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Abstract— This paper proposes an iterative learning control
(ILC) scheme for a class of redundant robot arms to acquire
the desired control input signals that produce an endpoint
trajectory specified in task space. The learning update law
of control input signals is constructed only in task space by
modifying the previous control input through adding linearly
an endpoint velocity trajectory error. Although the dimension of
the task space is strictly less than the DOF (Degrees-of-freedom)
of the robot arm, the proposed method need neither consider
any inverse kinematics problem nor introduce any cost function
to be optimized and to determine the inverse kinematics (or
dynamics) uniquely. Convergence of trajectory trackings to the
specified one is shown by numerical simulations in both cases
1) free-endpoint motion and 2) constraint-endpoint motion with
specified contact force. A theoretical proof of convergences in
the case of free-endpoint motion is given on the basis of an
approximated dynamics linearized around a desired solution in
joint state space.

I. INTRODUCTION

When infants of 3 to 5 months old start to learn reaching
for an object and grasping, they gaze at the object but do
not see any motion of the arm as pointed out in many
observations obtained in experimental and developmental
psychology [1], [2]. Even in case of well matured adults, the
first trial in learning to reach a target point and write a circle
on a black board is primarily a problem of control of the
arms through haptic and proprioceptive information. Later,
in repetition of the exercises, they rely increasingly on vision
to refine trajectories in the task space and focus to adjust
the arm endpoint (maybe, a white chalk) to their envisioned
target trajectory. During such fine-tuning processes, they do
not watch movements of arm joints such as wrist, elbow, and
shoulder joints.

Accurate trajectory tracking can be achieved theoretically
in case of robot arms by using feedforward model-based
control laws called the computed torque method. However,
this methodology may produce unsatisfactory results when
parametric uncertainties in arm dynamics are present to
some extent and/or unmodeled dynamics of actuators and
payloads are supposed to exist. To cope with this parameter-
uncertainty problem, an appealing approach of trajectory
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Fig. 1. Planar movement by a robot
arm with four DOFs.
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Fig. 2. A hand writing robot model
with four DOFs

tracking for robotic systems with uncertain or unknown
parameters was proposed in 1984 [3], later called the iterative
learning control (ILC) and widely investigated not only in
trajectory tracking of robotic systems [4] but also in control
of repetitive tasks for mechatronics systems. However, in
most papers of the literature on ILC except the paper by De
Luca and Mataloni [5], only a family of objective dynamics
whose number of DOFs is equal to the dimension of physical
variables of task space, that is, non-redundant dynamics, have
been treated as far as nonlinear robot dynamics is concerned,
though it has been believed at least among roboticists that
surplus DOFs in robotic systems may offer advantages in
executing dexterous tasks. The reason is that redundancy
in DOFs of objective dynamics, on the other hand, may
incur illposedness of inverse kinematics and make the control
problems more sophisticated. It was very recent that even
in case of redundant arms a task space PD feedback for
multi-joint reaching produces satisfactory skilled motions
without calculating the pseudo inverse of a Jacobian matrix
or introduce any cost function to determine the inverse
kinematics uniquely [6]–[8]. In the problem of Point-to-Point
(PTP) reaching, there is no need of planning a trajectory in
the task space in advance. On the other side, there is a vast
literature of research works on PTP reaching for redundant
robots which are based upon planning an optimized trajectory
in joint space by introducing an artificial performance index
such as “manipulability,” “kinetic energy,” and “quadratic
functions of acceleration, jerk, or torque,” etc. Once the
optimal trajectory in some sense is determined in joint space,
the problem is of application of the computed torque to
tracking control in joint level. Thus, very recently, Nakanishi
et al. [9] showed interesting results on comparative and
quantitative studies on performances of task space trajectory
tracking among such optimization techniques for redundant
robots.
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This paper extends the conventional ILC scheme for
joint space motion-trajectory tracking to that for task space
motion-trajectory tracking in the case that the number of
physical variables (or dimension) necessary and sufficient
for description of a given task in task space is less than
the total DOFs of an objective robot arm. Differently from
De Luca et al.’s approach [5] [10] based upon frequency-
domain, our proposed learning update law is quite of a simple
form and constructed in time-domain in such a way that the
next control signal is composed in task space of a linear sum
of the present control signal and the task space velocity-
error signal with a constant coefficient. When this control
input is applied for making the next trial, it is exerted at
arm joints in a feedforward manner through the transpose of
the Jacobian matrix of physical variables in task space with
respect to arm joint variables. Verification of the effectiveness
of the proposed method is shown in computer simulations
in both cases 1) of using a 4 DOF planar robot for the
task of writing a Lissajous or triangle figure (Fig.1) and
2) of using a 4 DOF hand-writing robot whose endpoint is
constrained on a xy-plane and requested to write a circle with
a specified pressing force (Fig.2). A theoretical verification
of convergence of the ILC scheme is also presented by using
a time-varying dynamics linearized around an ideal joint
motion that achieves the desired task.

