
 
 

 

  
Abstract— This paper describes a position identification 

method to precisely estimate the relative movement onboard of 
an autonomous explorer in such natural terrain as Moon or 
Mars.  This paper proposes a new map matching scheme that 
registers the visual information of consecutive robot positions 
and expresses the robot displacement in a common coordinate 
system.  Local elevation maps of the environment are therefore 
retrieved from the 3D perception of a stereo camera. The 
proposed scheme consists of three main steps: feature point 
extraction from map data, matching of features points using 
triangle configurations and a voting procedure, and direct 
calculation of the robot displacement in six degrees of freedom 
using quaternions.  The effectiveness of the proposed method is 
confirmed by computer simulations with synthetic terrain and 
experiments with stereo perception.   

I. INTRODUCTION 
NTELLIGENT mobile explorer to perform scientific 

observation and explore the surface of distant planets has 
attracted a lot of attention of the space exploration community 
for a long time.  Unmanned explorers have been deployed on 
the moon and on Mars. Various kinds of missions for 
exploring other planets, moons, and small bodies including 
asteroids and comets by rovers have been proposed or are 
currently in operation. In any case, rovers will act as a 
mini-field geologist by providing access to samples for in-situ 
analyses, performing experiments, and exploring the 
extraterrestrial body[1][2]. 

Envisioned missions have to limit communication contacts 
between rover and ground control, because of constraints on 
communication opportunities, resources, and cost. In between 
these communication windows, the rover must operate 
autonomously. It fully has to rely on its position estimation 
and navigation system which will be realized in the form of an 
interconnection of dead reckoning devices and a vision 
system to keep all errors low. The harsh and challenging 
terrain over which the rover will traverse tends to seriously 
degrade the dead reckoning state estimate. Obstacle climbing, 

 
T.Kubota is with Japan Aerospace Exploration Agency, 3-1-1, 

Yoshinodai, Sagamihara, 2298510 JAPAN (phone: 81-42-759-8305; fax: 
81-42-759-8305; e-mail: kubota@ nnl.isas.jaxa.jp).  

K.G.Mosl was with Japan Aerospace Exploration Agency, 3-1-1, 
Yoshinodai, Sagamihara, 2298510 JAPAN. 

I.Nakatani is with Japan Aerospace Exploration Agency, 3-1-1, 
Yoshinodai, Sagamihara, 2298510 JAPAN. 

numerous maneuvers including rover turns, and wheel 
slippage in soft soil act on the degradation.  

A lander relay for the rover's position estimation is only 
feasible for operations around the landing side. Traverses 
exceeding several hundreds of meters and kilometers will 
have to rely on relative position estimation based on 
integrated internal measurements including odometry as well 
as on external movement estimate by vision[3]. The latter has 
the advantage that its error does not grow over time.  Stereo 
cameras and laser rangefinder are the two main types of 
sensors used for rovers to perceive the surrounding 
environment and thus to localize and navigate the rover. 

The authors propose a new algorithm to precisely calculate 
the relative movement onboard of the rover which exploits 
stereo vision but generally is independent from the type of 3D 
perception.  

Key idea for having reliable position information is to 
determine the change in position and attitude of the rover 
between consecutive image pairs, acquired as the rover 
moves by using a “tracking” of some characteristic feature 
points in both images.  At each moving step, the current 
position and orientation of the rover is estimated by matching 
the current map with the previous one. Maps are represented 
by Digital Elevation Maps (DEMs) of the environment and 
feature points are defined as local maxima on these DEMs. 

A new method for feature point extraction searches the 
DEMs on different sub-scales for local maxima. It is a 
Multi-Scale Peak Detection (MSPD) method which uses a 
parent-child relationship to establish a connection between 
the sub-scales and detect prominent peaks. Performance and 
reliability of the MSPD method are evaluated with a Seed 
Wandering Method (SWM).  

The main registration algorithm organizes the extracted 
feature points in sets of bare triangles, merely characterized 
through their 3D coordinates on each elevation map. If two 
triangles are considered congruent, votes will be given for a 
successful matching on the point-to-point level of the 
triangles.   

