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  Abstract―Previous isotropy analysis of a caster wheeled 
omnidirectional mobile robot (COMR) has been made 
under the assumption that the steering link offset is equal 
to the caster wheel radius. Nevertheless, many practical 
COMRs in use take advantage of the steering link offset 
different from the wheel radius. This paper presents a 
systematic isotropy analysis of a fully actuated COMR 
with variable steering link offset, which can be considered 
as the generalization of the previous analysis. First, with 
the characteristic length introduced, the kinematic model 
of a COMR is obtained based on the orthogonal 
decomposition of the wheel velocities. Second, the necessary 
and sufficient conditions for the isotropy of a COMR are 
examined to categorize three different groups, each of 
which can be dealt with in a similar way. Third, the 
isotropy conditions are further explored to identify four 
different sets of all possible isotropic configurations.  
Fourth, the expressions of the isotropic characteristic 
length required for the isotropy of a COMR are obtained.  

  Index Terms―Caster wheeled mobile robot, steering link 
offset, isotropy analysis, isotropic configuration.

I. INTRODUCTION

HERE are a variety of mobile robot systems having 
different mobility structures: wheeled, legged, wheel-leg 

hybrid, tracked, and so on. Among them, wheels are widely 
accepted as a practical means due to the simplicity in design 
and control, specially for indoor applications. When a mobile 
robot is requested to navigate in an environment restricted in 
space and cluttered with obstacles, the omnidirectional 
mobility becomes a must. Several omnidirectional wheel 
mechanisms have been proposed, including universal wheels, 
Swedish wheels, orthogonal wheels, and ball wheels. Caster 
wheels were employed to develop an omnidirectional mobile 
robot [1], which was later commercialized as Nomadic 
Technologies XR4000. Since caster wheels operate without 
additional peripheral rollers or support structure, a caster 
wheeled omnidirectional mobile robot (COMR) can maintain 
good performance even though payload or ground condition 
changes.☕

There have been several works on the kinematics of a 
COMR. For a general form of wheeled mobile robots, a 
systematic procedure for kinematic modeling was presented 
[2], [3]. Regarding the minimal actuation set, it was shown 
that at least four joints out of two caster wheels should be 
actuated to avoid the singularity [4]. For a COMR under 
partial and full actuation, the isotropy analysis was made to 
identify all possible isotropic configurations [5]. The isotropy 
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index of a COMR was defined and examined to determine 
the optimal design parameters [6], [7]. On the other hand, 
for an omnidirectional mobile robot employing Swedish 
wheels, the isotropy analysis was made but the results are 
incomplete and need further elaboration [8].

With nonzero steering link offset, the omnidirectional 
mobility of a COMR is always guaranteed independently of 
its wheel configurations. In contrast, a COMR may fall into 
the singularity or the isotropy depending on a given wheel 
configuration. At singular configurations, a COMR becomes 
instantaneously movable even when all the actuated joints 
are locked [9]. On the other hand, at isotropic 
configurations, the velocity transmission from the joint to the 
task spaces becomes uniform in all directions [10].  
Obviously, it is desirable for better motion control to keep a 
COMR away from the singularity but close to the isotropy, 
as much as possible [8]. 

Previous isotropy analysis has been made only for a 
COMR in which the steering link offset is equal to the 
wheel radius [5]-[7]. It was found that such a restriction is 
necessary to have globally optimal isotropic characteristics of 
a COMR [6], [7]. Nevertheless, many practical COMR's in 
use take advantage of the steering link offset which is 
different from the wheel radius, mainly for improved tipover 
stability [11], [12].  The tipover stability becomes a critical 
issue when a COMR makes a rapid turn or external forces 
are applied to a COMR suddenly. The purpose of this paper 
is to present a systematic isotropy analysis of a fully 
actuated COMR with the steering link offset different from 
the wheel radius, which can be considered as the 
generalization of the previous analysis. The key of the 
systematic analysis is to deliberately incorporate the ratio of 
the steering link length to the wheel radius in the 
development of the isotropy conditions.