II. FREE-ENDPOINT MOTION: A HUMAN-LIKE
ROBOT ARM WITH REDUNDANT DOFS

Lagrange’s equation of motion of a multijoint system
whose motion is confined to a horizontal plane (Fig.1) [4] is
described by:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇ = u (1)

where q = (q1, q2, q3, q4)T denotes the vector of joint
angles, H(q) is the inertia matrix, S(q, q̇)q̇ is the gyroscopic
force term including centrifugal and Coriolis forces, u is the
control input torque at joints defined as:

u = −Cq̇−J(q)T
{
k∆x(t)+ζ1

√
k∆ẋ(t)−vn(t)

}
(2)

where C denotes a positive definite and diagonal damping
coefficient matrix (i.e., C = diag(c1, . . . , c4) where ci >
0), J(q) is the Jacobian matrix of task coordinates x in
joint coordinates q, ∆x(t) = x(t) − xd(t), and k and ζ1

are positive constant gain parameters. vn(t) stands for a
feedforward learning update law determined by:

vn(t)=

{
0 (n = 1)
vn−1(t) − Φ∆ẋn−1(t) (n > 1)

(3)

where n denotes the trial number, ∆xn(t) = xn(t)−xd(t),
and Φ is a positive constant parameter for ILC. Then, by
substituting eq.(2) into eq.(1), we obtain the closed-loop

dynamics at the n-th trial as follows:

H(qn)q̈n +
{

1
2
Ḣ(qn) + S(qn, q̇n) + C

}
q̇n

+ JT(qn)
{
k∆xn + ζ1

√
k∆ẋn

}
= JT(qn)vn (4)

In order to gain a physical insight into the problem of
convergence of ∆ẋn to zero with the increase of n, it is
convenient to transpose q̇n into

q̇n =
(
J+

n (qn), Pn

)(
ẋn

ẏn

)
(5)

where

J+
n = JT

n (JnJT
n )−1, (6)

and Pn is a 4×2-matrix orthogonal to J+
n (qn), i.e., PT

n J+
n =

04×4, with a property that Pn = (p1, p2), pi denotes a 4×1
column vector with ‖pi‖ = 1 and pT

1 p2 = 0. Then, it is easy
to see that if we define

Qn =
(
J+

n , Pn

)
, Q−1

n =
(

Jn

PT
n

)
, (7)

QT
nH(qn)Qn = Hn, (8)

Sn = QT
nSQn− 1

2
Q̇T

nHQn+
1
2
QT

nHQ̇n (9)

then, by substituting eq.(5) into eq.(4) and multiplying the
resultant equation by the transpose of Qn from the left-hand,
we have

Hn

(
ẍn

ÿn

)
+

{
1
2
Ḣn + Sn + QT

nCQn

}(
ẋn

ẏn

)

+ ζ1

√
k

(
∆ẋn

0

)
+ k

(
∆xn

0

)
=

(
vn

0

)
(10)

