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Abstract— This paper considers a multiperiod newsvendor
problem with partially observed supply capacity information
that evolves as a Markovian process. The supply capacity is
fully observed by the buyer when the capacity is smaller than
the buyer’s ordering quantity. Otherwise, the buyer knows that
the current-period supply capacity is greater than its ordering
quantity. Based on these two observations, the buyer updates the
future supply-capacity forecasting accordingly. With a dynamic
programming formulation, we prove the existence of a unique
optimal ordering policy.

I. INTRODUCTION

Inventory control is one of the most studied topics in
supply-chain management. In the classic newsvendor supply-
chain model, the buyer satisfies its customers’ requests by
placing orders with its suppliers at the beginning of each
selling season. The fundamental task of the buyer is to
maintain a high customer-service rate without holding too
many leftover inventories. Because neither the demand nor
the supply capacities are always known to the buyer when
orders are placed, both demand and supply capacity infor-
mation is fundamental for any inventory-control decisions.
Most studies in the supply-chain management literature
assume that the supply capacity is either known to the
buyer, or unlimited. Few of studies consider supply-capacity
information uncertainty and its influence to the inventory
policy. Yet the supply capacity is always unknown or only
partially observable in practice. In such an environment,
most well-known results may not hold. This paper aims to
explore the structural properties of an inventory system with
partially observed supply capacity information and to find if
an optimal policy exists that can solve the above problem.

A. The Importance of Modeling the Partially Observed Ca-
pacity

The study of inventory systems with partially observed
supply capacity information is important in many real-life
cases. We shall introduce some cases in a supply chain in
which capacities can only be partially observed.

Suppliers’ capacity uncertainties: Unexpected machine
breakdowns and the resulting unexpected repairs lead to
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lowered production capacity. Moreover, uncertain repairing
time affects the availability of certain facilities: the repair
is not planned, or even planned, repair time is uncertain.
These stochastic events lead to an uncertain supply capacity.
Further, product quality can also be uncertain. When product
quality is low or the rate of defects is high, the actual
available products are unknown. Since these uncertainties
cannot be predicted, the supply capacity is not observed
directly.

Buyers’ competition: A supplier serves multiple cus-
tomers. When capacity is tight, the supplier reserves its
capacity for individual customers. It is known in practice
as the capacity allocation, or rationing. The most popular
capacity allocation rules include the proportional capacity
allocation policy (Lee, Padmanabhan and Whang [13]) and
the turn-and-earn policy (Cachon and Lariviere [6]). Orders
from buyers vary from time to time and are unknown to the
other buyers. Hence, the reserved capacity for an individual
buyer is uncertain, even when the supply allocation rules
are known. As a result, a buyer doesn’t know the capacity
volume that is reserved for it.

Multiple sources of supply: The buyer also orders from
multiple suppliers. Each supplier has its own reserved ca-
pacity for the buyer. Hence, the buyer can only estimate
the capacity reserved for it, based on observed signals, such
as the received ordering quantity. As a result, the available
capacity is partially observed.

B. Summary of the Paper

This paper studies the optimal inventory-replenishment
policy at the beginning of each period that can meet the
stochastic demand with partially observed supply-capacity
information. We allow the buyer to fulfill the out-of-capacity
orders by paying an extra cost from other sources, such as
a spot market. The demand is realized at the end of each
period. Leftover inventories are salvaged while the unfulfilled
demand incurs a penalty cost.

We consider a multiperiod problem in which the capacity
observation of the current period will influence the capacity
distribution and the value function of the next period. The
available supply capacity may change from period to period,
evolving as a Markovian process. The capacity for the current
period is NOT fully observed by the buyer at the time
when the buyer places its orders. When the order quantity
is greater than the supply capacity, the supplier provides its
maximum capacity to the buyer. Only at this time is the
capacity fully observed by the buyer. The partially observed
capacity information limits the buyer’s capability to forecast
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its needs and inventory optimization. In this paper, we prove
the existence of an optimal ordering policy for a general
Markovian capacity process.

C. Literature Review and Its Relation to Our Model
There is extensive literature on inventory decisions with

given capacity constraints, including studies by Federgruen
and Zipkin [7], Gallego and Scheller-Wolf [8], Gallego and
Toktay [9], and Gallien and Wein [10]. In addition, there are
papers dealing with uncertain capacity constraints. Khang
and Fujiwara [12] address a discrete-time inventory model
in which the maximum amount of supplies from which
instantaneous replenishment orders can be placed is a random
variable. They also characterize optimal ordering policies.
Wang and Gerchak [17] extend the model to include variable
capacity and random yields in periodic inventory systems.