After the verification of the prospective matching points 
using the number of votes, the movement relative to the 
preceding position can be retrieved by trigonometric and 
matrix calculus. The authors could show successful 
registration of DEMs with an overlap of only 25% if there 
were prominent, common feature points on both of them. 
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II. RELATED WORKS 
Some research groups have focused on the terrain mapping 

and terrain matching issue. The iterative closest point (ICP) 
algorithm[4] including its modifications and enhancements is 
the most popular algorithm. It provides shape registration for 
geometric data represented in point sets, line segment sets, 
curves, surfaces, and triangle sets.  This algorithm always 
converges to a local minimum of the error function which 
might not be the correct global minimum. There is the 
problem to define an appropriate set of initial states that 
guarantees a correct global minimum.  

This also includes the “Trimmed ICP” algorithm as 
proposed by Chetverikov et al.[5]. The ICP-CSM algorithm is 
an enhancement of the ICP algorithm. Using virtual 
movements of a matchpoint, it verifies correspondences 
between the points of two data [6]. Zhang gives an extensive 
survey in iterative methods[7] and exploits the same idea as 
Besl and McKay[4]. It uses the quaternion technique to 
compute the motion of the sets of reasonably paired 3D points 
[4][7][8]. 

Krotkov discusses a method that extracts features from a 
given digital elevation map, likely to be identifiable in 
rover-acquired images. Both, stereo and laser rangefinder, 
were tested with the stereo process being able to execute more 
rapidly[9].  

A method of matching unequally spaced height maps is 
described by Gennery[10].  It is a registration method 
between images from a camera orbiting the celestial body and 
a ground-based stereo vision or laser rangefinder system. 
Thompson et al. performed vision-based localization by 
extracting features from maps and matching these features 
with features of the current two-dimensional view of the 
rover.  Configurations of views play a decisive role within the 
matching process and a prominence value is introduced, 
representing specific combinations of feature properties[11]. 
Kweon and Kanade combined feature matching, iconic 
matching, and inertial navigation data with a course-to-fine 
pixel-based gradient search to register elevation maps.  

A prior existing DEM was needed for estimating the 
vehicle's position in the DEM and reducing the error 
accumulation during the rover's motion[12]. Kamgar-Parsi et 
al. used feature-based matching of contours of constant range 
to register ocean floor images with three degrees of 
freedom[13]. Sutherland as well as Betke and Gurvits address 
the localization problem using distinguishable landmarks in 
the environment.  They show that for a given error in angle 
measurement, the localization error varies depending on the 
configuration of the landmarks[14][15]. 

 The algorithms for using stereo cameras on the motion 
estimate of the prevailing Mars Exploration Rovers were 
originally developed by Matthies. Following his work, Olson 
et al. did some minor variations and modifications to improve 
the robustness and accuracy of the method.  The key idea is to 
determine the change in position and attitude of the rover 

between consecutive image pairs acquired as the rover moves. 
Maximum likelihood estimation tracks the feature points 
between the images[16][17][18]. 

As mentioned beforehand, most of the iterative procedures 
request a pre-registration of the two data sets. This is not 
necessary for the herein proposed algorithm.  Furthermore, 
iterative procedures might converge towards an incorrect 
local maximum and great care needs to be taken on this regard 
which usually involves some additional procedures with 
demerits on the original idea of the algorithms 
[4][5][6][7][12][16][17][18]. Landmark-based registration 
methods[14][15] require an absolute correct identification 
and order knowledge of the reference landmarks. This often 
asks for additional information from texture and vegetation 
which limits the operational independence of the method. If 
there are exceptional configurations of landmarks including 
straight line asymmetric or non-linear ones, ambiguity within 
the landmark order will be the consequence and further 
measures have to be taken. 

 

III. MAP MATCHING 
This paper proposes a new map matching scheme that can 

register the visual information of consecutive robot positions 
and expresses the robot displacement in a common coordinate 
system.  Local elevation maps are therefore retrieved from the 
3D perception of a stereo camera. The proposed scheme 
consists of three main steps: feature point extraction from 
map data, matching of features points using triangle 
configurations and a voting procedure, and direct calculation 
of the robot displacement as shown in Fig.1. 

A. Triangle Matching 
After loading two DEM sets and extracting the feature 

points from both of them, triangles are built from each set of 
feature points. Triangles are a good trade-off between 
geometric complexity and data aggregation. They have a 
distinct determination in 3D regarding their vertices and data 
processing is much more effective than using points or mere 
lines for matching.  

