

ξ̃

θ̃

]
=


 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0
0 0 1





 xr − x

yr − y
θr − θ


 .

(29)
The reference trajectory (xr, yr, θr) represents the point
coordinates and orientation of a reference trajectory which
satisfies

ẋr = vr cos θr (30)

ẏr = vr sin θr (31)

θ̇r = ωr (32)

ξ̃ denotes the point tracking error and θ̃ represents the
orientation error. It can be shown that the error dynamics of
q̃ can be described by

˙̃
ξ = f3

m+s (33)
˙̃
θ = ωr − ω (34)

where

f3
2 =

[
vr cos θ − vl + ỹω

−x̃ω + vr sin θ̃ − vy

]
(35)

f3
3 =

[
vr cos θ − v cos(γ2 + δ2) + ỹω

−x̃ω + vr sin θ̃ − v sin(γ2 + δ2)

]
(36)
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and ω = f2
m,s. One assumption that is usually imposed on the

moving reference trajectory in the tracking control problem
is stated below.

Assumption 2: The yaw rate ωr(t), velocity vr(t), and
v̇r(t) of the reference trajectory are piecewise continuous
and bounded functions. Furthermore, vr(t) is positive and
inf {vr(t);∀t ≥ t0} > 0.
The assumption is assumed in the following analysis.

Wheeled mobile robot point tracking problem is said to be
solvable if for a small initial tracking error q̃(0), there exists
a control input U(t) such that the point error ξ̃ converges to
zero; and the posture tracking problem is said to be solvable
if for a small initial tracking error q̃(0), these exists a control
input U(t) such that q̃ converges to zero. Many controllers
have been proposed to solve the posture tracking problem
for the Type (2,0) configuration under the non-skidding and
non-slipping assumptions, e.g., [13], [16]. We will show that
there exists a control input such that a robot with M2 in
the presence of skidding and slipping is able to track the
trajectory with the point tracking error converges to zero.
Similarly, we show that there exists a control law such that
the posture tracking error of a robot with M3 in the presence
of skidding and slipping converges to zero. The following
result summarizes this finding.

Theorem 3: Assume that the perturbations {δ1, δ2, d} sat-
isfy Assumption 1. Then in the presence of skidding and
slipping,

1) a robot with M2 is point tracking solvable, but not
posture tracking solvable.

2) a robot with M3 is posture tracking solvable.
Proof: We first consider a robot with M2. For the nominal
case (in the absence of skidding and slipping), the tracking
error dynamics ˙̃q is as follows:

˙̃x = vr cos θ̃ − vl + ωỹ (37)
˙̃y = vr sin θ̃ − ωx̃ (38)
˙̃
θ = ωr − ω (39)

Integrator backstepping has been applied for tracking control
problem in the absence of wheel skidding and slipping [13].
Here, we show that integrator backstepping can also be
applied to solve the point tracking problem in the presence
of skidding and slipping.

In the absence of skidding and slipping effects, it has been
shown in [13] that by choosing θ̃ as a virtual control input
for point error subsystem (37), (38), there exists a velocity
control vl = α1, a continuously differentiable feedback
control law

θ̃ = α2(ξ̃), (40)

and a positive definite function V1(ξ̃) such that its derivative
satisfies

V̇1 ≤ −W (ξ̃) ≤ 0 (41)

where W (ξ̃) is a positive definite function. Let z = θ̃ −
α2. Then by integrator backstepping, there exists a positive
definite function

V2(ξ̃, z) = V1 +
1
2
z2 (42)

and a feedback control law ω which renders (ξ̃, z) → 0 as
t → ∞.

In the skidding and slipping case, the following invertible
auxiliary inputs

vl = rϕ̇ − d (43)

ω = f2
m,s (44)

can eliminate {δ1, d} of a wheeled mobile robot with M2.
As a result, the tracking error dynamics of a robot with M2
can be simplified as

˙̃x = vr cos θ̃ − vl + ωỹ (45)
˙̃y = vr sin θ̃ − ωx̃ − vy (46)
˙̃
θ = ωr − ω (47)

where vl and ω can be converted to original control input
(rϕ̇, γ1). Note that an additional perturbation term vy appears
in the lateral error dynamic ˙̃y. This observation suggests the
choice of vl = α1 and a differentiable feedback control law

θ̃ = sin−1{sin α2 +
vy

vr
} (48)

= α3

renders the derivative of V̇1 to satisfy condition (41). Sim-
ilarly, by defining z = θ̃ − α3, we show that there exists a
positive definite function

V2(ξ̃, z) = V1 +
1
2
z2 (49)

and a control law ω such that (ξ̃, z) → 0 as t → ∞ based
on integrator backstepping. On the other hand, it is easy to
show that the robot is not posture tracking solvable. Since
Theorem 1 indicates that a robot with M2 cannot control its
position without compromising the robot’s orientation θ if δ2

is nonzero; we conclude that the orientation of the mobile
robot cannot approach θr when the robot’s reference point
converges to the desired reference point trajectory (xr, yr).

