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Abstract— In this paper the invited session and the 4 original
contributions are described first. Then the details of the first
paper in the invited session is presented. In this first paper
a new method for calculating the dynamic stiffness (frequency
response) of parallel kinematic machines (PKMs) with six links,
or Hexapods, is presented. The method assumes that each
link and universal joint can be described by a mass-spring-
damper model and calculates the transfer function from a
Cartesian force or torque to Cartesian position or orientation.
The new method has been used to benchmark two versions
of the Gantry-Tau PKM, a relatively new PKM which has
been designed to achieve a large workspace to installation
space ratio, while at the same time achieve higher static and
dynamic stiffness compared to serial-type industrial robots. The
benchmark results presented in this paper show that these goals
can be achieved in large sections of the workspace envelope.
The benchmark also shows that machining centre specifications
can be met if the location and dimensions of the work objects
are known at the design stage.

I. INVITED SESSION

Session title: A Common Benchmark of a Group of Parallel
Kinematic Machines
Original contributors: T. Brogårdh, C. Budde, D. Chablat,
M. Choux, V. Duchaine, S. Foucault, C. Gosselin, J. Hes-
selbach, G. Hovland, X. Kong, P. Last, M.T. Masouleh, M.
Murray, A. Pashkevich, P.-L. Richard, P. Wenger

The study of parallel kinematic machines (PKMs) has been
an active research field in robotics and mechanical design
for more than two decades. However, these machines have
not yet got any broader use in industrial applications. One
of the few designs that have made an impact in industry is
the Delta robot by Clavel, [1]. The Delta robot has been
successful in fast pick-and-place applications. However, the
use of the Delta robot is restricted to applications where a
small workspace to footprint ratio can be accepted.

The idea of using PKMs as CNC-type machine tools
emerged during the early and mid 1990’s. Fassi and Wiens
[2] presented an overview of both industrial and university
prototypes of PKM machine tools. Most of the existing
PKM machine tools were developed in Europe, with the
remainder developed in North America and Asia. It was early
realised that PKM machine tools have many advantages, such
as high payload to load ratio, noncumulative joint errors,
high structural rigidity, modularity, location of motors at the
fixed base and simple solutions of the inverse kinematics
problem. However, as research continued the drawbacks of
PKM machine tools also emerged: singularities inside the
workspace, nonuniform Cartesian stiffness and resonance
frequencies, complicated forward kinematics, complicated

calibration strategies, often a limited workspace and diffi-
culties to obtain joint stiffness and accuracy. The scientific
community is currently strongly divided between supporters
and those who think that PKM machine tools do not have
a future. One critical article of PKMs was presented by [3].
They show that a chosen hexapod structure does not yet meet
the specifications of a high-speed 5-axis machining centre.

It is still too early to conclude if high-speed machine tool
applications will be too difficult for PKMs. On the other
hand, there are still a large number of other application areas
which would benefit from the advantages PKM structures
have over their serial robot counterparts. It can be argued that
high-performance machine tool applications have received
too much attention from the PKM scientific community.
Currently, there exist large gaps between the stiffness and
dynamic properties of serial-type robots and many of the
developed PKM prototypes. An industrial serial-type robot
typically has a Cartesian stiffness in the range 1-2 Newtons
per micron (N/µm) and resonance frequencies below 10 Hz.
A high-speed machining centre typically has stiffness larger
than 50N/µm and resonance frequencies larger than 50 Hz.
Between these specifications there exists a large range of
untapped application areas for PKMs. With higher stiffness
and resonance frequencies compared to serial robots, PKMs
can provide benefits such as reduced oscillations and over-
shoots which in turn can lead to economic benefits gained
from reduced cycle-times.