This paper is organized as follows. Section II obtains the 
kinematic model of  a  COMR  based  on  the  orthogonal 
decomposition of the wheel velocities. Sections III examines 
the necessary and sufficient conditions for the isotropy of a 
COMR to categorize three different groups, each of which 
can be treated in a similar way. Section IV explores the 
isotropy conditions to identify four different sets of all 
possible isotropic configurations. Section V obtains the 
expressions of the isotropic characteristic length required for 
the isotropy of a COMR. Finally, the conclusion is made in 
Section VI.

II. KINEMATIC MODEL

Consider a COMR with three identical caster wheels  
attached to a regular triangular platform moving on the 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD7.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2971



xy-plane, as shown in Fig. 1. For each wheel, it is 
assumed that the steering link offset can be different 
from the wheel radius.
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Fig. 1.  A caster wheeled omnidirectional mobile robot. 
  
For a COMR shown in Fig. 1, let l be the side length 

of the platform with the center denoted by Ob , and the 
vertices denoted by O i, i= 1,2,3 . Without loss of 
generality, the side length is assumed to be unity, that is, 
l= 1.0 [m]. For the i th caster wheel with the center 
denoted by P i, i= 1,2,3 , we define the following: Let 
d (≥0) and r (> 0) be the steering link offset and the 
wheel radius, respectively. And, let ϕ i and θ i  be the 
steering and the rotating angles, respectively.

To describe the wheel configuration of a COMR, we 
define the following vector quantities:

   u i= [ ]- cosϕ i
- sinϕ i

,  v i= [ ]- sin ϕ i
cosϕ i

 = R u i      (1)

s 1=
1
3

ꀎ

ꀚ

︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳

-
3
2

-
1
2

, s 2=
1
3

ꀎ

ꀚ

︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳

3
2

-
1
2

, s 3=
1
3 [ ]01

  (2)

p i = s i - d u i,  q i = R p i        (3)

where R= [ ]0 -1
1 0 . For later use, note that

u i u i
t
 + v i v i

t
 = I 2            (4)

∑
3

1
u i = 0   ⇔  ∑

3

1
v i = 0           (5)

∑
3

1
s i = 0                   (6)

∑
3

1
p i = 0   ⇔  ∑

3

1
q i = 0           (7)

where In is the n×n identity matrix and 0  is the 2×1  
zero vector. 

Let v and ω be the linear and the angular velocities at 
Ob  of the platform, respectively. For the i th caster wheel, 
i= 1,2,3 , the linear velocity at the point of contact with 

the ground can be expressed by
v + ω q i =  r θ i̇ u i + d ϕ i̇ v i .        (8)

Premultiplied by u i
t and v i

t, respectively, we have 
u i
t
v + u i

t
q i ω =  r θ i̇         (9)

v i
t
v + v i

t
q i ω =  d ϕ i̇ .           (10)

Notice that the instantaneous motion of the wheel is 
decomposed into two orthogonal components of the 
rotating and the steering joints. Using (3), the 
expressions of u i

t
q i and v i

t
q i, i= 1,2,3, can be 

written as
u i
t
q i = v i

t
p i = v i

t
s i          (11)

v i
t
q i = - u i

t
p i = - u i

t
s i+ d .       (12)

With the introduction of the characteristic length [8], 
L ( > 0), the kinematic model of a COMR under full 
actuation is obtained by

A x ̇ = B Θ ̇                 (13)
where x ̇ = [ v L ω ] t ∈ R

3×1 is the task velocity 
vector, and Θ ̇ =  [ θ 1̇ θ 2̇ θ 3̇ ϕ 1̇ ϕ 2̇ ϕ 3̇ ]

t
 ∈ R

6×1 is 
the joint velocity vector, and

A =  

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

u 1

t
 

1
L

u 1

t
q 1  

u 2

t
  

1
L

u 2

t
q 2  

u 3

t
  

1
L

u 3

t
q 3  

v 1

t
  

1
L

v 1

t
q 1  

v 2

t
  

1
L

v 2

t
q 2  

v 3

t
  

1
L

v 3

t
q 3  

 ∈ R
6×3

    (14)

B =  
ꀎ

ꀚ

︳︳︳︳

ꀏ

ꀛ

︳︳︳︳

 r I 3   0 3  

 0 3   d I 3  
 ∈ R

6×6

       (15)
are the Jacobian matrices. Notice that the introduction 
of L makes all three columns of A to be consistent in 
physical unit.