As for the robots with M3, the proof is straightforward af-
ter applying Lemma 2. Since the robot is input equivalent to
a nominal Type (2,0) robot, there exists tracking controllers
that were designed based on non-skidding and non-slipping
assumptions [13], [16]; therefore, a mobile robot with M3 is
posture tracking solvable and this completes the proof.

�

Theorem 3 implies that there exists a control input for a
robot with M2 such that the point error converges to zero
if the vy satisfies equality (48). In addition, the results also
indicate the robot’s orientation has to be “compromised” to
achieve zero point tracking error if the skidding perturbation
δ2 is nonzero. Achieving good point tracking performance
is desirable and in many practical cases is sufficient. In
some cases, orientation error is equally important as the point
tracking error. The following results provide a measure on
the orientation error while the point tracking error converges
to zero.
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Theorem 4: Suppose that there exists a continuously dif-
ferentiable control input U(t) such that the point tracking
error ξ̃ converges to zero. Then,

1) the steady-state orientation error θ̃ of a wheeled mobile
robot with M2 is

lim
t→∞

(
θ̃(t) − δ2(t)

)
= 0. (50)

2) the steady-state orientation error θ̃ of a wheeled mobile
robot with M3 is

lim
t→∞

(
θ̃(t) − γ2(t) − δ2(t)

)
= 0. (51)

Proof: We first consider the case of a robot with M2. By
assumption, the point tracking error ξ̃ approaches zero and
vr, v̇r, ωr of the reference trajectory are bounded. The differ-
entiability of the control input U guarantees the boundedness
of ¨̃

ξ; hence ˙̃
ξ is uniformly continuous. By Barbalat lemma

[17], we conclude that ˙̃
ξ → 0 as t → ∞. One essential

observation is that for any well-defined control input, the
error dynamics of ỹ is governed by ˙̃y = −x̃ω+vr sin θ̃−vy ,

and (ξ̃, ˙̃
ξ) → 0 leads to

lim
t→∞

(
sin θ̃ − vy

vr

)
= 0. (52)

Since ˙̃
ξ → 0 implies v → vr as t → ∞, geometric relation

(1) leads (52) to (50).
We can also show that (ξ̃, ˙̃

ξ) → 0 as t → ∞ for a robot
with M3. The error dynamic equation ˙̃y = −x̃ω + vr sin θ̃−
v sin(γ2 + δ2) of a M3 robot implies

lim
t→∞

(
sin θ̃ − v sin(γ2 + δ2)

vr

)
= 0. (53)

Similarly, v → vr as t → ∞. Hence, (53) leads to (51), and
this completes the proof.

�
Theorem 4 indicates the steady-state orientation error of a

robot with M2 is the slip angle δ2. On the other hand, a robot
with M3 does not have this limitation if the steerable wheel
γ2 is properly designed to compensate against perturbation
δ2. (51) suggests that the steady-state orientation error can
be eliminated if the steering angle γ2 is chosen such that the
steady-state orientation error approaches zero. These findings
show that it is impossible for a robot with M2 to solve the
posture tracking problem if the slip angle δ2 is nonzero. On
the other hand, the result shows that there exists a control
input U(t) such that the posture tracking error of a robot
with M3 converges to zero.

V. CONCLUSIONS

In this paper, several useful results and properties regard-
ing mobile robots in the presence of wheel skidding and
slipping are developed. We show that a higher maneuverabil-
ity robot is more controllable than a lower maneuverability
robot. This result has important implications of formulating
control objectives for a mobile robot in the presence of
wheel skidding and slipping. Additionally, these findings

shed light on the possible control strategy for precision
control in the presences of skidding and slipping. In fact,
control schemes with positive experimental results have been
established based on the kinematic models and the analysis
presented in this paper [2], [4].
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