During the last ten years a new group of PKMs has
emerged. These machines use linear actuators at the robot
base to increase and overcome one of the main limitations
of PKMs in the past - the small workspace to footprint
ratio. In this invited session several of these new PKMs
are presented and for the first time benchmarked against
a common set of criteria, including workspace, degrees of
freedom, stiffness, singularities and dynamic properties. The
goal of this invited session is to establish a current baseline
of PKM performance which other researchers can challenge
and improve in the future. In order to ease the comparison of
the different machine concepts and to establish a benchmark
for future comparison, a standard set of joints and links have
been chosen by all the participants in the invited session.

The invited session contains the following PKM struc-
tures: The Tripteron, Quadrupteron and Pentapteron from the
Université Laval Canada, the Triglide from the Technische
Universität Braunschweig Germany, the Orthoglide from IR-
CCyN France and the Gantry-Tau invented by ABB Robotics
Sweden and prototyped at the University of Queensland.

The Tripteron and Quadrupteron robots are kinemati-
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cally decoupled (or partially decoupled) parallel mechanisms
based on fixed linear actuators. These robots arise from
the systematic type synthesis of parallel mechanisms for
translational and scara motions. They have been invented
and developed at Université Laval. Because of their de-
coupling features, the Tripteron and Quadrupteron have
no singularities inside their workspace and a very simple
kinematic model. They are also insensitive to errors in most
of their link lengths. In this invited session, the prototypes
of the Tripteron and Quadrupteron built at Université Laval
will be benchmarked against workspace to footprint ratio,
Cartesian stiffness, lowest resonance frequency, singularities
and sensitivity to geometric errors.

The Triglide robot has been developed as a test bed for
the Collaborative Research Centre SFB 562 at the Technical
University of Braunschweig. According to the main topic
of this interdisciplinary research group the robot has been
designed for high speed handling and assembly tasks. Its
hybrid structure with four degrees of freedom offers the well-
known Scara-type motions. The parallel part of the structure
is based on the linear Delta [4] with three identical kinematic
chains whose build-up and arrangement have been altered
and optimized for the realization of a workspace enlarge-
ment approach. Based on the use of several workspaces
going along with different assembly modes of the structure
this procedure allows for a significant enhancement of the
workspace to installation space ratio. In this invited ses-
sion the kinematic structure of the Triglide is benchmarked
against workspace to installation space ratio, translational
stiffness and sensitivity to geometric errors.

The Orthoglide is a Delta-type PKM dedicated to 3-axis
rapid machining applications that was originally developed at
IRCCyN France in 2000-2001 to meet the advantages of both
serial 3-axis machines (regular workspace and homogeneous
performances) and parallel kinematic architectures (good
dynamic performances and stiffness). This machine has three
fixed parallel linear joints that are mounted orthogonally.
The geometric parameters of the Orthoglide were defined
as function of the size of a prescribed cubic Cartesian
workspace that is free of singularities and internal collision.
The interesting features of the Orthoglide are a regular Carte-
sian workspace shape, uniform performances in all directions
and good compactness. The entire Cartesian workspace is
really available for tool paths. In this invited session, the Or-
thoglide is benchmarked according to geometric, kinematic
and stiffness criteria : workspace to footprint ratio, condition
number of the Jacobian matrix, sensitivity to geometric
errors, torsional stiffness and translational stiffness.

The Tau family of robots was invented at ABB Robotics,
Sweden in 2001. Tau robots are hexapods characterised by
a grouping of the links in clusters of 1, 2 and 3. The Tau
family also covers parallel and triangular mounted links. The
Gantry-Tau prototyped at the University of Queensland is a
special variant of this family, which uses linear actuators at
the base and a triangular mounted link-pair. The triangular
mounted pair allows for an extension of the reachable
workspace of the robot while avoiding internal link and

platform collisions. The Gantry-Tau is benchmarked against
workspace to footprint ratio, translational stiffness, lowest
resonance frequency, condition number of the link Jacobian
and the sensitivity to geometric errors.

