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Abstract— Motion capture systems are used to obtain motion
data such that humanoid robots or computer graphics (CG)
characters can behave naturally. However, it has proven to
be hard not only to modify the capture data without losing
its reality but also to search for the required capture data in
a lot of capture data. In this paper, we provide a solution to
these problems based on our previous work on symbolization of
motion patterns for developing humanoid intelligence. Similar
motion sequences in the database are abstracted as a symbol,
which will be applied to searching motion patterns in the
database similar to a given motion. This paper also introduces
a method for building a stochastic symbol-word mapping model
utilizing the word labels provided by the operator during
motion capture sessions. This model converts a input sequence
of words into a sequence of symbols, and then allows the capture
database both to be searched for capture data corresponding
to the input (a sequence of words) and to provide the users
with new motion data generated by the symbols. Finally, we
apply analogy of symbols to establishing the database in order
to provide an appropriate motion data in response to an
unsupervised sequence of words and then demonstrate the
validity of analogy theory.

I. INTRODUCTION

In the fields of animation or robotics, CG characters or
humanoid robots are required to perform human-like motion.
Creating realistic motions is still a challenging task. One
common solution to this problem is the use of motion capture
system [1]-[3]. Although the motion capture system is a
reliable tool to obtain realistic human motion, it is difficult
to modify motion capture data. Moreover the capture data
are difficult to search in their archives, because the search
depends on only the recording date labels or motion pattern
labels given by the designer. The difficulty of modification
and search limits the reuse of motion capture.

As a tool for editing motion capture data, Motion Graph is
a notable research topic. The motion graph finds the motion
capture data that can be used in transition periods [4]-[7].
Witkin [8] et al. present an approach to motion generation
by using a capture data as motion seed. The Witkin’s method
called “motion-warping” provides realistic motion patterns.
This method depends on motion interpolation with time
constraints and space constraints of key frames. Pullen et al.
[9] utilize motion capture data to make a motion pattern from
key frames look realistic. In this method, motion patterns
based on key frames and motion capture data are segmented
by detecting frames of zero speed. The segmented motion
capture data are mixed with segmented motion patterns

based on key frames, where segmented motion capture data
are improving the quality of the synthesized motions. In
addition to research for reusing capture data, Ren et al.
[10] developed a method for quantifying human-likeliness of
motion patterns synthesized from motion capture data. Thus
various approaches to motion generation by using motion
capture data have been presented.

The above survey of previous work indicates that it would
be useful if a motion capture database is capable of searching
and synthesizing desired motion patterns with simple input.
We have developed mathematical methods for symboliza-
tion and classification of motion patterns by using Hidden
Markov Models (HMMs) [13][14]. Each HMM abstracts
several motion patterns that are similar to one another, and
forms a proto symbol. We apply these techniques to establish
a structure in the motion capture database (Fig.1). We first
present a search system for the desired capture data. The
database includes motion capture data being labelled auto-
matically by the proto symbols. We then propose to introduce
another structure into the database. It is common that a
motion capture data is accompanied by a description or a
series of keywords about it. We propose to use them as labels
and form additional structure to the database. The structure
associating proto symbol labels with the descriptions or
keywords also provides a useful interface when we search
a motion data.

II. AUTOMATIC LABELLING MOTION CAPTURE DATA
WITH PROTO SYMBOLS

A. Search for Motion Capture Data Based on Proto Symbol
Labels

We propose a new approach to search for the desired
motion capture data based on symbol labels. We first describe
how to construct the capture database. Proto symbols emerge
through automatic motion segmentation and competitive
learning [15]. Following the acquisition of proto symbols,
motion capture data is labeled. The i-th sequence of motion
capture data O(i) is segmented by the segmentation strategy
automatically. The capture data segment o(i)[k] is obtained.
Each capture data segment is recognized by proto symbols.
Let us denote the motion recognition result for each capture
data segment o(i)[k] as the proto symbol λ

(i)
R [k], which out-

puts the largest likelihood against the capture data segment
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Fig. 1. The motion database includes captured data, HMMs and word
labels. Each HMM (proto symbol) abstracts several motion patterns. the
word labels are given to capture data manually. The stochastic connection
between the symbols and word labels allows the easy search of capture data
in a lot of data.

o(i)[k].