III. ISOTROPY CONDITION

 A. Three isotropy conditions
From (13), the inverse kinematics of a COMR is 

given by
Θ̇ = Z ẋ                 (16)

where
Z = B

-1
A .               (17)

Based on (16), the necessary and sufficient condition 
for the isotropy of a COMR can be expressed as

Z
t 

Z  =  σ I 3              (18)
where 

σ =  
3
2
(

1

r 2 +
1

d 2 ) .           (19)
Using (14), (15), (17), and (19), from (18), the three 

isotropy conditions of a COMR can be obtained as 
follows:

∑
3

i= 1
[ μ ( u i u i

t
 ) + ( v i v i

t
 )]= 3

2
( μ+1) I 2  (20)

∑
3

i= 1
[μ( u i

t
q i ) u i + ( v i

t
q i ) v i ] = 0   (21)

1

L 2 ∑
3

i= 1
[μ ( u i

t
q i )

2 + ( v i
t
q i )

2]= 3
2
(μ+1)  (22)
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where

μ = ( dr )
2

 > 0               (23)
Note that (23) represents the square of the ratio of the 
steering link offset d to the wheel radius r. The 
incorporation of μ is the key to the systematic isotropy 
analysis of a COMR with the steering link offset different 
from the wheel radius.

In general, the first and the second isotropy conditions, 
given by (20) and (21), are a function of the steering joint 
angles, (ϕ 1,ϕ 2,ϕ3), from which the isotropic configurations 
can be identified. With (ϕ 1,ϕ2,ϕ 3) known, the third 
isotropy condition, given by (22), determines the specific 
value of L, which is required for the isotropy, called the 
isotropic characteristic length, L iso .

 B. First isotropy condition
Using (1), the first isotropy condition (20) can be 

written as

μ ( c 1
2+ c 2

2+ c 3
2 ) + s 1

2+ s 2
2+ s 3

2 =  
3
2

( μ+1 )

μ ( c 1s 1+ c 2s 2+ c 3s 3 )-( c 1s 1+ c 2s 2+ c 3s 3 ) =  0

                                         (24)
where c i= cos (ϕ i) and s i= sin (ϕ i), i=1,2,3 . Using 
trigonometric function formulas, (24) becomes

( μ-1) (1+ cos 2 ϕ̂ 2+ cos 2 ϕ̂ 3 ) =  0

( μ-1) ( sin 2 ϕ̂ 2+ sin 2 ϕ̂ 3 ) =  0       (25)
where ϕ̂ 2= ϕ2- ϕ1 and ϕ̂ 3= ϕ3- ϕ1. There are 
three different groups of the solutions to (25), including 
μ=1 and two groups of ( ϕ̂ 2 , ϕ̂ 3  ), as listed in 

Table I.

TABLE I

TWO GROUPS OF ( ϕ̂ 2 , ϕ̂ 3  )

Group I Group II Group III

μ=1

(-
π
3

,
π
3

) (
π
3

,-
π
3

)

(-
π
3

,-
2π
3

) (-
2π
3

,-
π
3

)

(
2π
3

,
π
3

) (
π
3

,
2π
3

)

(
2π
3

,-
2π
3

) (-
2π
3

,
2π
3

)

 
C. Second isotropy condition

Using (11) and (12), the second isotropy condition 
(21) can be written as

∑
3

i= 1
[μ ( v i

t
s i ) v i + ( u i

t
s i ) u i - d u i ] = 0

 (26)
which is

( μ-1) ∑
3

i=1
( v i

t
s i ) v i - d ∑

3

i=1
 u i = 0    (27)

where

∑
3

i=1
( u i

t
s i ) u i + ∑

3

i=1
( v i

t
s i ) v i =  ∑

3

i=1
s i = 0  

  (28)
is used. In the next section, for three different groups 
of the solutions to (25), (27) will be further explored to 
identify all possible isotropic configurations of a 
COMR.