II. INTRODUCTION

The purpose of this paper is twofold. First, a new and
general approach for calculating the dynamic frequency re-
sponse of parallel kinematic machines (PKMs) with six links
(Hexapods) is presented. This new method exploits the fact
that this type of PKMs only experiences axial link forces and
the method is significantly faster than general Finite Element
(FE) methods used for other PKM structures which also take
link bending and twisting moments into account. Second,
a benchmark including five criteria is presented for two
versions of the six-link Gantry-Tau PKM. The structure and
kinematics of the Gantry-Tau have been presented before, for
example in [5], [6], [7], but this paper presents for the first
time a benchmark of the machine. The new general method
for obtaining the frequency response of Hexapods PKMs is
used in one of the benchmark criteria.

A frequency response model of a PKM over the entire
working envelope is an essential tool when designing and
dimensioning PKMs for high-speed machining and other
applications. The flexibility of PKMs may cause structural
resonance in the cutting process and mechanical interaction
with the control system because of regenerative and modal
chattering, which is the main concern in high-speed machin-
ing.

The majority of published works about PKM structures
has been on kinematics and singularity analysis. The study of
dynamics of PKMs has received less attention, and flexible
dynamics less than rigid-body dynamics. One of the first
published works on flexible PKM dynamics was presented
by [8]. A 3-DOF spatial PKM with three flexible links was
modelled and simulated. The model took both axial forces
and bending moments into account. The model was only
simulated in the time-domain, and no frequency response
data was presented.

Two recent publications dealing with modelling of flexible
PKMs were presented by [10], [11]. Both papers modelled
Tripod PKMs with flexible links. Because of the Tripod
structure, the flexible dynamic models must take link bending
and twisting moments as well as axial forces into account.
[11] presents a frequency response diagram of a Tripod and
is able to quantify the lowest resonance frequency of the
machine over the entire working envelope.

Very little work has been presented on flexible dynamic
modelling of Hexapod PKMs. [9] is an example of a pub-
lication of a rigid-body dynamics model of a Hexapod. To
our knowledge no general flexible links dynamics models
which exploit the Hexapod structure have previously been
published.

III. STATIC STIFFNESS ANALYSIS

This section contains definitions and static relations which
are required for the dynamic stiffness analysis in section IV.
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The following notation is introduced: X , Y , Z are the
Cartesian TCP coordinates, α, β, γ are the Cartesian TCP
orientations, li and Fi where i = 1, · · · , 6 are the six PKM
link lengths and link forces, respectively. Fx, Fy and Fz are
the external Cartesian forces acting on the TCP and Mx, My

and Mz are the external Cartesian torques acting on the TCP,
where TCP is defined in this paper as the tip of a milling
tool located in the centre of the manipulated platform. The
following vectors are then introduced

X = [X Y Z]T θ = [α β γ]T

F = [Fx Fy Fz]T M = [Mx My Mz]T

L = [l1 l2 l3 l4 l5 l6]T Fa = [F1 F2 F3 F4 F5 F6]T

The relationship between the TCP forces and the link forces
can then be expressed by the following two equations.

F =
6∑

i=1

Fiui M =
6∑

i=1

FiAi × ui (1)

where ui is a unit vector in the direction of link i and Ai is a
vector pointing from the TCP to the platform-side end-point
of link i. The two equations above can be rewritten using
the 6× 6 statics matrix H as follows (left).[

F
M

]
= HFa

[
∆X
∆θ

]
= J∆L (2)

The Jacobian matrix of the PKM relates changes in Cartesian
position and orientation with changes in the link lengths
as shown in eq.(2) (right) where the vectors ∆X and ∆θ
represent small changes in Cartesian position and orientation,
the vector ∆L represents small changes in the link lengths.
This particular Jacobian should not be confused with the
robot Jacobian which relates Cartesian velocities with the
actuator velocities. Gosselin [12] showed the duality between
the statics and the link Jacobian for PKMs, ie.