In this paper, to gain a physical insight into the problem
of convergence of trajectories ∆ẋn(t), we assume that there
exists an ideal control signal vd(t) so that it satisfies

Hd

(
ẍd

ÿd

)
+

{
1
2
Ḣd+Sd+QT

d CQd

}(
ẋd

ẏd

)
=

(
vd

0

)
(11)

where Qd = (J+
d (qd), P (qd)), Hd = QT

d H(qd)Qd, Sd =
QT

d S(qd, q̇d)Qd− 1
2 Q̇T

d HQd+ 1
2QT

d HQ̇d. For convenience,
we define

Bd =
1
2
Ḣd + Sd + QT

d CQd (12)

Then, it follows from eq.(11) that

H22ÿd + B22ẏd = −HT
12ẍd − B21ẋd (13)

where

Hd =
(

H11 H12

HT
12 H22

)
, Bd =

(
B11 B12

B21 B22

)
(14)

Equation (13) means that if ẋd, ẍd, and qd are given
then ẏd is determined uniquely from solving the differential
equation of eq.(13) under the initial condition ẏd(0) = 0.
Furthermore, we discuss the problem of convergence of
trajectory trackings based upon a linearized dynamics of the
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TABLE I
PHYSICAL PARAMETERS OF THE 4-DOF ROBOT ARM

Link number i 1 2 3 4
Length [m] li 0.2800 0.2800 0.09500 0.09000

Center of mass [m] lgi 0.1400 0.1400 0.04750 0.04500
Cylinder radius [m] ri 0.04000 0.03500 N/A 0.009500
Cuboid height [m] hi N/A N/A 0.08500 N/A
Cuboid depth [m] di N/A N/A 0.03000 N/A

Mass [kg] mi 1.407 1.078 0.2423 0.02552
Inertia moment [kgm2] Igiz 9.758 × 10−3 7.370 × 10−3 2.004 × 10−4 1.780 × 10−5

TABLE II
INITIAL VALUES AND GAIN SETTINGS IN THE CASE OF THE 4-DOF

PLANAR ROBOT ARM

Terminal time T 2.0 [s]

Initial posture

q1(0) 21.02 [deg]
q2(0) 75.47 [deg]
q3(0) 44.20 [deg]
q4(0) 64.87 [deg]

Gains

k 10 [N/m]
ζ0 0.5 [-]
ζ1 2.5 [-]
Φ 7.0 [-]
c1 0.862 [Nms]
c2 0.569 [Nms]
c3 0.129 [Nms]
c4 0.0356 [Nms]

TABLE III
NUMERICAL VALUES OF INERTIA MATRIX H(q(t)) AT t = 0 IN THE

CASE OF THE 4-DOF PLANAR ROBOT ARM (UNIT: kgm2)

H(q(0)) =

2
664

2.260 × 10−1 6.962 × 10−2 1.580 × 10−3 −3.097 × 10−4

6.962 × 10−2 5.601 × 10−2 3.831 × 10−3 1.080 × 10−5

1.580 × 10−3 3.831 × 10−3 1.139 × 10−3 1.158 × 10−4

−3.097 × 10−4 1.080 × 10−5 1.158 × 10−4 6.947 × 10−5

3
775

robot around the ideal joint velocity and position vector q̇d(t)
and qd(t), that is described as

Hd(t)
(

ẍn

ÿn

)
+

{
1
2
Ḣd(t)+Sd(t)+QT

d (t)CQd(t)
}(

ẋn

ẏn

)

+ ζ1

√
k

(
∆ẋn

0

)
+ k

(
∆xn

0

)
=

(
vn

0

)
(15)

Then, subtraction of eq.(11) from eq.(15) yields

Hd(t)
(

∆ẍn

∆ÿn

)
+

{
1
2
Ḣd+Sd+QT

d CQd

}(
∆ẋn

∆ẏn

)