IV. ISOTROPIC CONFIGURATION

 A. Isotropy analysis for Group I
With μ=1, (27) reduces to

∑
3

i= 0
u i = 0              (29)

which yields

ϕ2 =  ϕ1+
2π
3

,  ϕ 3 =  ϕ1-
2π
3

ϕ 2 =  ϕ1-
2π
3

,  ϕ 3 =  ϕ1+
2π
3

        (30)
Equation (30) tells that there are two sets of infinitely 

many isotropic configurations: (ϕ 1 ,ϕ 1+
2π
3

,ϕ 1-
2π
3

) 

and (ϕ 1 ,ϕ 1-
2π
3

,ϕ 1+
2π
3

). Note that μ= 1  
corresponds to the case of the steering link offset d 
equal to the wheel radius r [5].

 B. Isotropy analysis for Group II

Let us consider the case of ( ϕ̂ 2 , ϕ̂ 3  )= (-
π
3

,
π
3

), 
for which

v 2

t
s 2  = v 3

t
s 3  = - v1

t
s 1       (31)

so that

∑
3

i= 1
 ( v i

t
s i ) v 1 = 0 .           (32)

Plugging (32) into (27), we have

∑
3

i= 1
u i = 0      (33)

which cannot be satisfied. This implies that there does 
not exist any isotropic configuration when 

( ϕ̂ 2 , ϕ̂ 3 )= (-
π
3

,
π
3

). Similar analysis to the above 
can be made in the cases of 

( ϕ̂ 2 , ϕ̂ 3  ) =  (-
π
3

,-
2π
3

) and (
2π
3

,
π
3

), for which 
there exists no the isotropic configuration.

Finally, let us consider the case of 

( ϕ̂ 2 , ϕ̂ 3  )= (
2π
3

,-
2π
3

), for which
v 1

t
s 1  = v 2

t
s 2  = v 3

t
s 3        (34)

∑
3

i= 1
u i =  ∑

3

i= 1
v i = 0 .          (35)

With (34) and (35) held, (27) is satisfied independently 
of the values of the steering link offset d and the ratio 
μ. This implies that there exist a single set of 
infinitely many isotropic configurations, 

(ϕ 1 ,ϕ 1+
2π
3

,ϕ 1-
2π
3

).

 C. Isotropy analysis for Group III
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Let us consider the case of ( ϕ̂ 2 , ϕ̂ 3  )= (
π
3

,-
π
3

), 
for which

 v 1

t
s 1 =  -

1
2 3

c 1+
1
2
s 1

 v 2

t
s 2 =  -

1
3
c 1

 v 3

t
s 3 =  

1
2 3

c 1+
1
2
s 1.

          (36)

Plugging (1) and (36) into (27), we obtain

( μ-1)

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳

3
4
c 21+

3
2
c 1s 1-

3
4
s 21

-
3
4
c
2
1+

3
2
c 1s 1+

3
4
s
2
1 

- d

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳

-2c 1 

-2s 1 

=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳

 0 

 0 

                                           (37)
which can be expressed in the form of

A (μ-1) + B d =  0
C (μ-1) + D d =  0           (38)

where

A=
3
4
c
2
1+

3
2
c 1s 1-

3
4
s
2 
1 ,  B=2c 1

C=-
3
4
c
2
1+

3
2
c 1s 1+

3
4
s
2 
1 ,  D=2s 1 .    (39)

For the existence of the solution to (38), it should 
hold that

AD-BC =  0        (40)
which is 

c 1- 3 s 1 =  0                (41)
hence

ϕ 1 =  
π
6

, -
5π
6 .               (42)

Plugging (42) into (37), we obtain
(μ-1)c 21+2c 1d =  0            (43)

or

d =
1
2

( 1-μ)c 1  > 0 .          (44)
From (42) and (44), it follows that

ϕ 1=
π
6

,    d=
3
4

(1-μ), if  0 < μ < 1

ϕ 1=-
5π
6

, d=
3
4

(μ-1), if  μ > 1      (45)
Equation (45) tells that there exists only a single 
isotropic configuration depending on the value of the 
ratio μ, and such an isotropic configuration can be 
found only for the specific value of the steering link 
offset d . 