H−1 = JT (3)

Based on the duality result, the Cartesian stiffness matrix K
can be derived as a function of the statics matrix as follows.[

F
M

]
= K

[
∆X
∆θ

]
= HFa = HKL∆L

= HKLJ−1

[
∆X
∆θ

]
= HKLHT

[
∆X
∆θ

]
⇒ K = HKLHT (4)

where KL is a 6×6 diagonal matrix with the individual link
stiffnesses along the diagonal. The result in eq.(4) has the
benefit that no matrix inversions are required to calculate the
Cartesian stiffness, which means that the Cartesian stiffness
can be calculated at all coordinates, including coordinates
where H is singular.

IV. DYNAMIC STIFFNESS ANALYSIS

In this section a new method for calculating the frequency
response of any Hexapod PKM structure is presented. Fig. 1
shows typical PKM links with a universal joint at either end.
The flexible model of a single link in Fig. 2 assumes that

Fig. 1. Picture of typical PKM links with universal joints.

Fig. 2. Flexible link model.

the actuator is rigid and stationary as modelled by the fixed
reference at the left-hand side of Fig. 2. For an accurate
modelling of a link a number of serially connected masses
and springs can be used. However, since usually a link is
designed in such a way that the stiffness of the joint is much
lower than the stiffness of the link a model as in Fig 2 will
be a very good approximation.

The parameters kj and damper zj represent the flexibility
in the universal joint. The mass mj is the total weight of
the joint. In Fig. 2 only half of the joint mass is used, as it
is assumed that one half of the joint is rigidly attached to
the stationary actuator. The mass ma is the total weight of
the link between the two universal joints. The two halves of
the link weight are lumped together with the joint masses.
The parameters ka and za represent the link flexibility. The
parameter m2 represent the platform weight.

In the following the link arm of Fig. 2 is simplified to the
model in Fig. 3. This simplification is made in this paper to
reduce the complexity of the equations. Note, however, that
the presented methods would also be applicable to the larger
model of Fig. 2 without major modifications. In Fig. 3 the
platform mass MTCP equals the previous m2 plus six halves
of the joint masses, ie. MTCP = m2 + 3mj . The mass Ma

Fig. 3. Simplified flexible link model.

Fig. 4. Flexible model of 6-link PKM.
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equals the sum of the masses of the two joint halves and
the total weight of the link, ie. Ma = ma + mj . The new
stiffness parameters in Fig. 3 are chosen the same (k1 = k2)
and are calculated from the stiffness parameters of Fig. 2
such that the overall static stiffness is the same, ie.

1
k1

+
1
k2

=
2
k1

=
2
kj

+
1
ka

=
2ka + kj

kakj
(5)

k1 =
2kakj

2ka + kj
(6)

Notice that k1 = kj (the stiffness in the simplified model
equals the joint stiffness) if ka >> kj , which is usually the
case. Isolating the dynamics for link i and then the platform,
the flexible equations of motion become

Maäi = −k1ai − z1ȧi + (li − ai)k2 + (l̇i − ȧi)z2

(7)

MTCP Ẍ = F +
∑

j

(aj − lj)k2uj +
∑

j

(ȧj − l̇j)z2uj

(8)

ITCP θ̈ = M +
∑

j

(aj − lj)k2(Aj × uj)

+
∑

j

(ȧj − l̇j)z2(Aj × uj) (9)

where uj and Aj were introduced in eq.(1). For small
motions, the equations above are linear in the variables a, l
as functions of the external TCP forces F and torques M
and the TCP linear and rotary accelerations. By introducing
the Laplace transform, the 18 equations above can be written
on matrix form as follows.[

A −B
C D

] [
ai

li

]
=

 0
F
M

 (10)

where 0 is a 6 × 1 zero vector. The matrix elements A, B,
C and D are functions of the Laplace transform, the masses
and the flexibility parameters. For example,

A =
(
Mas2 + (z1 + z2)s + k1 + k2

)
I6 (11)

B = (z2s + k2)I6 (12)

where I6 is a 6 × 6 identity matrix. In addition to the link
masses, springs and dampers, the 6×6 sub-matrices C and D
will also contain platform parameters, such as the platform
weight and inertia. The Cartesian position vector X and
the orientation vector θ are replaced by a and l by using
the Jacobian matrix. The expressions for C and D are too
lengthy to show in this paper.