+ ζ1

√
k

(
∆ẋn

0

)
+ k

(
∆xn

0

)
=

(
∆vn

0

)
(16)

where ∆vn = vn − vd. Then, taking an inner product
between this equation and vector (∆ẋT

n , ∆ẏT
n )T yields∫ t

0

∆ẋT
n (τ)∆vn(τ)dτ = Edn(t) − Edn(0)

+
∫ t

0

{
ζ1

√
k‖∆ẋn‖2

+ (∆ẋT
n , ∆ẏT

n )QT
d CQd (∆ẋT

n , ∆ẏT
n )T

}
dτ (17)

where

Edn =
1
2
(∆ẋT

n , ∆ẏT
n )Hd(∆ẋT

n , ∆ẏT
n )T +

1
2
k‖∆xn‖2 (18)

Since Edn ≥ 0, and QT
d CQd is positive definite, eq.(17)

shows the passivity of eq.(16) concerning the input-output
pair

{
(∆vT

n , 0T)T, (∆ẋT
n , ∆ẏT

n )T
}

.
Convergence of trajectory trackings in task space as n →

∞ can be proved by using the passivity relation of eq.(17).
The details will be given in Appendix A.
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Fig. 3. Endpoint trajectories and the initial and final postures of the arm
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III. NUMERICAL SIMULATIONS
In order to verify the effectiveness of the proposed ILC

scheme shown in eq.(2), we conducted some numerical
simulations. Physical parameters of the robot arm are set
as shown in TABLE I (these are just similar to those of an
average adult arm), and the robot is requested to write a
specified figure — Lissajous or triangle —.

First, in order to draw a Lissajous figure at the endpoint
of the robot arm, the following desired trajectory is given:

xd(t)=
[

0.00
0.40

]
+

[
0.075 cosω(t)
0.10 sin 2ω(t)

]
[m] (19)

where

ω(t)= 2.0π

{
−15

(
t

T

)4

+ 6
(

t

T

)5

+ 10
(

t

T

)3
}

(20)

where T denotes the terminal time of the desired trajectory.
We remark that xd(t) is given to be twice continuously
differentiable and both ẋd(t) and ẍd(t) must vanish at initial
time t = 0 and terminal time t = T . Initial posture and
gain parameters are set as shown in TABLE II the same
through all the trials, that is, the posture of the whole robot
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Fig. 7. Transient responses of arm joints

is initialized by the same values at every trial. Furthermore,
the endpoint at the initial time should be set so as to coincide
with the desired trajectory at t = 0 (x(0) = xd(0)).
As discussed detailedly in our previous paper [6] as for
synergistic choice among a group of joint dampings in the
control signal of eq.(2), damping matrix C may be chosen
as being of order of the square root of initial inertia matrix
H(q(0)). In this simulation, the damping factors are chosen
as follows:

ci = ζ0

√
k

√√√√ 4∑
j=1

|Hij(q(0))| (i = 1, . . . , 4) (21)

where H = (Hij). In the case of the initial posture in TABLE
II, initial values of inertia matrix H(q(0)) are evaluated as
in TABLE III. Simulation results in this case are presented in
Figs.3-7. Figure 3 shows endpoint trajectories and initial and
final postures at each trial, Fig.4 shows endpoint trajectories,
Figs.5-7 show time responses of endpoint position, velocity,
and joint angles respectively. As seen in Figs.3-7, at the first
trial (before learning) the endpoint trajectory is far from the
desired trajectory but at the 10th trial (after having learned)
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Fig. 8. Endpoint trajectories and the initial and final
postures of the arm when a different initial posture (q(0) =
(18.84, 78.83, 38.88, 65.13)T[deg]) is set

TABLE IV
TARGET POSITIONS FOR TRIANGLE FIGURE

xv(0) (0.10, 0.40)T [m]
xv(1) (0.00, 0.573)T [m]
xv(2) (−0.10, 0.40)T [m]
xv(3) (0.10, 0.40)T [m]

TABLE V
INITIAL VALUES AND GAIN SETTINGS FOR TRIANGLE FIGURE

TRAJECTORY

Terminal time T 1.0 [s]