O(i) =
{

o(i)[1], o(i)[2], · · · , o(i)[l]
}

(1)

Λ(i) =
{

λ
(i)
R [1], λ(i)

R [2], · · · , λ(i)
R [l]

}
(2)

λ
(i)
R [k] = arg max

λj

P (o(i)[k] | λj) (3)

Motion segmentation and motion recognition allow the
capture data O(i) to be transformed to a sequence of proto
symbols Λ(i). This sequence is also stored with the capture
data in the database.

The database can find capture data similar to the de-
sired motion patterns. The desired sample data Ô can be
converted to a specified sequence of proto symbols Λ̂ ={

λ̂[1], λ̂[2], · · ·
}

. The capture data Ocandidate whose se-

quence of symbol labels includes the symbolic sequence Λ̂ is
detected, since the selected capture data ought to be similar
to the desired motion. In this way, capture data similar to the
desired motion can be searched. This approach enables the
users to obtain motion capture data similar to the desired
one. The detected capture data may have different word-
labels from the input one. It means that the search does not
rely only on manual labelling of motion patterns, and that
it implements the search for capture data based only on the
similarity between the capture data and the sample data Ô.

III. DATABASE WITH WORD-LABELS

A. Symbols-Words Model

In the previous section, users input a sample motion
to find desired capture data. However the users do not
necessarily have a sample motion. Therefore we propose a
new strategy, where the database can be searched for capture
data corresponding to the input of a sequence of word-labels.
This provides the users with a simple interface.

We next describe a symbols-words model (Fig.2). The
symbols-words model represents a stochastic mapping be-
tween a proto symbol and word-label. The designer subjec-
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Fig. 2. Triadic relations among motion data, word labels and proto symbols.
The parameters of the symbol-word model can be estimated such that
mappings between symbols and word labels are optimized

tively segments the motion capture data O(i) and gives a se-
quence of word-labels Ω(i) =

{
ω(i)[1], ω(i)[2], · · · , ω(i)[m]

}
to the data. The capture data is also converted to a sequence
of symbols as shown in equation 3. Note that segmentation
by the designer is different from the automatic segmenta-
tion method. This means that the number of capture data
segments generated by the designer is not always equal to
the number generated by the automatic segmentation method
(l 6= m). The stochastic mapping between a sequence of
proto symbols Λ and a sequence of word-labels Ω are
calculated by the IBM translation model [11]. Five IBM
translation models are presented. These models are num-
bered in order of increasing complexity. In this paper, we
adopt the second model. This model consists of variables
for translation probabilities and alignment probabilities. The
translation probability t(f |e) denotes the probability that the
word e is translated to into the word f . The alignment
probability a(i|j, m, l) denotes the probability that position
i in the source sentence e can align to position j in the
target sentence f , where l and m are the length of the source
sentence and the target sentence respectively. The translation
probability t(ω|λ) is the probability that the symbol λ is
associated with the word ω. Let the translation probability
be the association probability. The symbols-words model is
optimized such that the likelihood Ψ that a sequence of
symbols Λ(i) generates a sequence of words Ω(i) becomes
the largest

Ψ =
∑

O(i)

P (Ω(i)|Λ(i)) (4)

where Λ(i) and Ω(i) expresses the motion capture data
O(i) symbolically and linguistically. The optimum values can
be computed by the EM algorithm.
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Fig. 3. Symbol emergence is represented by a bigram model.
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Fig. 4. HMMs is connected to other HMMs by assuming that transition
probability from an end node in a precedent HMM to first node in the
following HMM has the value of 1. The cofigured HMM generates motion
data consisting of some motion patterns stochastically.