Hence, the 12 unknown parameters ai and li can be solved
by inverting the matrix in eq. (10). If we know the direct link
Jacobian matrix of the PKM, the Cartesian velocities can be
calculated as follows.[

Ẋ

θ̇

]
= JL̇ → sI6

[
X
θ

]
= sI6JL (13)

where L = [l1, · · · , l6]T . The final transfer functions of
the PKM from Cartesian forces or moments to Cartesian

positions or orientation can then be derived from eqs.(10)
and (13).

Xi

Fj
(s) =

Xi

li
(s)

li
Fj

(s)
θi

Mj
(s) =

θi

li
(s)

li
Mj

(s) (14)

Bode plots can be generated by replacing the Laplace trans-
form s by ω, where  is the complex unity and ω a frequency
and solving the set of 12 equations above for a range of
different frequencies. Note that if the more detailed model
of Fig. 2 was chosen, a set of 18 equations would have to
be solved for each frequency.

V. COMPUTATIONAL EFFICIENCY

In [5] an approach to calculate the Cartesian stiffness was
presented using the forward kinematics. For many PKMs
the forward kinematics can be difficult to calculate and
must be calculated in numeric form. Numeric solutions
are often computationally expensive. A second approach to
calculating stiffness is to use the Jacobian matrix derived
from the inverse kinematics and matrix inversion. A third
approach is to avoid any matrix inversions and calculate the
stiffness from eq. (4) by using the statics matrix. Table I
shows the computational requirements for the three different
approaches on the triangular version of the 3-DOF Gantry-
Tau PKM described in [5], [7]. The computing time has
been normalised to 1 for the third approach. The results in

Method Time
Numerical forward kinematics 500
Jacobian matrix J 6.66
Static matrix H 1

TABLE I
Static stiffness computation time for three different methods.

Table I are based on a Cartesian stiffness calculation over a
grid covering the entire workspace of the PKM and in all
force directions. The method based on the static matrix H
is 500 times faster than the method based on the numerical
forward kinematics. Similar computational benefits by using
the statics matrix are found when computing resonance
frequencies and singularities, which makes the frequency
response methods presented in this paper significantly faster
than alternative FE methods.

VI. BENCHMARK: THE 3-DOF GANTRY-TAU

In this section two 3-DOF versions of the Gantry-Tau
are benchmarked. The first version has 5 fixed links lengths
of 1.0m and one single telescopic actuator as illustrated in
Fig. 5. The second version of the machine has all 6 link
lengths fixed at 1.0m. The second version of the machine
has been presented before in [5], [6], [7] and a more detailed
kinematic description of the machine can be found in those
papers.

Both versions of the machine have 3 main linear actuators,
which are aligned in the positive Cartesian X direction. The
actuators have 1, 2, and 3 links attached, respectively, and
the name Tau arises from this configuration. The variable
actuator positions in the X-direction are denoted q1, q2 and
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q3 and have lower and upper bounds at 0 and 2.2m. The Y
and Z coordinates of the actuators are fixed and are given
by: Y1 = −Q, Z1 = Q, Y2 = 0, Z2 = 2Q, Y3 = 0 and
Z3 = 0, where Q = 0.5m.

The telescopic version of the machine is presented and
analysed for the first time in this paper. The telescopic
link length is actively controlled such that q1 = X , which
makes the link as short as possible. As will be presented
in this section, a short telescopic link improves several of
the benchmark criteria, such as workspace, stiffness and
resonance frequencies. Note that the fixed-length version is
in a singular position when q1 = X , while the telescopic
version is not. For the telescopic version, motion in the
positive Y-direction is still possible by extending the length
of the telescopic leg.