The research on inventory decisions with partially ob-
served information is quite recent. Bensoussan, Cakany-
ildirim and Sethi [4] study a multiperiod newsvendor model
with partially observed demands. By assuming that the
leftover inventories are salvaged and unsatisfied demands
are lost in each period, they decouple the periods from the
view point of the Beyesian demand update, and prove the
existence of an optimal ordering policy. Aviv and Pazgal [1]
introduce the partially observed Markovian decision process.
In their setting, to maximize its revenue, a buyer faces a
dynamic pricing problem of selling a given stock during a
finite selling season. Bensoussan, Cakanyildirim and Sethi
[2] and [3] study inventory systems with partially observed
inventory levels. Lu, Song and Zhu [14] and [15] study the
newsvendor model with censored demand data.

To the best of our knowledge, the problem of inventory
decisions with a partially observed Markovian capacity re-
mains open. We model an inventory system with a partially
observed Markovian supply capacity. Similar to Bensoussan,
Cakanyildirim and Sethi [4], we use the unnormalized proba-
bility to linearize the highly nonlinear dynamic programming
equation. We solve the inventory-management problem with
the partial supply-capacity information, while Bensoussan,
Cakanyildirim and Sethi [4] solve the inventory-management
problem with the partial demand information. The methodol-
ogy in Bensoussan, Cakanyildirim and Sethi [4] is extended
in our model to prove the existence of an optimal inventory
policy.

D. Plan of the Paper
In the next section, we formulate the problem. In our

model, the evolution of a partially observed Markovian
capacity is characterized, and the unnormalized probability
is used to linearize the dynamic programming equation. In
Section 3, we prove the existence of an optimal ordering
policy. Finally, we conclude the paper in Section 4.

II. PROBLEM FORMULATION AND DYNAMIC
PROGRAMMING EQUATIONS

A. Sequence of Events and Cost Structure
The sequence of events is as follows: at the beginning of

each period, the buyer informs the supplier of its intended

order quantity qt; then, the supplier checks the available
capacity reserved for this buyer and tries its best to satisfy
the requested purchase. Denote the reserved supply capacity
as Qt. Assume that {Qt} is a Markovian process with a
transition probability p(Qt+1 | Qt), which is exogenously
decided as an input. Note that many commonly used fore-
casting methods satisfy the Markovian property, such as the
last-value forecasting method, averaging forecasting method,
and exponential-smoothing forecasting method (see Hillier
and Lieberman [11]). The buyer gets 1) at = qt ∧ Qt at
the normal unit purchasing cost c and 2) qt − at, if the
amount of unsatisfied orders is greater than 0, at a higher unit
purchasing cost c + e, where e ≥ 0 indicates that the extra
order can be more expensive. Note that the extra order may
come from the same supplier by asking for an expensive and
emergent order, or come from some other supply resource,
such as a spot market. At the end of this selling season, all
the unsatisfied demand is lost. The shortage cost at the unit
cost of b and the salvaged value at the unit revenue of h are
recorded.

The following is the list of notations used in this paper:

qt : order quantity from the buyer;
Qt : available capacity of the supplier;
α : discount factor;

Dt : demand of period t;
p(Qt+1 | Qt) : transition probability of a Markovian

process {Qt};
Pr{A} : probability of the event A;

c : normal unit purchasing cost;
at : amount of order charged at normal

purchasing cost c;
e : additional unit purchasing cost for the

extra unit when qt > Qt;
h : unit salvage value;
b : unit shortage cost;

F (·) : cumulative demand distribution function;
πt(·) : probability density function of the supply

capacity Qt;
Vt(·) : value function.

B. Dynamic Forecast Updates for the Supply Capacity

In each period, the buyer observes at, which is the amount
of ordering that is charged at the normal purchasing cost c.
Then, the two scenarios are as follows.