Figure 2 represents two triangles that might be candidates 
for a successful matching. Triangle A comprises of the three 
feature points a1, a2, and a3. Triangle B is made up of feature 
points b1, b2, and b3, respectively.  These two triplets of 
feature points are identical to some of the top feature points of 
both DEM sets. 

Candidate matches are identified on the similarity of the 
triangle side lengths. The triangles need to be congruent.  
Comparing all triangles of set A with all triangles of set B in 
respect of congruence may be a down to earth attempt for 
finding correct matches but is a reliable means to achieve the 
aim.  Here, we propose to form target configurations for the 
triangle matching process. They help in cutting down the 
combinatorics and the calculation time. 
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Fig.1. Map Matching Scheme for Position Identification 
 
 
 
 
 

 
 

Fig.2. Generation of Triangles of DEM Set A and DEM Set B 
 

The establishment of target configurations includes a 
sorting of the built triangles according to one characteristic as 
seen in Fig.3. The length of the shortest or the longest side, or 
the triangle surface area might be appropriate. Here, the side 
length of the shortest triangle side is chosen as sorting criteria. 
This causes benefit in two aspects: On the one hand, the 
calculation cost is reduced. On the other hand, a helpful filter 
may be installed for very small, hardly distinguishable 
triangles or triangles with a very short side. They have a 
higher probability of mismatching than bigger triangles due 
to the limited DEM resolution. 

 
 
 
 
 
 
 
 

 
Fig.3. Correspondences of Sorted Triangles 

Figure 3 shows the sorted triangles in ascending order of 
the shortest side. The variables Txx and Tyy' indicate triangles 
as built from the list of feature points of set A and set B, 
respectively.  Their footnotes flag the shortest side length of 
each triangle that is responsible for the triangle’s ranking.  
Thus, triangle T12A1 for instance is rated as having the 
overall shortest side among all the triangle sides of set A.  On 
the basis of the preceding sorting, the search scope (among 
set B triangles) for matches with an A-set triangle can be 
limited to the close-up range of the shortest side length of the 
A-set triangle.  By doing so, candidate matches of e.g. T12A1 
will be found around T1'B2, whereas an attempted match with 
triangle T20'B3 does not make any sense. The algorithm 
allows ambiguous correspondences between several triangles 
of set A and set B as this only is the first step of finding the 
real corresponding matches. 

 Of course, all three triangle sides of a candidate match 
need to be congruent. The judging process therefore is 
structured in three steps: shortest, middle, and longest triangle 
sides.  Eq.(1) gives an examples of  judging relations for 
congruence (cf. Fig.2). 
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Recalling the example of Fig.2, the Euclidean distance 
between two points forming a triangle side length calculates 
according to Eq.(2). 
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The variables ε12, ε23, and ε31 are threshold values that 
allow the consent of matching between an A-side and a B-side 
triangle.  Ideally, all three threshold values should be equal 
zero as postulated in Eq.(3) and Eq.(4).  However, the strict 
demand of Eq.(4) is out of reach due to restrictions of the 
DEM resolution and sensor noise in practice. 

.const312312 ==== εεεε  (3) 

0=ε  (4) 

During our studies all three threshold values have been kept 
uniform according to Eq.(3).The value ε  needs to be 
heuristically adjusted for best matches. It is dependant on 
terrain alternation and roughness as well as the kind and 
direction of motion.  Generally it does not exert a very strong 
influence on the matching results as long as it is reasonably 
chosen and there are enough common feature points for 
matching.  Mere translational displacements between the two 
DEMs can be managed with very low ε-values, whereas 
rotational displacements require a little bit wider tolerances 
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B. Voting for True Match 
As mentioned before there may be some ambiguous and 

repeated triangle correspondences approved by the matching 
condition according to Eq.(1), if they have similar side 
lengths.  The arrows in Fig.3 consequently only mark some 
“candidate matches”.  Therefore, a verification of matching 
triangles / feature points using a voting process forms the 
second part of the map matching algorithm.  If all three side 
lengths fulfill the matching criterion, two triangles are 
supposed to be congruent and votes will be given for the 
matching vertices.  This is done as illustrated by Eq.(5) and  
involves some basic combinatorics. 
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(5) 

