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Abstract— This study clarifies that secure dynamic manipu-
lation by a pair of soft fingertips can be achieved easily without
any information of a grasped object, which is called Blind
Manipulation. First, we describe two holonomic constraints
and two nonholonomic constraints induced by minimum dof
soft-fingered grasping. Next, we represent Lagrangian of the
soft-fingered hand system that includes the elastic energy of
the fingertip, the four constraints, and also gravity effect.
Furthermore, we express equations of motion of the grasped
object from the Lagrangian, and simulate the dynamic behavior
of the object. Finally, we clarify that the position and posture
of the object always converge to a corresponding point when a
pair of fingers is freely activated.

I. INTRODUCTION
In the case of dealing with soft-fingered manipulation, the

modeling of elastic soft materials is much important. While
a pretty accurate elastic model is able to describe a true
behavior of an object grasped by soft fingers, it is extremely
difficult to represent the exact model in an analytical pro-
cedure. Generally, nonlinear finite element analysis is used
for computing the elastic force and showing the deformation
process, whose model is based on experimental observations
but not analytical ways. Hence, when we discuss the soft-
fingered manipulation analytically, it is important how much
we can get the model to be closer to an appropriate model
that is able to express a real object motion through the soft
fingertips.

Furthermore, modeling issue of soft fingers is intimately
connected to not only modeling itself, but also stable grasp-
ing and robust manipulation in the robotic hand system
as well. That is, position/posture controls of the grasped
object without complicated control inputs that is usually
designed for the conventional point-contact manipulation can
be demonstrated by using the more suitable soft fingertip
model.

In this paper, we first extend previous one-dimensional
fingertip model [1], [2] to two-dimensional model by addi-
tionally applying the bending motion of the fingertip along
the tangential direction of grasped object. Additionally, we
formulate holonomic and nonholonomic constraints gener-
ated by two-fingered hand. By represent the Lagrangian for
the handling system that includes the constraints and elastic
potential energy induced by the deformation of the fingertip,
we obtain the equations of motion of the grasped object
during the soft-fingered manipulation. Finally, we simulate
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the dynamic behavior of the object in the case that both
fingers arbitrary move according to an example motion. We
clarify that the stable soft-fingered manipulation without any
object information can readily be attained under the gravity
force.

II. TWO-DIMENSIONAL MODEL

In what follows, we assume that the slip motion between
the object and the fingertip does not occur in all manipulation
processes. Before formulating the elastic energy combined by
both fingertips in actual two-fingered manipulation, we first
describe the energy function in the case of a single contact
between the object and a soft fingertip shown in Fig.1.

Fig. 1. Contact mechanism during the soft-fingered manipulation

Let Q and R be the opposite end points of a cylindrical
virtual spring within the fingertip, and P be a point on the
contacting surface. In addition, let k be the spring constant of
the cylindrical component, and θp be the object orientation
in this contact. When the point P shifts dt from the original
point to P’ with constant normal displacement dn, each force
for vertical and parallel directions to the fixed end can be
represented as follows:

dFv = k(PQ+ dt sin θp), (1)
dFp = kdt cosθp, (2)

where we are assuming that the spring constant k is equiva-
lent to that of bending motion. The elastic potential energy
induced by the integrated deformation of the compression
and bending is therefore expressed by

P =
1
2

∫ ∫
ell

k
{
(PQ+ dt sinθp)2 + d2

t cos2 θp

}
, (3)

where ell denotes an elliptical region obtained by projecting
the contact surface onto the finger plane, as shown in Fig.1.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB7.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 586



Fig. 2. Soft-fingered manipulation under the gravitational force

Developing Eq.(3) with the use of numerical analysis, the
energy equation P can finally be represented as

P = πE
{

d3
n

3cos2 θp
+ d2

ndt tanθp + dnd2
t

}
, (4)

where E denotes the Young’s modulus of the material of the
fingertips. Extending the above procedure to the two-fingered
hand shown in Fig.2, P is then expressed by

P = πE
2

∑
i=1

{
d3

ni
3cos2 θpi

+ d2
nidti tanθpi + dnid2

ti

}
, (5)

where i means i-th finger of the hand in which 1 and 2 stand
for right and left fingers, respectively, and

θpi = θi +(−1)iθob j. (6)