Similar analysis to the above can be made for the 

cases of ( ϕ̂ 2 , ϕ̂ 3  )= (-
2π
3

,-
π
3

) and (
π
3

,
2π
3

). In 

the case of ( ϕ̂ 2 , ϕ̂ 3  )= (-
2π
3

,-
π
3

), we obtain

ϕ 1=-
π
6

, d=
3
4

(1-μ), if  0 < μ < 1

ϕ 1=
5π
6

,  d=
3
4

(μ-1), if  μ > 1.       (46)

And, in the case of ( ϕ̂ 2 , ϕ̂ 3  )= (
π
3

,
2π
3

), we obtain

ϕ 1=
π
2

,  d=
3
4

(1-μ), if  0 < μ < 1

ϕ 1=-
π
2

, d=
3
4

(μ-1), if  μ > 1.       (47)

Finally, let us consider the case of

( ϕ̂ 2 , ϕ̂ 3  )= (-
2π
3

,
2π
3

), for which

 v 1

t
s 1  =  -

1
2 3

c 1+
1
2
s 1

 v 2

t
s 2 =  

1
3
c 1

 v 3

t
s 3 =  -

1
2 3

c 1-
1
2
s 1

          (48)

and 

∑
3

i= 1
u i= 0 .      (49)

Plugging (1), (48), and (49) into (27), we have

(μ-1)

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳

 
3
4
c 21+

3
2
c 1s 1-

3
4
s 2 1

 -
3
4
c
2
1+

3
2
c 1s 1+

3
4
s
2
1 

 =  

ꀎ

ꀚ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳

 0 

 0 .   (50)

There does not exist ϕ1 satisfying (50) unless μ= 1 , 
which implies that there is no isotropic configuration.

 D. Summary
  Seen from (30) and (45)-(47), the existence of the 
isotropic configurations of a COMR is dependent on the 
relationship of the ratio μ and the steering link offset d:

μ =  1                                     (51)

d=
3
4

(1-μ), if  0 < μ < 1                    (52)

d=
3
4

(μ-1), if  μ > 1 .                     (53)
Since μ is an auxiliary parameter introduced to expedite the 
systematic isotropy analysis, it is better to cast the 
relationships of μ and d into the relationships of  the wheel 
radius r  and d .  For a given r , the specific value of d, 
which is required for the isotropy of a COMR, is called as 
the isotropic steering link offset, d iso.
  First, from  (23), it is trivial that (51) is equivalent to

d iso =  r  .                                    (54)
Next, plugging (23) into (52), we have

3d
2
+ 4r

2
d- 3r

2
 =  0                        (55)

which yields

d iso =  r 2+ ( 2
3
r 2)

2

-
2
3
r 2 <  r              (56)

subject to 

0 <  d iso <  
3
4 .                              (57)

Similarly, it can be shown that (53) is equivalent to

d iso =  r
2
+ ( 2

3
r

2)
2

+
2
3
r

2
 >  r               (58)

subject to 
d iso >  0 .                                     (59)

Note that (54), (56), and (58) are equivalent to (51), (52), 
and (53), respectively, and for a given wheel radius r , they 
represent the values of the  isotropic steering link offset d iso.

Summarizing the results obtained so far, all possible 
isotropic configurations, denoted by Θ iso, of a COMR can 
be categorized into four different sets according to the 
relationships of the wheel radius r  and  the isotropic 

ThD7.2

2974



steering link offset d iso . Attached at the end of this paper, 
Table II lists four different sets of Θ iso, denoted by S1, S2, 
S3, and S4, and the corresponding value of d iso . It should be 
noted that S1 places no restriction on d iso  unlike the other 
three sets, S2, S3, and S4.