Initial posture

q1(0) 19.35 [deg]
q2(0) 73.50 [deg]
q3(0) 43.47 [deg]
q4(0) 68.67 [deg]

Gains

k 10 [N/m]
ζ0 0.5 [-]
ζ1 2.5 [-]
Φ 7.0 [-]
c1 0.873 [Nms]
c2 0.574 [Nms]
c3 0.131 [Nms]
c4 0.0361 [Nms]

it can accurately follow the desired trajectory, and the pose
of the arm during its movement does not become unnatural
through all the trials. As pointed out by Seraji [11] as for
robot arms with redundant DOFs, self-motion may arise
during or even after the end of trajectory tracking due to
joint DOF redundancy. Therefore, we run the simulations
for one more second after the terminal time of trajectory
tracking by setting the same desired position, which is fixed
as xd(t) = xd(T ), ẋd(t) = 0 for T < t ≤ (T + 1.0). As
seen in Fig.7, after repetition of trials (at the 10th trial), the
joints does not move after the end of the trajectory tracking
(after 2[s]), and self-motion does not arise. According to
the results in Fig.7, the joints move after 2[s] at the 1st
and 3rd trials. This happened when the endpoint is far from
the desired position, because the force (−k∆x) leading the
endpoint to the target still remains even after 2 [s]. Therefore,
this phenomenon is different from self-motion. In order to
demonstrate versatility of the proposed ILC scheme, we
conducted another simulations by using different initial arm
postures. Figure 8 shows one of simulation results when one
initial arm pose different from the settings of TABLE II is
chosen but the gain settings are the same as in the previous
simulation. As seen from Fig.8, the proposed ILC scheme
is almost equally effective among choices of different initial
poses to some extent.
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Next, in order to let the robot arm to write a triangle on
the xy-plane, we define

xd(t)=




xv(n)+
{
xv(n+1)−xv(n)

}
ω(t−T(n))

(T(n) ≤ t < T(n)+T )
xv(n+1) (T(n)+T ≤ t < T(n+1))

(22)

(n = 0, 1, 2)

where T(n) = n(T +0.5) and vertex positions of the triangle
are set as shown in TABLE IV. Figure 9 shows simulation
results in the case that the initial posture and gains are
chosen as in TABLE V. The gain settings (k, ζ0, ζ1, and Φ)
are entirely the same as those in the previous simulations.
Nevertheless at the 10th trial the endpoint accomplishes the
desired trajectory without incurring self-motion. Even in the
cases that other figures or different time intervals are given,
exact trajectory tracking could be realized after a sufficient
repetition of trials.

In the conventional ILC scheme for non-redundant DOF
robots, the learning update law which consists of a linear
sum of the task space position-error signal together with the
velocity-error signal (called PI-type learning) has been also
proposed [4]. Therefore, we conducted simulations by using
the following update law:

vn(t)= vn−1(t) − {Φ∆ẋn−1(t)+Ψ∆xn−1(t)} (23)

where Ψ denotes a positive constant parameter. Figure 10
shows simulation results in the case that the desired trajectory
of eq.(22) is chosen and initial values and gains in TABLE
V and Ψ = 4.0 are set. As seen in Fig.10, the endpoint
trajectory approaches closely to the desired trajectory after a
few trials in comparison with Fig.9. Though the simulation
results in Fig.10 do not directly indicate superiority of the
learning update law of eq.(23) to eq.(3), it must work effi-
ciently in the case that effects of Coulomb friction inherent
to robots are large (e.g. industrial robots).