Fig. 5. The Gantry-Tau robot with one telescopic actuator.

A. Benchmark: Workspace to Installation Space Ratio
The dimensional parameters for the support frame of the

two versions of the Gantry-Tau are as follows: 2.2m (width),
0.5m (depth) and 1.0m (height). Hence, the smallest room
in which the robot would fit is 1.1m3. Because of the
triangular link-pair design of the Gantry-Tau, the machine
can be reconfigured as illustrated in Fig. 6, which increases
the reachable workspace at either end of the linear actuators.
When replacing the triangular link pair with a parallel link
pair, it will be much more difficult to design the moving
platform to avoid internal collisions with the links for both
configurations. The total 3-DOF workspace of the Gantry-
Tau with the dimensions above and all 6 link lengths fixed
at 1.0 metres is 3.02m3. The total workspace of the Gantry-
Tau version with one telescopic link as illustrated in Fig 6 is
3.44m3. For the telescopic version, the telescopic link length
varies between 0.06m and 1.11m. In practice it may be
difficult to achieve the short length of 0.06m for the telescope
link. If the telescope link has a lower limit larger than 0.06m,
then the workspace will be in the range between 3.02 and
3.44m3. Workspace points where the tool platform collides
with the support frame have been removed and the Gantry-
Tau has no internal link collisions with the dimensions

Fig. 6. Illustration of the Gantry-Tau in both left and right-handed
configuration.

chosen. Hence, the total workspace to installation space
ratios of the two versions of the machine are 2.75 and 3.13.
The workspace to installation space ratio of the machine
will always be larger than one, since the tool platform can
extend beyond the actuator limits. As the length of the linear
actuators increase, the workspace ratio will approach one.

B. Benchmark: Cartesian Stiffness
The minimum, maximum and average Cartesian stiffnesses

of the Gantry-Tau in the entire workspace and in the best
70% of the workspace are listed in Table II. Each of the 12
universal joints has a weight 1.0kg and a stiffness 50 N/µm.
The stiffnesses of the support frame and the actuators are
assumed infinite. The links have weight 1.0kg and stiffness
232N/µm. The platform weight is 5kg and the inertia matrix
ITCP is a diagonal matrix with elements 0.06, 0.02 and
0.07. Fig. 7 shows the stiffness in the Cartesian Y-direction

Entire Workspace X Y Z
Minimum 19.50 5.06 18.69
Maximum 67.51 57.88 55.46
Average 53.20 22.28 29.36
Best 70% Workspace X Y Z
Minimum 49.37 13.81 22.55
Maximum 67.51 57.88 55.46
Average 59.13 27.70 33.08

TABLE II
Cartesian stiffnesses (N/µm) of the Gantry-Tau with one telescopic link in

the entire workspace and the best 70% workspace.

as a function of the Y and Z coordinates at X = 1.0 for
the telescopic link version of the machine. The stiffness is
well-defined with no discontinuities in the entire workspace,
which is also the case for the stiffnesses in the X and Z
directions. Note in Fig. 7 that the stiffness in the Y-direction
is well over 100N/µm for coordinates where Y > 0.6,
which is often the most useful area of the workspace. The
stiffness in the Y-direction is lowest where the Y coordinates
are close to zero.

Note that the telescopic link version of the machine
more than triples the Cartesian stiffness in the Y-direction
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Fig. 7. Cartesian stiffness in the Y-direction as function of the Y and
Z coordinates at X = 1.0: Telescopic version (top) and fixed link length
version (bottom).