V. ISOTROPIC CHARACTERISTIC LENGTH

As discussed in Section III, the isotropy of a COMR can 
be achieved when three isotropy conditions, given by (20), 
(21), and (22), are all met.  Once the isotropic configuration 
has been identified under the conditions of (20) and (21), the 
isotropic characteristic length L iso  can be determined under 
the condition of (22). From (22), we have

L iso =  
2
3

∑
3

i= 1
[ μ ( v i

t
p i )

2 + ( u i
t
p i )

2 ]
μ+1

.  (60)
Using

( u i
t
p i )

2
= ( u i

t
s i )

2
-2d ( u i

t
s i )+ d

2

( v i
t
p i )

2
= ( v i

t
s i )

2     (61)
the expression of (60) can be further elaborated for four 
different sets of the isotropic configurations listed in Table 
II. Note that the isotropy of a COMR cannot be achieved 
unless the characteristic length is chosen as  the isotropic 
characteristic length, that is, L= L iso.

First, consider the case of S1, for which 

Θ iso= (ϕ 1 ,ϕ 1+
2π
3

,ϕ 1-
2π
3

) so that

u i
t
s i = 

1
2
c 1+

1
2 3

s 1

v i
t
s i = -

1
2 3

c 1+
1
2
s 1                    (62)

for i= 1,2,3. Using (62), (60) can be expressed as
L iso =

2
μ+1 { ( 1

3
sin (ϕ 1-

π
6

))
2

μ+( 1
3

cos (ϕ 1-
π
6

)-d)
2

} .
                                                                                      (63)

Geometrically, (63), corresponds to a kind of weighted norm 
of the vector p 1. Especially when μ= 1, (63) reduces to

L iso= ( 1
3

sin (ϕ 1-
π
6

))
2

+( 1
3

cos (ϕ 1-
π
6

)-d)
2

  (64)
or

L iso = d
2
-

2
3

cos (ϕ 1-
π
6

)d+( 1
3 )

2

           (65)

which is simply the Euclidean norm of p 1. Note that
 L iso =  (  || p 1  ||= || p 2  ||= || p 3  || ) .            (66)

Next, consider the case of S2, for which μ= 1 and 

Θ iso= (ϕ 1,ϕ 1-
2π
3

,ϕ 1+
2π
3

), so that

L iso =  
1
3 ∑

3

i= 1
|| p i ||

2                        (67)
and

|| p i ||
2 =  || s i ||

2- 2d ( u i
t
s i )+ d

2          (68)

∑
3

i= 1
( u i

t
s i ) =  0 .                            (69)

Using (68) and (69), from (67), we obtain

L iso = d iso
2+ ( 1

3 )
2

.                        (70)
Next, consider the isotropic configuration of 

Θ opt= (
π
6
,
π
2
,-

π
6

) belonging to S3, for which

u 1

t
s 1=

1
3
,  u 2

t
s 2  = u 3

t
s 3=

1
2 3

v 1

t
s 1= 0,   v 2

t
s 2=-

1
2
, v 3

t
s 3=

1
2

.     (71)
Using (61) and (71), (61) can be written as

L iso =  
2

μ+1 { 1
6

μ+( d iso
2
-

4
3 3

d iso+
1
6 )} .    (72)

Plugging (52) into (72), we obtain

L iso =  
1

1-
2
3
d iso

( d iso
2
-

2
3
d iso+

1
3 )

       (73)
or

L iso =
1

1-
2
3
d iso

( 1
3
- d iso)

                 (74)

subject to 0 < d iso <
3
4 . It can be shown that the expression 

of (74) is also valid for the other two isotropic configurations 

belonging to S3, Θ iso= (-
π
6
,-

5π
6

-
π
2

) and 

(
π
2
,
5π
6

,-
5π
6

).
  Similar analysis to the above can be made for all three 

isotropic configurations belonging to S4, and the isotropic 
characteristic length L iso is obtained by

L iso =
1

1+
2
3
d iso

( 1
3
+ d iso)

               (75)
subject to d iso > 0 .
  It is interesting to investigate the possible relationships 
existing among four different sets listed in Table II. It is 
obvious that 1) S1 and S2 are disjoint, 2) S3 and S4 are 
disjoint, and 3) both S3 and S4 are disjoint with S2 unless 
r= 0. To check the relationship between S3 and S1, let us 
impose the restriction of S3, given by (52), onto S1, given by 
(63):
L iso =

1

1-
2
3
d iso

{ d iso
2-

2
3 ( 23 sin 2(ϕ1-

π
6
)+ cos (ϕ1-

π
6
))d iso+

1
3 } .