IV. ENDPOINT-CONSTRAINT MOTION:
HAND-WRITING ROBOT

Next, as an example of trajectory tracking in task space
under holonomic constraints, we consider a hand-writing
robot with four joints shown in Fig.2. In this case, dynamics
of the robot can be described by the following Lagrange
equation of motion with a holonomic constraint φ(q) = 0:

H(q)q̈ +
{

1
2
Ḣ(q) + S(q, q̇)

}
q̇

+ g(q) − ∂φ

∂q
λ = u (24)

where g(q) denotes the gravity term and λ is a Lagrange
multiplier corresponding to the constraint φ = 0. In this case,
the endpoint (the pen nib) should be kept on the xy-plane
during hand-writing motion. This is expressed as a constraint
equation as follows:

φ = l1 + l2 sin q2 + l3 sin(q2 + q3)
+ l4 sin(q2 + q3 + q4) = 0 (25)
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Fig. 10. Transient responses when a desired trajectory of triangle figure
is given and the learning update law of PI-type is used

Once the constraint is defined by eq.(25), the corresponding
Lagrange multiplier λ together with gradient vector (∂φ/∂q)
plays a role of the the contact force orthogonal to the xy-
plane (in detail, see [8]). Physical parameters of the robot
are shown in TABLE VI.

The objective task is to accomplish a desired trajectory
tracking while maintaining a specified contact force at the
endpoint. Based on the previous works [8], [12], we consider
the following control signal:

u =−Cq̇−JT(q)
{

k∆x(t)+ζ1

√
k∆ẋ(t)−vk(t)

}

−∂φ

∂q
{λd − σn(t)}+g(q) (26)

where λd denotes a desired contact force (positive constant),
vn(t) is equivalent to the update law shown in eq.(3), and

σn(t) = σn−1(t) + Λ∆λn−1(t) (27)

where ∆λn−1(t) = λn−1(t) − λd. Equation (27) means the
learning update law to accomplish the desired contact force.

In numerical simulation, drawing a circle on a sheet (xy-
plane) is imposed by setting the following desired trajectory:

xd(t)=
[

0.00
0.23

]
+ 0.05

[
sin ω(t)

− cosω(t)

]
[m] (28)

where

ω(t) =2.0π

{
−2

(
t

T

)3

+ 3
(

t

T

)2
}

(29)
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TABLE VI
LINK PARAMETERS OF THE HAND-WRITING ROBOT

Link number i 1 2 3 4
Length [m] li 0.096 0.100 0.100 0.167
Mass [kg] mi 0.111 0.102 0.102 0.052

TABLE VII
INITIAL VALUES AND GAIN SETTINGS IN THE CASE OF DRAWINGS BY

THE HAND-WRITING ROBOT

Terminal time T 1.0 [s]

Initial posture

q1(0) 90.00 [deg]
q2(0) 55.71 [deg]
q3(0) -63.43 [deg]
q4(0) -73.82 [deg]

Desired force λd 1.0 [N]
Gains

k 5 [N/m]
ζ0 0.1 [-]
ζ1 1.0 [-]
Φ 1.5 [-]
Γ 0.8 [-]
c1 0.0368 [Nms]
c2 0.0498 [Nms]
c3 0.0380 [Nms]
c4 0.0164 [Nms]

TABLE VIII
NUMERICAL VALUES OF INERTIA MATRIX H(q(t)) AT t = 0 IN THE

CASE OF HAND-WRITING ROBOT (UNIT: kgm2)

H(q(0)) =

2
664

2.955 × 10−3 4.601 × 10−6 4.601 × 10−6 4.601 × 10−6

4.601 × 10−6 3.786 × 10−3 1.579 × 10−3 9.920 × 10−5

4.601 × 10−6 1.579 × 10−3 1.300 × 10−4 3.110 × 10−4

4.601 × 10−6 9.920 × 10−5 3.110 × 10−4 2.306 × 10−4

3
775

Figures 11 and 12 show simulation results in the case that
the initial values and gains are set as given in TABLE VII. In
this case, numerical values of the inertia matrix at the initial
time are shown in TABLE VIII. Then, by using eq.(21), joint
damping factors ci are determined in TABLE VIII. As seen
in Fig.11, at the 10th trial it accurately follows the desired
trajectory. Furthermore, although the feedforward torques to
produce the desired pressing force are exerted at redundant
joints, the pose of the robot does not become unnatural
during its movement (e.g., the 3rd joint never contacts with
the xy-plane). Figure 12 shows endpoint trajectories, and its
time responses corresponding to x and y components and the
pressing force λ at each trial. After a sufficient repetition
of trials, the hand-writing robot can accomplish to write
exactly the desired trajectory while generating the specified
and commanded pressing force.