III. HOLONOMIC AND NONHOLONOMIC
CONSTRAINTS

A. Normal Constraints

As illustrated in Fig.2, let Wob j be the width of a grasped
object, 2Wf i be the distance between both roots of the fingers,
2d f i be the thickness of the finger, (θ1,θ2) be the rotational
joint angles, L be the length of the finger, and G be the center
of gravity of the object. Additionally, let (xob j,yob j,θob j)
be the position and orientation of the object. Considering
the geometric relationship of the handling system shown in
Fig.2, the coordinate of the fingertip center Oi is expressed
with respect to ∑R as follows:

Oix = (−1)i+1Wf i +(−1)iLsinθi +(−1)id f i cosθi,

(7)
Oiy = Lcosθi −df i sinθi. (8)

The constraints along the normal direction to the object
surface are holonomic equations, and these can be written

(a) left fingertip (b) right fingertip
Fig. 3. Geometric relationship between grasped object and both fingertips

by

CH
i = (−1)i(xob j −Oix)cosθob j

+ (−1)i(yob j −Oiy)sinθob j

− (a−dni)+
Wob j

2
+(−1)iw = 0. (9)

In this paper, we give essentric distances (w,h) of point G
to be zero for ease of explanation, and θob j has a positive
value in the counter-clockwise direction.

B. Tangential Constraints

Letting θi be positive when both fingers rotate inward as
shown in Fig.2, the rolling velocity ṡi of the object on the
soft fingertip is expressed as

ṡi = −(a−di)
{

θ̇i +(−1)iθ̇ob j
}

. (10)

In addition, as illustrated in Fig.3, the distance GQi is
represented as

GQi = −(xob j −Oix)sin θob j +(yobj −Oiy)cosθob j. (11)

Therefore, differentiating Eq.(11) with respect to time, a
velocity constraint including the change of bending motion
ḋti can be given as a nonholonomic constraint:

CN
i = ˙GQi − ṡi + ḋti = 0. (12)

IV. GENERAL DESCRIPTION OF EQUATIONS OF
MOTION AND ITS NUMERICAL ANALYSIS

In this study, we deal with the soft-fingered manipulation
using a minimum degrees of freedom hand, and investigate
the dynamic behavior of a grasped known object in the case
of the presence of holonomic and nonholonomic constraints
in the system.

A. Lagrangian

Let q be the generalized coordinate, (Mob j, Iob j) be the
mass and moment of inertia of the grasped object respec-
tively, and I = [I1, I2]T be the moment of inertia of both
fingers. In addition, let g be the acceleration of gravity, Pgv be
the potential energy with respect to gravitational force, λ H

i be
the constraint force in terms of the holonomic constraint CH

i
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expressed in Eq.(9). The Lagrangian in the present handling
system can then be described using Eq.(5) as

L =
1
2
q̇T Mq̇−P−Pgv +

2

∑
i=1

λ H
i CH

i , (13)

where

M = diag(Mob j,Mob j, Iob j,I
T ,

Mob j,Mob j,Mob j,Mob j) ∈ R9×9, (14)

q = [xob j,yob j,θob j,θ
T ,dT

n ,dT
t ]T ∈ R9×1, (15)

Pgv = Mob jgyob j +
2

∑
i=1

MigLcosθi. (16)

Note that the Mi denotes the mass of the i-th finger. In
Eq.(13), the first term means the kinetic energy in the entire
system, and the second and third terms stand for the elastic
potential energy of the soft fingers and gravitational potential
energy. In addition, the last term denotes a virtual energy due
to the constraint forces that does not generate any energy, that
is, it always be zero.

B. Equations of Motion

As expressed as Eqs.(9) and (12), this handling system
has four constraint equations that is associated with normal
and tangential directions to the grasped object. Note that
while the holonomic constraints can be included into the
Lagrangian directly, we are able to contain the nonholonomic
constraints into the equations of motion for the first time [3].

We define the nonholonomic constraint matrix as ΦN ∈
R2×9 [4]. The element of the matrix is then expressed using
Eq.(12) as

ΦN
i j =

∂CN
i

∂ q̇ j
(i = 1,2 : j = 1, · · · ,9). (17)

Let λN = [λ N
1 ,λ N

2 ]T be the constraint force vector directed
to the tangential direction to the object surface. As long as
ΦNT λN is represented as a linear combination form relating
to the time derivative of generalized coordinate, the equations
of motion under nonholonomic constraints can be expressed
as [3]

d
dt

∂L
∂ q̇ j

− ∂L
∂q j

= ΦNT λN ( j = 1, · · · ,9). (18)

C. Constraint Stabilization Method including Nonholonomic
Constraints

In order to investigate the dynamic analysis of a system
under both kinds of constraints, we apply the Constraint
Stabilization Method (CSM) [5] in this study.