B. Search for motion capture data based on symbols-words
model

We describe the mapping from a sequence of words, Ω,
to a sequence of symbols Λ̂, where Ω generates Λ̂ with the
largest likelihood. However, direct computing for a sequence
of symbols provides us with a sequence of symbols in
an inadequate order, because the symbols-words model is
insufficient in terms of symbolic order. We therefore estab-
lish a symbols-emergence model which learns the symbolic
transitions stochastically. We adopt the N-gram model based
on the assumption that the current event depends on only
N − 1 previous events. Specifically in this work we use
bigram (N = 2) as illustrated in Fig.3. The probability that a
sequence of symbols Λ = {λ[1], λ[2], · · · , λ[l]} emerges can
be computed by equation 5.

P (Λ) =
l∏

i=2

P (λ[i]|λ[i− 1]) (5)

The conditional probability on the right hand side of equation
(5), P (λ[i − 1]|λ[i]), can be optimized by using relative
frequency as follows.

P (λ[i]|λ[i− 1]) =
C(λ[i− 1], λ[i])

C(λ[i− 1])
(6)

where C(∗) denotes the frequency for event ∗.
The symbols-words model and symbols-emergence model

are applied to mapping from a sequence of words Ω to a
sequence of symbols Λ̂ as indicated in equation 7.

Λ̂ = arg max
Λ

P (Λ|Ω)

= arg max
Λ

P (Λ)P (Ω|Λ) (7)

The symbols-emergence model allows us to pick up a
sequence of symbols in an appropriate order.

We describe how a sequence of symbols Λ̂ is calculated
in equation 7. The calculation employs A∗ search method
[12]. A∗ search method is one of the most efficient graph
search algorithm in computer science. The graph search has
a tree structure of nodes and edges, and finds a path from
a given initial node to a given goal node. The A∗ search
method employs a heuristic estimation that ranks each node
by estimating the best path that goes through that node. The
node with the largest heuristic estimate is visited first such
that the best path is found in a short time.

The sequence of symbols calculated by equation 7 al-
lows the search of capture data as described in the prece-
dent section. Moreover, the sequence of symbols Λ̂ ={

λ̂1, λ̂2, · · · , λ̂l

}
can generate motion data as illustrated

by Fig.4. Each symbol is represented by a left-to-right
HMM. The symbols in Λ̂ are connected in series by setting
the transition probability from the node at the end in the
precedent HMM λi to the node at the head in the following
HMM λi+1 to 1. This connection constructs one left-to-
right HMM. Motion can then be generated by this HMM
stochastically [16].

C. Motion Generation Using Analogy from Clustering Proto
Symbols

The symbols-words model and the symbols-emergence
model described in the previous subsections represent the
mapping between symbols and words, and transition of
symbols in supervised data stochastically, which means that
this strategy may not be useful for unlearned sequences of
words or symbols. This problem is often called poverty of the
stimulus. However human can adapt to unknown situations
by using some knowledge acquired in experienced situations
similar to the current one. This estimation based on similarity
is analogy. We think that analogy is one of the solutions
to this problem. Therefore, we propose a new symbols-
emergence model that represents the stochastic transition
among clusters of symbols. The similarities among symbols
which belong to the same cluster can supports the database’s
adaptability to unknown input patterns. We call this strategy
analogy in the viewpoint that the database can use knowledge
about similarity among symbols.

The clustering for proto symbols employs the proto
symbol space and the mixture probability density function
(Fig.5). The proto symbol space can be constructed by
using multidimensional scaling based on Kullback Leibler
information which defines the dissimilarity among HMMs.
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Fig. 5. Symbols are located in a multidimensional space such that the
ditance between the symbols in the space become as close as possible to
their dissimilarities. The symbols are classified based on the their locations.
Each cluster is assumed to correspond to a node in the symbol emergence
model (bigram). Even if two symbols λa and λb do not have relation of
emergence with each other, they has strong relation when λ′a and λ′b have
emergent correlation, where λ′a is one of the symbols belonging to the same
cluster as λa, and λ′b belong to the cluster of λb.