V. CONCLUSIONS

An iterative learning control scheme is proposed for robot
arms with redundant joints relative to the number of physical
variables describing a desired task. The learning update law
is composed in task space by using descriptions of the
desired task and measured data of physical variables only
in task space. Convergence of trajectory trackings through
repetition of trials is shown theoretically on the basis of
an approximately linearized model. The effectiveness of the
proposed method is verified by computer simulations on
multi-joint reaching movements with redundant DOFs and
hand-writings under a holonomic endpoint constraint.

Throughout the paper, existence of an ideal input vd

realizing the desired endpoint trajectory xd(t) is assumed.
This assumption can be validated by verifying that the system
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Fig. 11. Endpoint trajectories and the initial and final postures of the robot
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Fig. 12. Transient responses in the case of movement by the hand-writing
robot

of six simultaneous nonlinear differential equations

q̇ = Q(q) (ẋT
d , ẏT

d )T (30)
ÿd = −H−1

22

{
B22ẏd − HT

12ẍd − B21ẋd

}
(31)

concerning (qT, ẏT
d )T has a unique solution. The rigorous

proof of this claim will be presented elsewhere.
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APPENDIX A

By subtracting vd from the learning update law of eq.(3),
we obtain

∆vn+1 = ∆vn − Φ∆ẋn (n = 0, 1, 2, . . . ) (A-1)

Then, it follows that

‖∆vn+1(t)‖2/2Φ = ‖∆vn(t)‖2/2Φ − ∆ẋT
n (t)∆vn(t)

+ Φ‖∆ẋn(t)‖2/2 (A-2)

Taking integral of this equation in t over [0, t] yields∫ t

0

{‖∆vn+1(τ)‖2/2Φ
}
dτ

=
∫ t

0

{‖∆vn(τ)‖2/2Φ
}
dτ − {Edn(t)−Edn(0)}

−
∫ t

0

{(
ζ1

√
k−Φ

2

)
‖∆ẋn(τ)‖2

+ (∆ẋT
n (τ), ∆ẏT

n (τ)) QT
d (τ)CQd(τ)

(∆ẋT
n (τ), ∆ẏT

n (τ))T
}

dτ

≤
∫ t

0

{‖∆vn(τ)‖2/2Φ
}

dτ − Edn(t)

−
∫ t

0

(
ζ1

√
k−Φ

2

)
‖∆ẋn(τ)‖2dτ (A-3)

since Edn(0) = 0 and QT
d (τ)CQd(τ) ≥ 0. Therefore, if

0 < Φ < 2ζ1

√
k then for any t ∈ (0, T ]

Edn(t) → 0 and
∫ t

0

‖∆ẋn(τ)‖2dτ → 0 (A-4)

as n → ∞. Referring to the form of Edn defined in eq.(18),
we can conclude that for any t ∈ [0, T ]

∆xn(t) → 0, ∆ẋn(t) → 0, ∆ẏn(t) → 0 (A-5)
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Fig. 13. Transient responses of the ILC term vn = (vn1, vn2)T
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Fig. 14. Transient behaviours of eigenvalues

as t → ∞. This completes the proof of convergence of
trajectory trackings in task space under the assumption that
the concerned dynamics can be expressed by the form of
eq.(15). In this proof, we implicitly assumed the positive
definiteness of matrix (J+

n )TCJ+
n during iteration of trials

and also the convergence of vn(t) to some idealized control
signal (we denoted it by vd(t)). According to numerical
simulations of trajectory tracking for the desired Lissajous
figure, it is possible to show that both assumptions are valid
as shown in Figs.13 and 14.

An extension of the proof to the case of hand-writing under
a holonomic constraint is omitted in this paper due to page
limitation.
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