Let CH , CN be the vector description of Eqs.(9) and (12).
Here, corrected constraint equations that is based on each
constraint are described as

C̈H + 2αĊH + α2CH = 0 ∈ R2×1, (19)
ĊN + βCN = 0 ∈ R2×1, (20)

where α and β correspond to an arbitrary constant associated
with the speed of asymptotical stablity of both equations. By

using Eqs.(19) and (20) in the numerical analysis of corre-
sponding equations of motion, we can obtain the solution of
the system stably.

On the other hand, let ΦH ∈ R2×9 be the holonomic
constraint matrix of the system as well. Each element of
the matrix is then expressed using Eq.(9) as

ΦH
i j =

∂CH
i

∂q j
(i = 1,2 : j = 1, · · · ,9). (21)

By developing Eqs.(19) and (20) with both constraint matri-
ces ΦH and ΦN , we can define γH and γN as follows:

ΦH ṗ = −bH(q,p)−2αĊH −α2CH � −γH , (22)
ΦN ṗ = −bN(q,p)−βCN � −γN , (23)

where p denotes the generalized velocity vector, and the
relationship p = q̇ is also satisfied.

Furthermore, let fp be the potential force vector, fext be
the vector of generalized external force, and I be the identity
matrix. The state space description of the CSM including
a control input vector uIN , which is able to deal with the
holonomic and nonholonomic constraints simultaneously, is
described as [6], [7]


I 0 0 0
0 M −ΦHT −ΦNT

0 −ΦH 0 0
0 −ΦN 0 0






q̇
ṗ

λH

λN




=




p
−fp +fext +uIN

γH

γN


 . (24)

By numerically integrating the above first-order differen-
tial equations, we compute the dynamic behavior for soft-
fingered handling of a rigid object.

V. DERIVATION OF E.O.MS (EXAMPLE)

We show a set of equations of motion of the handling sys-
tem illustrated in Fig.2 in detail. First, we show the constraint
matrices that appear along the normal and tangential direc-
tion to the object surface, and nonlinear equations of motion
of the system. In what follows, we describe the equations
of motion with respect to the object position (xob j,yob j) and
orientation θob j, and represent other equations with respect to
the rotational angle of the finger θi and fingertip displacement
(dni,dti) in Appendix I.

A. Constraint Matrix

The constraint matrix Φ = [ΦHT ,ΦNT ]T ∈ R4×9 including
both holonomic and nonholonomic constraints in the present
handling system can be expressed using Eqs.(9), (12), (17),
and (21) as

Φ =




−Cθob j −Sθob j Ac1 Bc1 0 1 0 0 0
Cθob j Sθob j Ac2 0 Bc2 0 1 0 0
−Sθob j Cθob j Ec1 Fc1 0 0 0 1 0
−Sθob j Cθob j Ec2 0 Fc2 0 0 0 1


 . (25)
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In Eq.(25), the symbols S and C denote the abbreviation
of sin and cos, respectively. Additionally, Aci,Bci,Eci,Fci(i =
1,2) correspond to the following equations.

Aci = (−1)i+1(xob j −Oix)Sθob j

+ (−1)i(yob j −Oiy)Cθob j, (26)

Bci = −LC
{

θi +(−1)iθob j
}

+ d f iS
{

θi +(−1)iθob j
}

, (27)
Eci = −(xob j −Oix)Cθob j − (yob j −Oiy)Sθob j

+ (−1)i(a−dni), (28)
Fci = LS

{
θr +(−1)iθob j

}
+ d f iC

{
θi +(−1)iθob j

}
+(a−dni), (29)

where Aci corresponds to (−1)iGQi as shown in Eq.(11) and
Fig.3, and Bci stands for the tangential component of position
vector from each origin T,S of the i-th finger to each origin
Oi of the i-th fingertip, as shown in Fig.2. Furthermore, Fci
means the normal component of position vector from each
origin T,S of the i-th finger to the center of the contacting
circle on the fingertip. Eci can be transformed using Eq.(9)
into a constant expression:

Eci = −(−1)iWob j

2
−w. (30)

B. Equations of Motion

By developing Eq.(18), the equations of motion relating
to the object position and orientation (xob j,yob j,θob j) can be
represented as

Mob jẍob j +λT sx = 0, (31)
Mob jÿob j +λT sy = 0, (32)

Iob jθ̈ob j + A +B−λT sθ = 0, (33)

where A,B,sx,sy,sθ correspond to the following equations:

A =
2πE

3

{
d3

n1S(θ1 −θob j)
C3(θ1 −θob j)