Entire Workspace X Y Z
Minimum 26.59 2.05 19.02
Maximum 82.82 50.90 42.29
Average 65.49 13.04 26.32
Best 70% Workspace X Y Z
Minimum 60.56 3.89 21.45
Maximum 82.82 50.90 42.29
Average 72.76 17.48 28.89

TABLE III
Cartesian stiffnesses (N/µm) of the Gantry-Tau with fixed link lengths in

the entire workspace and the best 70% workspace.

compared to the fixed link length version in the best 70%
workspace, without dramatically reducing the stiffness in the
other directions. Because of the single link, the Y-direction
is the weakest direction of the machine. Note however that
at the extremes of the workspace in the X directions, q1

can no longer be chosen equal to X because of the actuator
limits for the telescopic link version of the machine. At these
workspace boundaries, the stiffness values of the telescopic
version will approach the values for the fixed link length
machine.

C. Benchmark: Resonance Frequency

Fig. 8 shows two examples of the frequency response
curves that are generated by the methods in Section IV. The
solid curve shows the amplitude response from a Cartesian
force in the X-direction to Cartesian position in the X-

direction at X = 1.0, Y = 0.0 and Z = 0.5. The dotted
curve shows the same response at X = 1.0, Y = 0.8 and
Z = 0.5. The first resonance frequency occurs at 322 rad/sec
or 51.2 Hz and 525 rad/sec or 83.6 Hz, respectively, for
the two selected locations. The minimum, maximum and

Fig. 8. Example of frequency response curves for the fixed-length version
of the Gantry-Tau.

average first resonance frequency of the two versions of the
Gantry-Tau in the entire workspace and the best 70% of the
workspace are listed in Table IV. A map of the first resonance

Min Max Avg
Telescopic: entire workspace 29.37 109.46 93.64
Telescopic: best 70% workspace 93.58 109.46 100.10
Fixed-length: entire workspace 47.54 102.85 60.61
Fixed-length: best 70% workspace 53.84 102.85 64.43

TABLE IV
Resonance frequencies of the two versions of the Gantry-Tau.

frequency as a function of the Y and Z coordinates for the
telescopic version of the machine (top) and the fixed link
length version (bottom) are shown in Fig. 9. The resonance
maps of the two machines are similar, with the resonance
frequencies of the telescopic version slightly larger than for
the fixed link length version. The robot configurations in the
positions with the lowest and highest resonance frequencies
for the telescopic version of the machine are shown in the
YZ-plane in Fig. 10. The lowest resonance frequency of
29.37 Hz occurs at the position Y = −0.10, Z = 0.20.
At this location the condition number (smallest divided by
largest singular value) of J is 0.0485. The large resonance
frequency of 109.46 Hz occurs at the position Y = 0.25
and Z = 0.90. At this location the condition number of J is
0.0616. The frequency response data generated by the new
method presented in this paper have been verified against
calculations from a FE software package (Strand7). For a
set of 10 locations in the workspace of the Gantry-Tau, the
method in this paper generates the same results as the FE
package and the method is also significantly faster. The maps
in Fig. 9 can be generated approximately in the same time
as it takes to set up and calculate one resonance frequency
in a FE package.

D. Benchmark: Condition Number of Statics Matrix

The minimum, maximum and average condition number
(smallest divided by largest singular value) of the statics ma-
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Fig. 9. First resonance frequency as function of the Y and Z coordinates
at X = 1.0: Telescopic version (top) and fixed link length version (bottom).

Fig. 10. Robot configurations with the lowest (left, 29.37 Hz) and highest
(right, 109.46 Hz) resonance frequencies shown in the YZ-plane.

trix H in the best 70% of the workspace are listed in Table V.
The results in Table V and Fig. 11 show similar results for

the two versions of the Gantry-Tau. The telescopic version
of the machine has the largest variations in this benchmark
criterion. The statics matrix H has no singularities inside the
workspace for a given assembly mode (configuration) of the
robot. The Gantry-Tau will have singularities when arms 2
and 3 are parallel and in different assembly modes, but this
case is not considered in this benchmark.