The mixture probability density function approximates the
distribution of proto symbols in the proto symbol space. Each
probability density function is defined as a cluster. From clus-
ter analysis, transition probability among these clusters can
be computed. We can then obtain a new symbols-emergence
model from assumption that each cluster corresponds to each
node in the bigram illustrated in Fig.3.

P (Λ) =
l∏

i=1

P (λ[i] | λ[i− 1]) (8)

P (λ[i] | λ[i− 1]) =
C

(S(λ[i− 1]),S(λ[i])
)

C
(S (λ[i− 1])

) (9)

S(λ) indicates the cluster where the proto symbol λ is cate-
gorized. In the symbol-emergence model without clustering,
the transition probability from the proto symbol λi to λj

becomes zero if the symbolic transitional patterns that the
proto symbol λj follows the proto symbol λi are not included
in the supervised data. However in this model, this transition
probability can have a nonzero value if a proto symbol in the
cluster S(λi) precedes a proto symbol in the cluster S(λj)
in the learning phase. The information of proto symbols
near to the proto symbols λi and λj in the space makes
it possible to generate motion data appropriate for unlearned
input patterns.

IV. EXPERIMENT FOR VALIDITY OF MOTION CAPTURE
DATABASE

A. Search for Capture Data based on Symbol Labels

We performed some experiments to verify the validity
of the motion capture database. We are given 537 motion
capture data related to baseball. The total time period of the
capture data is 4088 seconds. The original capture data con-
sists of a sequence of Cartesian coordinates for 34 markers
attached to some performers. Inverse kinematics using 20
DOF human character model converts original capture data
into 30 dimensional data of the two horizontal velocities,
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Fig. 8. Likelihood over the iterative computation for optimizing parameters
of symbols-words model.

height, roll, pitch, and yaw velocity of the body, Cartesian
coordinates of both elbow joints, knee joints, wrists joints
and ankle joints in the local coordinate system of the body.
The capture sampling time is 30 milliseconds. Each sequence
of 30 dimensional data

{
O(i) : i = 1, 2, 3, · · · , 537

}
is

stored in the database.
The 99 proto symbols {λj : j = 1, 2, 3, · · · , 99} are ac-

quired automatically through observing the capture data.
Using these proto symbols, each capture data O(i) is given a
sequence of symbols. The sequence of symbols is also stored
as symbol label for each capture data in the database. The
database is searched for capture data similar to the desired
motion based on the symbol label. For example, we searched
for motion capture data using an input of motion data
corresponding to “dash”. In this experiment, the database
picked up several capture data whose symbol labels include
the proto symbol signifying motion data of “dash”. Fig.6
shows two examples of capture data output by the database.
Each capture data partially includes motion pattern of “dash”.
Therefore we can confirm that the database can find various
capture data similar to the desired motion through matching
proto symbols of the desired motion with the symbol label
of each capture data in the database.

B. Search for Capture Data and Motion Generation based
on Symbols-Words Model

Each capture data Oi is given a sequence of words Ω(i)

manually. For example, capture data for a lefty’s swinging
and then running is labeled with “left swing run”. Note that
64 words {ωk : k = 1, 2, 3, · · · , 64} are required to express
all the capture data. The symbol labels for the capture data
are the same as the previous subsection. We calculate the
stochastic mapping between a sequence of symbols Λ(i)

and a sequence of words Ω(i) for capture data O(i). Fig.8
indicates the likelihood computed by equation 4 against times
of iterative estimation for parameters of the symbols-words
model. Note that the parameters are first optimized through
convergent calculations of 100 times, on the assumption that
the symbols-words models is the model 1. The parameters
are then estimated by using an optimization algorithm for the
model 2 in order to improve the accuracy of the optimization.
Fig.8 shows that the stochastic mapping between sequences
of symbols and words is optimized since the likelihood gets
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Fig. 6. Some captured data are detected based on symbol labels on the each captured data. Animations show two examples of captured data detected
from an input “dash” motion data.