1) When the order quantity is greater than the supply
capacity, i.e. qt ≥ Qt, the supplier cannot satisfy the
request. Then the supplier exhausts all of its capacity to
produce products, that is, at = Qt. In this scenario, the
supply capacity is revealed through the observed signal
at. The density probability function of the capacity for
the next period can be obtained as follows:

πt+1(Qt+1) = p(Qt+1 | at). (1)

2) On the other hand, the order quantity is less than the
supply capacity, and the supplier satisfies the request
completely, that is, qt ≤ Qt and at = qt. In this
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scenario, the buyer knows that the capacity is greater
than its order quantity, that is, Qt ≥ at, but does
not know the exact value of the current-period supply
capacity. We denote this case as the partially observed
supply capacity. Then

πt+1(Qt+1) = Pr{Qt+1 | Qt ≥ at}
=

Pr{Qt+1, Qt ≥ at}
Pr{Qt ≥ at}

=

∫ +∞
at

πt(ξ)p(Qt+1 | ξ)dξ
∫ +∞

at
πt(ξ)dξ

, (2)

where the second equality is due to Bayesian equa-
tions, and the third equality is due to the conditional
probability equation, which is Pr{Qt+1, Qt ≥ at} =∫ +∞

at
Pr{Qt+1|Qt = ξ}πt(ξ)dξ.

Hence, the supply capacity Qt is partially observed. This
approach is similar to that of Bensoussan, Cakanyildirim and
Sethi [4] in which the partially observed demand signal is
characterized.

C. Dynamic Programming Equations

With the sequence of events described above, it is possible
for us to derive one-period cost function as L(Dt, qt)+e(qt−
Qt)+, where

L(x, y) =
{

cy − h(y − x), if x ≤ y
cy + b(x− y), if y ≤ x,

=
{

cy − h(y − x), if x ≤ y
bx + (c− b)y, if y ≤ x. (3)

To eliminate trivial cases, it is reasonable to assume that
0 ≤ h < c < b and 0 < e. Then it is straightforward to see
that

L(x, y) ≤
{

cy, if x ≤ y
bx, if y ≤ x

if y ≥ 0. (4)

Recall that πt(·) is the probability density function of the
supply capacity Qt. Then the value function can be expressed
as follows:

Vt(πt(x))

= inf
qt≥0

{
∫ qt

0

EDt [L(Dt, qt) + e(qt −Qt)

+αVt+1(p(x | Qt))]πt(Qt)dQt

+
∫ +∞

qt

EDt [L(Dt, qt) +

αVt+1(

∫ +∞
qt

πt(ξ)p(x | ξ)dξ
∫ +∞

qt
πt(ξ)dξ

)]πt(Qt)dQt}

= inf
qt≥0

{EDt
[L(Dt, qt)] +

∫ qt

0

e(q −Qt)πt(Qt)dQt

+α

∫ qt

0

Vt+1(p(x | Qt))πt(Qt)dQt

+αVt+1(

∫ +∞
qt

πt(ξ)p(x | ξ)dξ
∫ +∞

qt
πt(ξ)dξ

)
∫ +∞

qt

πt(Qt)dQt},

(5)

where the first term on the right-hand side is
the cost when the supply capacity Qt is smaller
than the buyer’s intended order quantity, and
the second term of +

∫ +∞
qt

EDt
[L(Dt, qt) +

αVt+1(
R+∞

qt
πt(ξ)p(·|ξ)dξ

R+∞
qt

πt(ξ)dξ
)]πt(Qt)dQt is the cost when

the supply capacity Qt is larger than the buyer’s intended
order quantity.

The buyer chooses a set of order quantities {qt} to
minimize its total cost. Ordering too much results in a high
purchasing cost; on the other hand, ordering too less results
in a high penalty cost and failures to observe the current-
period supply capacity.

D. Unnormalized Probability

It is difficulty to directly solve the dynamic programming
Equation (5) owing to its complex fractional parts. Both the
denominator and the numerator include the decision variable
qt. In this part, we use a similar technique of a variable
substitution as in Bensoussan, Cakanyildirim and Sethi [4] so
that Equation (5) can be expressed in a simpler and solvable
form.

From Equations (1) and (2), we know

πt+1(x) = Iat=qt

∫ +∞
qt

πt(ξ)p(x | ξ)dξ
∫ +∞

qt
πt(ξ)dξ

+Iat<qt
p(x|at), t ≥ 1,

where the indicator function IA = 1 when event A occurs;
otherwise, IA = 0. Define recursively that

ρt+1(x) := Iat=qt

∫ +∞

qt

p(x|ξ)ρt(ξ)dξ

+Iat<qt
p(x|at), t ≥ 1;

ρ1(x) := π1(x).