− d3
n2S(θ2 + θob j)
C3(θ2 + θob j)

}
,

(34)

B = πE

{
−d2

n1dt1

C2(θ1 −θob j)
+

d2
n2dt2

C2(θ2 + θob j)

}
, (35)

sx = [Cθob j,−Cθob j,Sθob j,Sθob j]T , (36)

sy = [Sθob j,−Sθob j,−Cθob j,−Cθob j]T , (37)

sθ = [Ac1,Ac2,Ec1,Ec2]T . (38)

VI. SIMULATION

In this paper, we clarify that the stable grasping and
manipulation using the soft-fingered hand can consistently be
achieved steadily. In what follows, we consider an example
motion of the hand, and simulate the dynamic behavior of the
grasped object expressed as Eqs.(31), (32), and (33) during
the given manipulating motion.

Center of Gravity

(a) initial state (b) operation 5

Fig. 4. Snapshots on simulation

TABLE I
SIMULATION PARAMETERS

Parameters Values
Rungekutta sampling time 0.1 msec

α 20000
β 10000

P-Gain : KP 300
D-Gain : KD 14
I-Gain : KI 0.1

Viscosity for dni : cn 300 Ns/m
Viscosity for dti : ct 300 Ns/m

A. Example Motion

The example motion of the fingers, which is dealt with in
this study, is as follows:

1. Initial state: Both fingers grasp an object in parallel
(Fig.4-(a))

2. Operation 1: (θ d
1 ,θ d

2 ) = (6 deg,6 deg)
3. Operation 2: (θ d

1 ,θ d
2 ) = (20 deg,−10 deg)

4. Operation 3: (θ d
1 ,θ d

2 ) = (−2 deg,13 deg)
5. Operation 4: (θ d

1 ,θ d
2 ) = (−10 deg,20 deg)

6. Operation 5: (θ d
1 ,θ d

2 ) = (−7 deg,17 deg)(Fig.4-(b))
7. Operation 6: (θ d

1 ,θ d
2 ) = (17 deg,−7 deg)

8. Operation 7: (θ d
1 ,θ d

2 ) = (−15 deg,25 deg)
9. Operation 8: (θ d

1 ,θ d
2 ) = (5 deg,5 deg)

As shown in Fig.4-(a), the fingers are positioned in the
initial state so that geometric point-contact between the
object and soft fingers is maintained. After the operation 1,
we perform a feedback control with respect to the rotational
angle θi according to the above desired angle of the finger.
A PID control law is applied to the present system, and it is
described as

uINi = −KP(θi −θ d
i )−KDθ̇i −KI

∫ t

0
(θi −θ d

i )dτ. (39)

In this system, we do not consider any disturbance, and also
set that the external force is zero in Eq.(24) such that fext =
0. We input Eq.(39) into uIN expressed in Eq.(24) as a torque
command. Parameters in the numerical analysis are given
in Table I. Also, Mechanical parameters used for the two-
fingered hand are given in Table II.

B. Results

1) Object Motion: Fig.5-(a) and (b) show the results of
trajectory of both fingers, and Fig.5-(c), (d), and (e) show
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TABLE II
SYSTEM PARAMETERS

Parameters Values
L 76.2 mm

2Wfi 97 mm
a 20 mm

Wob j 49 mm
Mob j 0.3 kg

Iob j ,I1,I2 125 kg·mm2

df i 4 mm
Young’s modulus : E 0.232 MPa
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Fig. 5. Simulation results of object position and orientation

the object position and orientation with respect to time,
respectively. As shown in all the figures in Fig.5, the resultant
force and moment induced by the elastic deformation of the
soft fingers consistently keep the manipulating motion stable.
In other words, we can find that the position and orientation
converge to a certain state determined by the force-moment
equilibrium on the soft fingertips. In addition, we evaluate
whether the CSM containing both constraints works well in
the numerical analysis. That is, we verify that each constraint
equation expressed as Eqs.(9) and (12) converges to zero
during the computation. Fig.6-(a) and (b) show the error
value of normal constraint on the i-th fingertip, and Fig.6-(c)
and (d) show that of tangential constraint.

In the result of holonomic constraint CH
i , we find that the

numerical order plotted on y-axis becomes approximately
10−8, and as a result, Eq.(9) is satisfied in the numerical
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Fig. 6. Convergence of four constraints

computation. In the case of nonholonomic constraint, we
know that the value on each switching point of the individual
operation relatively increases at one point. This results from
the fact that the time derivative of rotational angle θ̇i becomes
substantially large value in the simulation due to the step
inputs in all operations, as shown in Fig.5-(a) and (b). At the
same time, the numerical order along y-axis exhibits 10−6

except the switching points. As a result, we can conclude that
the CSM including holonomic and nonholonomic constraints
works well in the numerical simulation.