                                                                                      (76)
Comparing (76) with (73), the condition for which S1 and 
S3 have the same isotropic characteristic length should be

  
2
3

sin 2(ϕ 1-
π
6
)+ cos (ϕ1-

π
6
) = 1             (77)

which yields

ϕ 1 =  
π
6
, 

π
2
,-

π
6                            (78)

which correspond to the values of ϕ1 for the isotropic 
configurations belong to S3. It should be noticed that for a 
given the isotropic steering link offset d iso ,  the same value 
of the isotropic characteristic length L iso, given by (74), is 
valid for both S1 and S3. 

Now, the relationship between S3 and S1 can be stated as 
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follows: For a given wheel radius r, whose d iso  and L iso 
are chosen as (56) and (74), respectively, there exist six 
isotropic configurations: three belonging to S3, 

(
π
6
,
π
2
,-

π
6

), (-
π
6
,-

5π
6

,-
π
2

), and (
π
2
,
5π
6

,-
5π
6

), 

and three belong to S1,  (
π
6
,
5π
6

,-
π
2

), (-
π
6
,
π
2
,-

5π
6

), 

and (
π
2
,-

5π
6

,-
π
6

).
Similar analysis to the above can be made for the 

relationship between  S4 and S1: For a given wheel radius r, 
whose values of d iso  and L iso are chosen as (58) and (75), 
respectively, there exist six isotropic configurations: three 

belonging to S4, (-
5π
6

,-
π
2
,
5π
6

), (
5π
6

,
π
6
,
π
2

), and 

(-
π
2
,-

π
6
,
π
6

), and three belong to S1, (-
5π
6

,-
π
6
,
π
2

), 

(
5π
6

,-
π
2
,
π
6

), and (-
π
2
,
π
6
,
5π
6

).

VI. CONCLUSION

In this paper, we presented the systematic isotropy 
analysis of a fully actuated caster wheeled 
omnidirectional mobile robot (COMR) with the steering 
link offset different from the wheel radius. First, with 
the characteristic length introduced, the kinematic model 
of a COMR was obtained based on the orthogonal 
decomposition of the wheel velocities. Second, the 
necessary and sufficient isotropy conditions of a COMR 
were examined to categorize three different groups, each 
of which can be handled in a similar way. Third, the 
isotropy conditions were further explored to identify 
four different sets of all possible isotropic 
configurations. Fourth, the expressions of the isotropic 
characteristic length required for the isotropy of a 
COMR were obtained. We hope that the results of this 
paper help for the optimal design and control of a 
COMR with variable steering link offset relative to 

wheel radius.  
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TABLE II
FOUR DIFFERENT SETS OF ALL ISOTROPIC CONFIGURATIONS

Set Θ iso d iso L iso

S1 (ϕ 1,ϕ 1+
2π
3

,ϕ 1-
2π
3

) No restriction 2
μ+1 { ( 1

3
sin (ϕ 1-

π
6

))
2

μ + (d- 1
3

cos (ϕ 1-
π
6

))
2

}
S2 (ϕ 1,ϕ 1-

2π
3

,ϕ 1+
2π
3

) r L iso = d iso
2+

1
3

S3

(
π
6
,
π
2
,-

π
6

),

(-
π
6
,-

5π
6

,-
π
2

),

(
π
2
,
5π
6

,-
5π
6

)

r
2
+

4
3
r

4
-

2
3
r

2 L iso =
1

1-
2
3
d iso

( 1
3
- d iso)

S4
(-

5π
6

,-
π
2
,
5π
6

), (
5π
6

,
π
6
,
π
2

),

(-
π
2
,-

π
6
,
π
6

)

r 2+
4
3
r 4+

2
3
r 2 L iso =

1

1+
2
3
d iso

( 1
3
+ d iso)
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