Also let

λt :=
∫

ρt(x)dx.

Then,

λt+1 = Iat=qt

∫ +∞

qt

ρt(ξ)dξ + Iat<qt , t ≥ 1;λ1 = 1.

We can check recursively that the following equation is true
(it holds when t = 1; and by supposing the correctness for
t, check that it holds for t + 1):

ρt(x) = πt(x)λt.

Hence, we have

πt(x) =
ρt(x)
λt

=
ρt(x)∫
ρt(x)dx

.

In what follows, we consider the infinite-horizon case. To
simplify the notation, the sub-script is omitted.

We define W (ρ) as

W (ρ) :=
∫

ρ(x)dx · V (
ρ∫

ρ(x)dx
). (6)
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It is obvious that W (·) can be obtained by V (·). By the
definition of W (ρ), we have

W (ρ(·))
=

∫
ρ(x)dx · inf

q≥0
{

∫
L(D, q)f(D)dD

+
∫ q

0

e(q −Q)
ρ(Q)∫
ρ(x)dx

dQ

+α

∫ q

0

V (p(· | Q))
ρ(Q)∫
ρ(x)dx

dQ

+αV (

∫ +∞
q

ρ(ξ)p(· | ξ)dξ
∫ +∞

q
ρ(ξ)dξ

)
∫ +∞

q

ρ(Q)∫
ρ(x)dx

dQ

}

= inf
q≥0

{∫
L(D, q)f(D)dD

∫
ρ(x)dx

+
∫ q

0

e(q −Q)ρ(Q)dQ

+α

∫ q

0

W (p(· | Q))ρ(Q)dQ

+α W (
∫ +∞

q

ρ(ξ)p(· | ξ)dξ)
}

:= inf
q≥0

G(q). (7)

Note that Equation (7) is a Bellman equation in ρ.

III. THE EXISTENCE OF AN OPTIMAL FEEDBACK
SOLUTION

In this section, we first show the existence and uniqueness
of the solution W for Equation (7). Then we prove the
existence of an optimal feedback control, q∗.

A. Existence of a Unique Solution W

In this subsection we start with a definition of a function
space, B. Then we prove that if there is a solution to Equation
(7), it must exist in the above-defined function space. As a
result, the existence and uniqueness of the solution follows.
Note that similar definitions of function spaces H and B are
used in Bensoussan, Cakanyildirim and Sethi [4].

Define a function space H of function ρ

H := {ρ ∈ L1(R+) :
∫ ∞

0

x|ρ(x)|dx < ∞}, (8)

where L1(R+) is the space of integrable functions whose
domain is the set of nonnegative real numbers, and

H+ := {ρ ∈ H | ρ ≥ 0}, (9)

with the norm

||ρ|| =
∫ +∞

0

|ρ(x)|dx +
∫ ∞

0

x|ρ(x)|dx. (10)

Also define the following space B of function φ

B =
{

φ(ρ) : H+ →R | sup
x>0

|φ(ρ)|
||ρ|| < ∞

}
, (11)

with the norm

||φ||B = sup
ρ∈H+

|φ(ρ)|
||ρ|| . (12)

For technical convenience, we make the following assump-
tion:

Assumption 3.1: Assume, for any ρ ∈ H+,
∫

x

∫
p(x|ξ)ρ(ξ)dξdx ≤ c0

∫
ξρ(ξ)dξ, with αc0 < 1.

(13)
This assumption is necessary to complete proofs of the
following lemmas and the theorem. It is satisfied by a specific
probability-transition function p(· | ·), such that

α

∫
x

∫
p(x|ξ)ρ(ξ)dξdx ≤ αc0

∫
ξρ(ξ)dξ <

∫
ξρ(ξ)dξ,

that is,

the discounted expected demand of the
next period forecasted by p(·|·)

< the mean of the current-period demand. (14)

As the discount factor is always strictly smaller than 1, this
assumption holds when the expected demand of the next-
period forecasted by p(·|·) is equal to the mean of the current-
period demand.

We need the following lemma. Its proof appears in Wang
and Yan [16].

Lemma 3.1: If equation (7) has a solution W , the solution
is in B.

Now define the mapping T (W ) as,

T (W ) := min
q≥0

{
∫

L(D, q)f(D)dD

∫
ρ(x)dx

+
∫ q

0

e(q −Q)ρ(Q)dQ

+α

∫ q

0

W (p(· | Q))ρ(Q)dQ +

αW (
∫ +∞

q

ρ(ξ)p(· | ξ)dξ) } . (15)

Then we can obtain the following lemma. See Wang and Yan
[16] for its proof.