E. Benchmark: Sensitivity to Geometric Errors

The minimum, maximum and average worst-case Carte-
sian displacements in the entire and best 70% of the
workspace as functions of a ±1mm error in each of the
fixed link lengths are listed in Table VI. The results show
that the telescopic version is less sensitive to link length

Machine Min Max Average
Telescopic Entire Workspace 0.0388 0.0933 0.0587
Telescopic Best 70% 0.0558 0.0933 0.0625
Fixed Links Entire Workspace 0.0422 0.0802 0.0550
Fixed Links Best 70% 0.0520 0.0802 0.0575

TABLE V
Condition numbers of the statics matrix.

Fig. 11. Condition number of the statics matrix H for telescopic version
(top) and fixed length link version (bottom).

errors in the best 70% of the workspace, particulary in the Y-
direction. The maximum sensitivity of the telescopic version
is a factor of 1.52 in the Z direction. The fixed link length
version of the machine has a maximum sensitivity of 2.69
in the Y direction in the best 70% of the workspace. Note
that the telescopic version of the machine has relatively large
sensitivities (5.05) at the back of the workspace (Y = −0.1)
as seen in Fig. 12. This area is not usually used for machining
operations, but can be used as a transfer area to avoid
collisions with workpieces. The fixed link length version
does not have these large sensitivities.

VII. CONCLUSIONS

In this paper a new general method for calculating the
frequency response of Hexapod PKM structures is presented.
The method considers flexible links and universal joints. The
model allows PKM resonance maps such as in Fig. 9 to
be generated in very short time compared to FE software
packages.
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Telescopic: Entire workspace X Y Z
Minimum 0.65 0.99 1.12
Maximum 2.07 5.05 2.02
Average 1.09 1.31 1.47
Telescopic: best 70% workspace X Y Z
Minimum 0.65 0.99 1.12
Maximum 1.14 1.29 1.51
Average 0.91 1.09 1.40
Fixed-length: Entire workspace X Y Z
Minimum 0.66 1.29 1.16
Maximum 1.70 2.81 1.82
Average 1.17 2.43 1.46
Fixed-length: best 70% workspace X Y Z
Minimum 0.66 1.29 1.15
Maximum 1.30 2.69 1.52
Average 1.08 2.30 1.39

TABLE VI
Worst-case Cartesian displacement sensitivity (mm) to a ±1mm error in

each of the link lengths.

A benchmark of two versions of the Gantry-Tau PKM
structure has been presented for the first time. The results
in this paper show that the benchmark criteria of the two
versions of the Gantry-Tau are higher than for most serial-
type industrial robots which have typical static stiffness val-
ues less than 2N/µm and the lowest resonance frequencies
below 10 Hz. The benchmark results for the Gantry-Tau
presented in this paper satisfy most of the specifications of
typical machining centres, except for the stiffness in the Y
direction. Typical machining centres have a uniform stiffness
higher than 50N/µm and resonance frequencies higher than
50 Hz, see for example [3]. However, both versions of the
Gantry-Tau satisfy the machining requirements in sections
of the workspace, including the stiffness in the Y-direction,
see Figs. 7 and 9.

A major benefit of the Gantry-Tau structure compared
to a typical machining centre is the large workspace to
installation space ratio that can be achieved. For the two
versions of the Gantry-Tau benchmarked in this paper, the
workspace to installation space ratio is close to a factor 3.

The benchmark results in this paper demonstrate the
importance of designing PKMs in general and the Gantry-
Tau in particular to meet specific end-user requirements. Both
versions of the machine presented in this paper can satisfy
high machining centre specifications, but only in parts of the
workspace. It is therefore important that when the machine
is designed, the locations of typical work-objects are known.
The machine can then be designed for high performance
in these regions. The remaining regions of the workspace
with lower performance can typically be used for operations
which do not require the machining specifications, such as
tool change, docking or work object transfer operations.
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