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Abstract— This paper demonstrates a method of increasing
the quality of weak classifiers in the boosting context by using
improved response modelling. The new method improves upon
the results of a recent response binning approach proposed by
Rasolzadeh et al. [1]. For experimental purposes the improved
method is applied to the familiar Haar features as used by Viola
and Jones in their face/pedestrian detection systems. However,
the methods benefits are general and therefore not restricted
to this particular feature type. Unlike many previous methods,
this method is suitable for modelling multi-modal responses
and is highly resistant to overfitting. It does this by adaptively
choosing suitable support regions around the values taken by
the standard response binning method. More accurate models
are produced, with particular improvement around the final
decision boundary. It is shown that the new method can be
trained with one tenth of the training data required to achieve
similar results on previous methods. This substantially lowers
the overall training time of the system. The method’s ability
to consistently produce better hypotheses over a variety of
pedestrian detection tasks is shown.

I. INTRODUCTION

This paper concerns itself with the problem of pedestrian

detection using an improved version of the well known

method of Viola and Jones [2]. The detector presented here

is for use aboard a moving smart car [3].

There are many new and successful visual pattern recog-

nition methods in the field of visual detection, e.g. [4], [2],

[5] and [6]. These offer a range of ubiquitous applications in

fields like surveillance [7], and pedestrian detection for smart

cars [3]. Previous work by Viola et. al outlined a successful

pedestrian detector [4] which relied on a static background.

Such cues are not suitable for use aboard a moving vehicle.

Our AdaBoost variant is built upon the advancements in Ra-

solzadeh et al. [1], including the response binning approach.

Specifically, our implementation includes the use of real-

valued weak classifiers [8] as seen in Viola and Jones [9] and

referred to there as the RealBoost algorithm. See Algorithm

1.

The aim of this work is to extract as much information

from the same weak classifiers without adding a significant

processing load to the final real-time system. Many of the

previous methods for forming hypothesis do not extract as

much information from the base features as is available.

By constructing improved models, and therefore improved

hypotheses, we are able to greatly improve the strength of

the final classifier.

trainClassifiers(X,Y, F ) :
X = {x1, x2, ..., xN}, the set of example windows

Y = {y1, y2, ..., yN}, yi ∈ −1, 1, are the corresponding

labels

F = {f1, f2, ..., fM}, the set of filters

D1(i) = 1/N
For t = 1, ..., T (or until the desired rate is met)

1) Train classifiers hj using distribution Dt. The classifier

takes on two possible values: h+ = 1
2 ln

(

W++

W+−

)

and

h− = 1
2 ln

(

W−+

W−−

)

for positive and negative examples

respectively. Wpq is the weight of the examples given

the label p which have true label q.

2) Select the classifier ht which minimises

Zt =

N
∑

i=1

Dt(i)exp(−yiht(xi))

3) Update distribution Dt+1(i) = Dt(i)exp(−yiht(xi))
Zt

The final strong classifier (cascade stage) is

H(x) = sign

(

T
∑

t=1

ht(x)

)

Alg. 1: The RealBoost version of classifier training and boosting.

II. REAL-VALUED ADABOOST WITH RESPONSE BINNING

Real-valued classification methods can be more suitable

than binary AdaBoost because they gain significant strength

by providing a useful confidence rating for each weak

hypothesis [10]. A confidence measure is attained by taking

the magnitude of the response to the weak hypothesis. This

is used to rank potential classifiers and assemble a strong

classifier. When classification speed is required one usually

builds a cascade of strong classifiers as shown in Figure

1. Classifiers later in the cascade often have more complex

features and are slower to evaluate.

A. Optimal thresholds and General classifiers

In a general classification task a Maximum A Posteriori

(MAP) rule, which seeks to minimise the error rate over the

training data, is often applied.
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Fig. 1. The cascade architecture. A series of image subwindows are passed
into the cascade for evaluation. Each strong classifier will either reject the
image as a negative sample or pass it onto the next classifier in the cascade.
The stages are trained using RealBoost and the outer threshold is adjusted
to the desired level for that stage.

Consider a multiclass ω1, ω2, ..., ωC classifier dividing the

feature space Ω into C separate regions R1, R2, ..., RC ,

where all points within Ri are labelled ωi and that

Ω ⊇
C
⋃

i=1

Ri.