There are four possibilities of point-to-point correspondences 
for a pair of matching triangle side lengths, but only two of 
them are true point matches. The voting process gives votes 
for all four combinations, though. By doing this procedure for 
all three triangle sides, votes are given twice to the real 
matching points and only once to “error matches”. 
Furthermore, giving votes for all the vertices combinatorics 
of all candidate matches between triangles of set A and set B, 
the real matching feature points distinguish themselves from 
mismatches. They have a repeatedly positive occurrence in 
several matching triangles.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.  Voting for Matching Triangle Vertices 
 
 
 
 
 
 
 
 
 

Fig.5. Corresponding Feature Points of DEM A and DEM B 

This procedure allows two points of view:   First, a separate 
observation of set A and set B, as visualized in Fig.4.  
Actually, this point of view asks for giving the four, above 
mentioned votes twice because of the separated accounting of 
votes in two sets of feature points.  Second, a combined 
observation of all features points correlations. This may be 
done in the form of a matrix where the horizontal dimension 
e.g. refers to DEM A and the vertical dimension to DEM B 
feature points, which is a very compact representation of the 
same process as illustrated in Fig.4 and may furthermore be a 
convenient and efficient model for code implementation.  
After all candidate matches got votes for possible feature 
point correspondences, results of real matching feature points 
turn out to be similar to Fig.4 and can finally be summarized 
according to Fig.5. Thus, candidate matches in relation to the 
triangle matching of Eq.(1) are verified and mismatches are 
separated. 

Calculation of the translational and rotational registration 
value (six degrees of freedom) is performed using 
quaternions and triplets of point-to-point correspondences of 
Fig.5. If  three degrees of freedom are only requested within 
the registration task, doublets of point-to-point 
correspondences will be sufficient for an equivalent 
calculation. Feature point (a11, b8) is a special case that may 
be filtered out of the final number of matches as it got 
observably less votes than the other positive matches.  Indeed, 
it is a traceable, positive match as unveiled by recalculation 
but it might also indicate a mismatch if the operator-defined 
matching parameter ε allows wide tolerances. 

IV. FEATURE POINT EXTRACTION 
Feature-based methods for localization hold the potential 

for avoiding many problems inherent with other approaches.  
Features can be extracted independently from sensor data and 
then be matched symbolically.  Regarding the process of 
matching, no accurate rendition of the sensed data is needed 
here.  Feature points with the best characteristic traits get the 
highest ranking as they are most likely to match. Two 
algorithms for feature point extraction are proposed and both 
are adapted to surface representation by DEM. A reference or 
ground plane is discretized into a regular spaced grid and 
elevation is the vertical distance above or below this reference.  
Finally, the availability of the best feature points may be 
taken for granted within the actual process of triangle 
matching. 

A. Multi-Scale Peak Detection (MSPD) 
Each elevation map is evenly segmented into patches of 

several scales, which help in evaluating the feature points of 
the map.  “Scale” denotes the level of resolution under which 
an elevation map of fixed size is observed. 

The MSPD feature point extraction starts with considering 
the whole DEM as one single element.  Each iteration / scale 
concretizes the resolution of the map by factor 2 till the 
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highest scale (highest resolution of original, single DEM 
cells) is reached.  Multi-scale cells request an elevation 
averaging in relation to the DEM cells belonging to them.  
The actual verification of peaks is done by jumping from 
scale cell to scale cell and checking whether it is a local 
maximum to its neighbors.  If so, the current scale cell will be 
recorded on a general list of all multi-scale peaks. 

Figure 6 develops the parent-child relationship between 
peaks of multiple scales. The parameter G indicates the 
generations of scales one peak possesses.  Several peaks of 
different scales get detected during the verification process of 
local maxima. These might be big flat hills without real 
summit, smaller pointed rocks, or any other possible 
appearance among natural terrain features. Preferable feature 
points for matching should have high number generations in 
order to be distinctive and prominent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6.  Operational Sequence of MSPD Method 

 