Fig. 7. Some captured data are picked out from input of sequences of words. Animations show two examples of captured data found from a sequence
of word labels “left swing run”

larger as the convergent calculation proceeds.
We perform an experiment by searching for capture data

from a sequence of words using the optimized symbols-
words model and symbols-emergence model. We input
“left swing run” to the database. Fig.7 shows two examples
of the detected capture data. The search based on a sequence
of symbols is the same as in the previous subsection. The
motion data on the left side of Fig.7is adequate for the input
“left swing run”. However the other capture data in Fig.7
reveals that the performer swings his bat and then walks.
We are sure that output data “walk” are different from the
input “run”. However these motion patterns are similar to
each other. We do not necessarily think that the database
makes mistakes in searching the capture data. The database
provides the users with capture data which can not be found
by conventional search methods such as “text matching”.
This experiment clarifies that we can easily find motion
capture data similar to desired one by using this database.

In addition to searching for the desired capture data, we
aim to construct a database which can generate new motion
data in response to an input of words. The same input
“left swing run” used in the search experiment was em-
ployed for the experiment, where the database yields motions
through a sequence of symbols from an input sequence of
words. Fig.9 shows the motion generated by the database
through sequences of symbols from sequences of words. It
demonstrates that the lefty swings the bat and then runs.
The snapshots on the right side in Fig.9 shows that a small
humanoid with 20 joints behaves using the generated motion
data as motion reference. The database can generate a new
motion suitable for the input of “left swing run”, which can
be used for CG characters or real humanoid robots. We verify
that the database can not only detect capture data similar to
the desired one but also generate appropriate motion data in
response to a sequence of words based on the symbols-words
model, symbols-emergence models.

C. Motion Generation Based on Symbolic Analogy

An experiment is conducted on the generation of new
motion in response to an unsupervised sequence of words by
applying cluster analysis of proto symbols to the symbols-
emergence model. We employed an input “run sliding
stand up dash” to the database. The supervised sequences
of words do not include the sequence “stand up dash” but
the sequence “stand up run”. However words “dash” and
“run” may signify motion patterns similar to each other.
If a new motion suitable for the input can be generated
by the database, estimation based on this similarity is a
solution to the problem of analogy. Therefore we used
this input as one of sequences including “stand up dash”.
Fig.10 shows motion generated by the database based on the
symbols-emergence model without or with clustering proto
symbols. Motion on the right side in Fig.10 represents that
the character swings, bends a little and then stands still. On
the other hand, the character runs, slides, stands up and then
tries to run on the right side in Fig.10. We can confirm
that the database with symbols-emergence model based on
clusters of symbols can generate motions in response to
unlearned sequences of words. The database processes the
estimation using similarities among proto symbols and we
believe this estimation can develop into analogy.

V. CONCLUSION

In this paper, we describe an application for the symbol-
ization of motion patterns, motion recognition and motion
generation through the symbols to establishing the motion
capture database.

The database stores the capture data, sequences of symbols
which can be automatically assigned to the capture data
through symbolization and classification of motion patterns,
and sequences of words which can be manually given to the
capture data. The database has two main functions, search for
motion capture data and generation of new motion data. The
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Fig. 9. A motion pattern is generated by a sequence of proto symbols corresponding to input words “left swing run” on the right animation. The left
figure indicates that the generated motion pattern can be used for a real humanoid’s behavior.

without using analogy using analogy

Fig. 10. Comparison between motion generation without analogy and analogical one. The right side shows the generated motion using symbol emergence
model without clustering the proto symbols. The left side shows the generated motion using symbol emergence model based on clusters of the proto
symbols.

search function provides capture data similar to the desired
sample motion data input by the user. The database also
allows the users to input a sequence of words corresponding
to their desired motion and then obtain the capture data
signified by the input. Additionally, the database can convert
a sequence of words into a sequence of symbols and generate
motion data based on these symbols. The symbolic operation
enables the capture data to be modified or edited. Finally, the
database with symbolic analogy can generate new motion
data which is not unsupervised. This addresses the problem
of “poverty of stimulus”. We conclude that symbolization
and classification of motion patterns can be an efficient
approach to construction of the motion capture database.
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