The probability of error for the classifier is then given by:

P (error) =

C
∑

i=1

C
∑

j=1

j 6=i

P (x ∈ Ri, ωj) =

=
C
∑

i=1

C
∑

j=1

j 6=i

∫

Ri

P (ωj |x)p(x)dx

Since the total probability is
C
∑

i=1

C
∑

j=1

P (x ∈ Ri, ωj) = 1

we have that,

P (error) = 1 −

C
∑

i=1

∫

Ri

P (ωi|x)p(x)dx

For the two class problem, the error is minimised by

choosing x ∈ R1 when P (ω1|x) ≥ P (ω2|x) and vice versa.

However, it must be accepted that the gained values for

P (ω1|x) and P (ω2|x) are dependant upon the degree to

which the model represents the true relative probability of

the positive and negative classes given infinite knowledge.

A key issue is that many classifiers base their discriminative

decisions on oversimplified models of the training sets.

B. Single Threshold Discrimination

Classical implementations for boosting Viola-Jones fea-

tures, prior to [1] tended to choose a single threshold as the

decision boundary for the feature response. See Figure 2.

The boosting algorithm chooses features according to

this single threshold rule, which can fool an observer into

thinking that the method is selecting all of the most discrim-

inant features. Rasolzadeh et al. [1] notes statistical analysis

shows that more than 90% of features are non-discriminative

under single threshold discrimination. This is usually due to

multimodal distributions or overlapping modal peaks. See

Figure 3. While single thresholding sees these features as

non-discriminative they are often more discriminative given

a better model.

n pT

Negative Set

Positive Set

Fig. 2. Classical Single Threshold Hypotheses. This method performs well
when the positive and negative probability distributions are unimodal and
where modal peaks are separated by significant distance.This allows us to
divide the positive and negatives sets at some threshold T .

C. Parameterising the Gaussian case

Rasolzadeh et al. [1] propose two improved methods. The

first and simplest is to parameterise the Gaussian case and

the second is the response binning method, see Section II-D.

By assuming the distributions to be Gaussian, two improved

thresholds can be found. See Figure 3.

Fig. 3. By parameterising the two distributions with a Gaussian model, two
intersection points can be found which will represent the two thresholds.
This image is taken courtesy of [1]

The assumption that the distributions are Gaussian, while

not entirely valid, is a fairly good representation of the

distributions and does lead to far more accurate results.

However, for a truly accurate model of the positive and

negative distributions which allows us to construct the best

possible real-valued response, a non-parametric method such

as response binning is adequate.

D. Response Binning

In Rasolzadeh et al. [1] the discriminating strength of

a given hypothesis is improved using a response binning

method, hereafter referred to as the RB method. The RB

method models the positive and negative training sets more

accurately. It includes a suitable model which covers the

possibility that the positive and negative response distribu-

tions are multi-modal. However, the RB method is prone

to overfitting if too many bins are used and underfitting if

too few bins are used. Indeed, it is even possible that on
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some particularly ‘unfriendly’ response distributions that the

bins are underfitting at the modal peaks AND overfitting in

sparse regions of the distribution. Many methods from the

statistical toolbox can be used to overcome such problems,

however, the RB method is designed to cost little more than

the extremely fast method given in [4]. Thus, any solution

to the problem of overfitting and underfitting should avoid

slowing down the computation further.

In the RB method a model is constructed by summing

the weight of the positive and negative distributions in C
separate bins R1, R2, ..., RC . This is similar to constructing a

histogram of the distribution with C bins, however, instead of

summing the instances of training examples with a particular

response, we calculate the sum of the weight falling in a

given bin. The positive and negative weight distributions

H+(fi) and H−(fi) are computed for C bins and their

relative inequality is stored. This inequality of the histogram

bins makes up the final MAP rule for the feature.

MAP (fi) =

{

1 if H+(fi) > H−(fi)
−1 otherwise

(1)

A fast evaluation can then be made for MAPi(fi) for

any x. This new classifier seamlessly replaces the old one as

the new hypothesis. This method significantly improves the

quality of the final hypothesis and the robustness of the final

linear cascade.

Furthermore, this binary rule can then be expressed as a

confidence measure to be used with RealBoost , as noted

by Schapire&Singer [8]. As in Rasolzadeh et al. [1], W j
c is

defined as the sum of the weights of examples in class c that

end up in bin j when evaluated/mapped by features fm. This

gives us:

hm(j) =
1

2
log

(

W j
+(m)

W j
−(m)

)

(2)

III. ADAPTIVE SMOOTHING FOR RESPONSE BINS

Rasolzadeh includes some notes on choosing an appro-

priate number of bins for the hypothesis. It is noted that

choosing a large number of bins (≡ high resolution) leads

to a noisy distribution while fewer bins (≡ low resolution)

may lead to a less noisy distribution with a loss of accuracy.