B. Seed Wandering Method (SWM) 
Seed wandering is a universal procedure for the detection 

of local maxima. The utilization of seeds accommodates the 
discrete character of the DEM grid as each seed can easily and 
directly be assigned to one specific grid cell.  Furthermore, a 
seed is able to wander on the DEM, from one grid cell to the 
next in correlation to a function routine.  The SWM algorithm 
operates self-contained and does not need any special 
preparation of the DEM data. It is possible to define the 
number of seeds to be spread over the DEM. After the seeds 

got disseminated, the first one starts to wander. By doing so, it 
compares the elevation values of its neighbors and moves 
onto the grid cell with the highest elevation.  If no higher 
neighbor can be found, the seed reached its local maximum 
where it stays. Finally, the next seed starts to wander until it 
arrives at its local maximum as well. Central idea is that the 
number of seeds associated to one grid cell is a quality 
measure for feature points. The more seeds a local maximum 
gets, the bigger its catchment area was. Thus, it typifies a 
characteristic feature point, an aspirant for the matching 
procedure. 

V. EXPERIMETAL RESULTS  
The matching algorithm runs within an amount of time 

which is a function of the number of extracted feature points.  
The more points there are extracted for matching, the longer 
the overall process takes.  Using seed wandering (SWM) for 
the extraction, the operator is free to define any adequate 
number of desired feature points that will be processed by the 
registration.  If the MSPD method is used, the number of 
feature points is predefined as a parameter of the MSPD 
scales, the height discretization of the DEM, and the terrain 
itself.  Thus, it could happen that there is no comfortable 
number of features regarding a short calculation time using 
the multi-scale method. 

 Two successive DEMs should not be too far from each 
other that there are enough common feature points on both of 
them. There is a smooth transition from excellent matching to 
complete mismatching in relation to terrain characteristics, 
displacement / overlap of the DEMs, stereo and DEM quality, 
usage of various filters within the whole process, and the 
definition of the matching parameter ε itself. Removing 
statistical outliners from stereo perception is considered a 
pre-processing step, has been implemented as such, and will 
therefore not be addressed herein. 

 The matching parameter ε is determined by experiments 
(cp. Eq.(1) and Eq.(3)). We investigated its influence on 
matching / mismatching in the range of [0.01  10] and [0.1 10] 
[pixel] for synthetic and real terrain, respectively.  Generally, 
the usage of all investigated values ε was uncritical as the 
algorithm runs stable and self-contained with its two steps of 
triangle matching and verification by voting. However, there 
might be some optimum sub-ranges of ε in relation to the 
rover movements (pure translation or combined translation 
and rotation) and the characteristics of the current terrain. 

A. Matching of Synthetic Terrain 
Various types of synthetic DEM were generated for the 

verification of the matching method.  The raw data is based 
on 256 x 256[pixel] grids with 0.05 [m] spacing. The two 
DEMs for matching are derived from this global data sets and 
laid out on smaller 128 x 128 [pixel] grids. All terrain types 
with translations up to 50[%] in each grid direction (x, y) and 
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rotations up to 40[deg] around the surface normal (z) were 
tested. The algorithm runs stable as long as there are enough 
common feature points. Figure 7 and Fig.8 show one of cases 
of matching with rotation.  

B. Matching of Terrain Data from Stereo Perception 
Currently, the experimental stereo system is based on a 

pre-calibrated, two-lens setup generating 3D information in 
the form of point clouds. Elevation maps are built by 
projecting those points onto the horizontal DEM grid of the 
rover environment. Occlusions are interpolated and the 
related ridge lines are smoothed for a sound performance of 
the feature extraction algorithms.  DEM resolution is set to 
0.04 [m] and the overall grid size is 100 x 100 [pixel] here. 

The effectiveness of the proposed new matching 
procedures on the real 3D data of the stereo system could be 
shown. Translational displacements can be registered well 
with a lot of common feature points as seen in Fig.9. 
 
 
 
 
 
 
 
 
 
 

Fig.7.  Common Feature Points with Congruent Triangles 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8.  Matched Feature Points with a DEM.  (Rotation of 10 [deg]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9.  Matched DEMs from Stereo Perception with 0.4[m] Displacement 

VI. CONCLUSION 
This paper has presented a new algorithm that exploits 

stereo vision and elevation maps for an extern sensor 
feedback on motion. Terrain maps from views of successive 
locations are matched by the proposed registration algorithm, 
which may be incorporated into the central navigation 
procedure. The experimental results showed very good 
performance on synthetic terrain data and could also perform 
well on elevation maps from real world stereo.   
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