2) Robustness for Disturbances: We input three sorts of
disturbances represented as Eqs. (40), (41), and (42) to the
grasped object when the desired angle of each finger is given
as θ d

1 = θ d
2 = 6 deg, θ d

1 = θ d
2 = 3 deg, and θ d

1 = θ d
2 = 2 deg,

respectively.

(Fdst
x ,Fdst

y ,Mdst ) = (130 N,130 N,5 Nm), (40)

(Fdst
x ,Fdst

y ,Mdst ) = δ (t) · (0.9 N,0,0.327 Nm), (41)

(Fdst
x ,Fdst

y ,Mdst ) = δ (t) · (0.3 N,0,0.109 Nm). (42)

Eq. (40) is given as a step disturbance and Eqs. (41) and (42)
are given as an impulse disturbance, and these are imposed
to the object after operation 1 indicated in Fig.5-(a).

As shown in Fig.7-(a) and (b), we first find that the both
fingers (θ1,θ2) stably converge to the corresponding desired
angles due to the PID control law, which is represented in Eq.
(39), in spite of the large disturbances. Additionally, Fig.7-(c)
and (d) show that the response of (iii) oscillates more largely
than that of (ii). It is because that the handling motion of (iii)
corresponds to light grasping due to θ d

1 = θ d
2 = 3 deg, but

the handling motion of (ii) becomes strong grasping due to
θ d

1 = θ d
2 = 6 deg. This phenomenon can easily be seen in

human finger’s manipulation.
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Fig. 7. Responses for disturbances: (i) Eq. (40) step response in θ d
1 =

θ d
2 = 6 deg, (ii) Eq. (41) impulse response in θ d

1 = θ d
2 = 6 deg, (iii) Eq.

(41) impulse response in θ d
1 = θ d

2 = 3 deg, (iv) Eq. (42) impulse response
in θ d

1 = θ d
2 = 2 deg.

VII. CONCLUDING REMARKS

In this study, we have first formulated a two-dimensional
fingertip model that contains the compression and bending
motion simultaneously. Also we have simulated the dynamic
behavior of a parallel-rigid object grasped by a minimum
dof soft-fingered hand. In this process, we have applied an
extended CSM that includes holonomic and nonholonomic
constraints induced by the soft-fingered manipulation.

This study indicates that the soft-fingered manipulation is
able to simply achieve secure grasping and robust manipu-
lation even when we actuate two fingers freely without any
object information, which is called ”Blind Manipulation”.
Note that the concept of Blind manipulation using the soft
fingers needs to be distinguished from that of Blind Grasping
first mentioned in related works [8], [9]. The cause of the
problem is that any force feedforward term is not required for
the stable grasping in the soft-fingered handling. In addition
any feedback term is not necessary for robust manipulation,
which is verified in Eq.(39), while the both control inputs are
absolutely imperative in the secure handling discussed in the
conventional study [10]. We have clarified that the flexibility
of soft fingertips greatly contributes to stable grasping and
manipulation, and conclude that the LMEE [1], [2] plays an

important role in robust soft-fingered manipulation.

APPENDIX I
EQUATIONS OF MOTION WITH RESPECT TO θi

AND (dni,dti)
Developing Eq.(18) as well as Eqs.(31), (32), and (33),

the equations of motion with respect to θi and (dni,dti) are
described using Eqs.(27) and (29) as follows:

Iiθ̈i −
2πEd3

niS
{

θi +(−1)iθob j
}

3C3 {
θi +(−1)iθob j

}
+

πEd2
nidti

C2 {
θi +(−1)iθob j

} −λH
i Bci −λ N

i Fci

−MigLsinθi = uINi, (43)

Mob jd̈ni +
πEd2

ni

C2 {
θi +(−1)iθob j

}
+2πEdnidti tan

{
θi +(−1)iθob j

}
+πEd2

ti −λH
i + cnḋni = 0, (44)

Mob jd̈ti + πEd2
ni tan

{
θi +(−1)iθob j

}
+2πEdnidti −λN

i + ct ḋti = 0, (45)

where cn and ct denote the coefficient of viscosity of the
soft fingertip along the normal and tangential directions to
the object surface, as shown in Table II. By substituting the
viscosity into Eqs.(44) and (45), a Voigt model associated
with fingertip displacements (dni,dti) is formed.
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