This, however, does not give the complete picture.

For very large numbers of bins, e.g. the case where

the number of bins exceeds the training data, one finds

that most bins contain few training examples. In fact, for

many reasonable choices for C some sparse regions actually

contain no training examples at all. This means that the final

confidence measure, Equation 2, makes a decision based on

too few training examples for a statistically robust inference.

On the other hand, fewer response bins can lead to significant

underfitting. For example, near a sharp modal peak the

smoothing effect of using too few response bins can mean

that the peak is poorly modelled. See Figures 4 and 5.

The problem can be compounded as several weak classi-

fiers are placed together in a single strong classifier. Two

compounding effects have been identified which produce
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Fig. 4. When using 128 Bins the relative error over a population of 4000
samples is large over sparse regions of the distribution. This leads to a
poorly trained hypothesis for these sparsely trained regions.
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Fig. 5. When using 32 Bins the relative error over a population of 4000
samples is less significant in sparse regions of the distribution. This improves
accuracy in the sparse regions with a loss of resolution at the modal peaks.

poor weak classifiers when too few or too many response

bins are used.

Firstly, if few bins are used, resolution is lost around

the modal peaks and in the case of Haar features there

is often a sharp modal peak in the negative set around

zero. When the final confidence measure is calculated, using

Equation 2, the maximum confidence that an image is a

member of the negative set is, as expected, located around the

negative modal peak at zero. See Figure 6. When boosting is

performed in a linear cascade of strong classifiers one often

sets the thresholds so as to have low false negatives and

this shifts the decision boundary to the regions of greatest

confidence in a negative result. Thus, the decision boundary

is actually moved to the poorly modelled region of the

hypothesis.

Secondly, when too many bins are used, one poorly models

the sparse regions of the distribution. Initially this might
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Fig. 6. A discriminative feature response with 64 bins: The left graph
shows the positive and negative feature set distributions. The right graph
shows the real-valued confidence measure for the same feature. Note that
the positive and negative confidence is greatest furthest from the modal
peaks. This is due to the lack of training for these response bins.

be dismissed because the low number of training samples

implies that few real world images will exhibit that partic-

ular response. That is, one poorly models the “rare event”

regions of the distribution. However, as more and more weak

classifiers are added to a stage the compounded effect of

these poorly modelled regions grows in significance. Since

the final strong rule is given by H(x) = sign
(

∑T

t=1 ht(x)
)

,

it is clear that if any of the weak classifiers ht(x) contain an

extremely inaccurate confidence measure, for some x, then

the final classifier H(x) may also be inaccurate. Figure 7

shows the effect of using many bins on the positive and

negative distributions as well as the final hypothesis ht(x).
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Fig. 7. A discriminative feature response with 256 response bins: The left
graph shows the positive and negative feature set distributions. The right
graph shows the real valued confidence measure for the same feature. Note
how noisy the confidence measure becomes farther from the modal peaks.
This is particularly significant for this larger number of bins.

Given the problems detailed above, our aim is to solve

the problem of overfitting and adequately model the feature

response. It is also very important that any solution evaluates

quickly. This excludes a number of the classical response

modelling solutions provided by the statistical machine learn-

ing toolbox. For this reason, the solution suggested here uses

the same method of storing the response and similar means

of evaluating it as in Rasolzadeh et al. [1].

Smoother response distributions are acquired as follows:

Let W j
c (m) denote the sum of the weights of samples in

class c that fall in bin j for some feature fm.

W j
c (m) =

∑

fm(xi)∈binj
yi=c

ωi

The weights ωi are used instead of summing the training

samples in keeping with the standard adaptive boosting

method in the AdaBoost algorithm. This method prioritises
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Fig. 8. A smoothed feature response with 256 response bins: The left graph
shows the positive and negative feature set distributions. The right graph
shows the real valued confidence measure for the same feature. Compare
the confidence noise levels to those found in Figure 7.

the importance of some harder training examples by as-

signing it a weight as the algorithm adds classifiers into a

stage. More information on the specific use of the weights

can be found in [8] and [1]. If any weight W j
c is found to

contain insufficient weight for the bin to hold a meaningful

representation of the true distribution, then the value of W j
c

is altered to contain an average of the weights ωi in the

neighbourhood N of minimum radius r centred at bin j such

that the new W j
c is greater than some threshold T .