Lemma 3.2: ||T (W ) − T (W̃ )||B ≤ α max{1, c0}||W −
W̃ ||B.

Theorem 3.1: There exists a unique solution W for the
dynamic programming Equation (7).
Proof: From Assumption 3.1, we know that αc0 < 1,
such that α max{1, c0} < 1. Hence, by Lemma 3.2, the
mapping T : B → B is a contraction mapping. Then by
the Contraction Mapping Theorem [5], there exists a unique
solution W such that T (W ) = W . Then, we have proved
the desired results. ¤

B. The Existence of an Optimal Feedback Control

By Equation (3), we can easily obtain L(x, y) ≥ (c−h)y.
By substituting it into Equation (7), we can then prove that
W (ρ) ≥ (c−h)q

∫
ρ(x)dx. With Equations (52) and (56) in
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Wang and Yan [16], we know that

(c− h)q
∫

ρ(x)dx ≤ W (ρ)

≤
(

bµD

µQ
+ α max{1, c0}||W ||B

)
||ρ||

≤
(

bµD

µQ
+ α max{1, c0} bµD

µQ(1− α max{1, c0})
)
||ρ||.

Note that
∫

ρ(x)dx =
R

xρ(x)dxR
xπ(x)dx

=
R

xρ(x)dx
µQ

, then
||ρ||R
ρ(x)dx

=
R

ρ(x)dx+
R

xρ(x)dxR
ρ(x)dx

= 1 + µQ. Hence we obtain
that

0 ≤ q ≤ bµD(1 + µQ)
µQ(c− h)(1− α max{1, c0}) := B. (16)

Now we define WB(ρ) as

WB(ρ)

= min
q∈[0,B]

{
∫

L(D, q)f(D)dD

∫
ρ(x)dx

+
∫ q

0

e(q −Q)ρ(Q)dQ

+α

∫ q

0

WB(p(· | Q))ρ(Q)dQ

+αWB(
∫ +∞

q

ρ(ξ)p(· | ξ)dξ)
}

. (17)

Note that WB(ρ) can be shown to be a unique solution to
Equation (17) as W (ρ) is shown to be unique by Lemma
3.2. If WB(ρ) is continuous in ρ, we obtain the continuity of
G(q) (defined in Equation (7)) in q. After that, the existence
of the minimizer q∗ is established. See Wang and Yan [16]
for proofs of the following lemma.

Lemma 3.3: For any ρ, ρ̃ ∈ H+, we have

|WB(ρ)−WB(ρ̃)| ≤ HB ||ρ− ρ̃||, (18)

where HB is a constant that is independent of ρ.
Theorem 3.2: There exists an optimal feedback control,

that is, the optimal order quantity.
Proof: Recall the definition of G(q) in Equation (7), and we
can write

WB(ρ) = min
q∈[0,B]

G(q), (19)

where

G(q) =
∫

L(D, q)f(D)dD

∫
ρ(x)dx

+
∫ q

0

e(q −Q)ρ(Q)dQ

+α

∫ q

0

WB(p(· | Q))ρ(Q)dQ

+αWB(
∫ +∞

q

ρ(ξ)p(· | ξ)dξ). (20)

The first, second, and third terms of Equation (20) are
continuous in q. By Lemma 3.3, we know that W (ρ) is
continuous in ρ, which leads to the continuity of the fourth
term of Equation (20) in q. Hence, G(q) is continuous in

q. Moreover, q belongs to a bounded and closed set [0, B].
Then, by Weierstrass’ Theorem [5], there exists a minimum
in the bounded and closed set to minimize such a continuous
function. The minimizer q∗ exists. ¤

IV. CONCLUSIONS AND FUTURE RESEARCH

We have studied a multiperiod newsvendor problem with
partially observed supply-capacity information. The partial
supply-capacity observations make dynamic programming a
space of probability distributions. Un-normalized probability
is used and the existent of a unique value function is
proved. The existence of the optimal purchasing policy is
also provided.

Our future research will focus on studying multi-period
inventory decisions with a partially observed supply lead
time. We also plan to consider the case in which leftover
inventories can be carried over to the next period instead of
lost sales. This case would be much more complicated as
it would introduce the inventory level as an additional state
variable.
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