W ∗j
c (m) =

∑

fm(xi)∈N

yi=c

ωi

As formulated above, this method would be unreasonably

slow. This is because it requires examination of all the

training responses fm(xi) for each bin requiring smoothing

and for a number of possible radii, until some suitable r can

be found. Instead, this method tests only the set of radii

r, such that the radius exactly includes bin j, and some

integer n of its neighbouring bins on each side. Once a

radius containing enough weight is found, the weight of

the outermost two bins of the neighbourhood is scaled by

a scaling factor α until W ∗j
c = T .

W ∗j
c =

r−1
∑

k=1−r

W j+k
c + α(wj−r

c + wj+r
c )

This method quickly finds a support region around the bin

in question which allows a meaningful hypothesis ht(x) to

be constructed for all bin ranges Ri. An appropriate threshold

T can be found empirically. For our pedestrian training set it

has been found that a threshold T requiring about 1% of the

total weight is appropriate for a training set of 10000 positive

and 10000 negative samples. This is roughly equivalent to

requiring at least 200 samples in any support region.

This process requires a small amount of extra work to

be done during the training of a classifier. It stores the

final hypothesis in the same format as the RB method and

can therefore be evaluated in similar fashion at run-time.

However, in the interest of increasing our accuracy when

referencing the hypothesis, the new method also applies

linear interpolation to the final hypothesis. Doing this re-

quires memory references of two adjacent memory addresses

instead of just one. However, the additional cost of referring

to the second value in memory is usually minor, making the

new method almost as fast as the RB method.
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IV. EXPERIMENTAL EVALUATION

While the method presented here will provide benefits

to almost any classification task using Haar-like features

and a variety of other features, we evaluate our method on

a pedestrian training set. Pedestrian detection is generally

considered harder than front-on face detection or road sign

detection. This is because of the variety of poses exhibited

by pedestrians and the tendency for clothes and movement

to morph appearance. Such a dynamic training task is ideal

for testing the new method since it is aimed at learning

hypotheses which are as general as possible given any

emerging patterns. For example, on the task of front-on face

detection, positive and negative distributions tend to separate

clearly which allows methods such as single thresholding

to perform well. However, for pedestrians the separation of

positive and negative sets is often far more subtle.

These results are compared to those found using the RB

method in order to show the effect of smoothing when

compared to the unsmoothed method. They are not compared

to the naive single threshold method as it has already been

shown to perform worse [1]. In order to gain the most

thorough insight possible these results are compared to

Rasolzadeh’s RB method over a number of different training

tasks. Note, that the underlying system being used is the

same system as that used by Rasolzadeh et al, with a few

minor improvements. A comparison to the result shown in [1]

is not shown as some improvements to the training data and

RealBoost have since been made. Instead, the best possible

RB method results are compared to the Smoothed Response

Binning results using the same experimental system.

A. Choosing a Suitable Number of Response Bins

Given the tradeoff between high and low resolution re-

sponse distributions, it is worth comparing the effect of

various resolutions on a large training task. This first set

of experiments was performed for 32, 48, 64, 128, 256 and

512 bins for each method. The training set was made up

of 8000 positive and 8000 negative samples. Validation is

performed using 2000 positive and 2000 negative unused

samples. Classification is performed by a classifier cascade

with 6 stages. The stages were comprised of 6, 10, 12, 14, 18

and 40 features respectively. It is impractical to show all the

results for each of the 12 experiments. Shown are a selection

of the most relevant results, see Figure 9.

For this experiment the RB method peaks in accuracy at

64 bins, while the new method continues to improve with

increasing resolution. However, the benefit of using higher

resolutions becomes insignificant after 256 bins. In many

cases the error rate is halved by using the smoothed method.

This is a very significant reduction in error because the error

rates are already quite low.

It was also found that the smoothed response binning

method does not overtrain as quickly as the original method.

This means that many more features can be added to a stage

before the RealBoost algorithm suffers starvation. To test

this, a large stage of 120 features was constructed with the

same training set and resolutions as above. See Figure 10.
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Fig. 9. The ROC-curves for a 6 stage classifier. The smoothed response
binning and simple response binning methods are examined for different
response bin resolutions. The superiority of using smoothed hypotheses is
clear. While the classifier using 64 bins is fairly successful the detrimental
effect of increasing or decreasing the resolution is clearly shown.
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Fig. 10. Estimated Errors for new features as they are added to a large
120 feature stage. The error estimates for smoothed hypotheses are higher
because the hypotheses are not overfitting. For the unsmoothed response
binning method the hypotheses overfit, which leads to overly optimistic
error estimates. Where the error reaches zero the RealBoost algorithm is
basically starved and is gaining very little as additional features are added.

Here we see that the new method continues to improve

even after the addition of 120 features while the RB method

has already become almost overtrained.

B. Training the Smoothed Response Method

The original RB method requires that sufficient data

is available to effectively train each bin. Even on 16000

samples (8000 positive and 8000 negative) the method still

overfits. This is not the case for the new Smoothed Response

Binning method, which leads to a dramatic decrease in

the amount of training data required to create an accurate

hypothesis. To show this, we trained single stage classifiers

with 120 features on training sets of 8000, 4000, 1600 and

800 positive and negative samples. See Figure 11.

As is shown in Figure 11, the newer method can produce

better hypotheses on one tenth of the training data. This

leads to a significant decrease in the final training time of
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the system.

V. CONCLUSIONS AND FUTURE WORKS

An improved method for modelling the training responses

of weak classifiers for boosting was shown using a smoothed

response binning method. This method has been shown to

outperform the previous simple response binning method and

in turn the classical single threshold approach. It directly

answers the problems found in simple response binning

and does not overfit as easily. The new hypotheses can be

evaluated with only a minimal additional computational cost

when compared to the previous method.

The ability of the new method to produce accurate models

on less training data is also shown. The new Response

Binning Method can be trained on less than one tenth of

the data while still achieving the accuracy of the previous

method. Thus the new system can be trained in substantially

less time.

The new smoothed response binning method seamlessly

replaces other real-valued confidence measures that may be

used in the RealBoost algorithm and the new method could

in principle be used to improve any type of weak classifier.

A. Future Works

Improving the models behind a hypothesis can be done

in several ways. Other methods may lead to an even more

accurate model or a method which is faster to evaluate. In

particular, a sum of Gaussians or otherwise parameterised

model may succeed in modelling the distribution more ac-

curately. The affect of increased model accuracy has already

been explored through the use of higher numbers of bins

and thus results are likely to be similar. However, evaluation

speed may be improved using different models on certain

architectures, e.g. FPGA implementation.

Variations of this method are likely to improve the quality

of hypotheses for multidimensional features. This includes

multidimensional features which are constructed from several

other simple features.

A number of other features for recognition, such as

Histograms of Oriented Gradients [11], suffer from the same

over training in sparse regions of their distributions. The

benefits of a similar method in such cases merits further

study.

REFERENCES

[1] B. Rasolzadeh, L. Petersson, and N. Pettersson, “Response binning:
Improved weak classifiers for boosting,” IEEE Intelligent Vehicle

Symposium, 2006.
[2] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” Computer Vision and Pattern Recognition, vol. 01,
p. 511, 2001.

[3] L. Petersson, L. Fletcher, A. Zelinsky, N. Barnes, and F. Arnell,
“Towards Safer Roads by Integration of Road Scene Monitoring and
Vehicle Control,” The International Journal of Robotics Research,
vol. 25, no. 1, pp. 53–72, 2006.

[4] P. Viola, M. J. Jones, and D. Snow, “Detecting pedestrians using
patterns of motion and appearance,” iccv, vol. 02, p. 734, 2003.

[5] P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection,” In Proc. ICCV, pp. 555-562, 1997.

[6] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based
face detection,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 20, no. 1, pp. 23–38, 1998.
[7] E. Andrade, S. Blunsden, and R. Fisher, “Characterisation of optical

flow anomalies in pedestrian traffic,” Imaging for Crime Detection and

Prevention, pp. 73–78, 2005.
[8] R. E. Schapire and Y. Singer, “Improved boosting using confidence-

rated predictions,” Machine Learning, vol. 37, no. 3, pp. 297–336,
1999.

[9] P. Viola and M. Jones, “Fast and robust classification using asymmetric
adaboost and a detector cascade,” Neural Information Processing

Systems, 2001.
[10] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regres-

sion: a statistical view of boosting,” Technical report, Department of

Statistics, Sequoia Hall, Stanford Univerity, 1998.
[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” Computer Vision and Pattern Recognition, vol. 01, pp. 886–
893, 2005.

FrB9.5

3804


