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Abstract— In this paper we propose a method of realizing
continuous tracking of a three-dimensional object by calculating
moments of a translating and rotating object whose shape is
known, either analytically or by using a table, and matching
them with those of the input image. In simulation, the position
and orientation is accurately recognized. Using a noise model
and particle filter, we show that the position and orientation
can be recognized even with noisy images.

I. INTRODUCTION

In order for a robot hand to catch a rapidly moving object
and dexterously manipulate a tool, it is effective to acquire
visual information at a frame rate as high as 1000 fps[1], [2].
Manipulation of an object requires obtaining the position and
orientation of the object. However, it is generally difficult to
calculate the position and orientation of an object in real time
from visual information obtained at such rates. To calculate
the position and orientation of an object which has a known
shape, the following methods are commonly used:

• Calculating from features such as vertices and lines
• Matching with model figures
• Pattern recognition

The method of calculating the position and orientation
from features such as vertices and lines[3] has the drawback
that it does not work well for noisy images. Images captured
at high frame rates are generally dark due to short exposure
time, and the effect of noise therefore becomes larger.

Matching with an image of a model object that is virtu-
ally translated and rotated[4] is relatively robust to noise;
however, it takes much time to generate model images and
high-speed execution is thus difficult.

In the pattern recognition approach, it is easy to match
with model images prepared in advance by expressing an im-
age as, for example, a vector in which each pixel value is an
element, and mapping the vector to a point in eigenspace[5].
This method, however, is not robust to geometric changes
such as rotation and scaling of the target because it involves
statistical processing on pixel values.

On the other hand, by using the moments of a silhouette
image as feature values, it is possible to achieve recognition
reflecting the geometric properties of the target, and this
method is expected to be robust to noise. Fig. 1 shows
continuous tracking of a target by generating a window
around the centroid of the target in the previous frame and
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making the centroid of the image in the window the centoid
of the target in the current frame. The recognized centroid of
the target is marked with a bright point. You can see from the
figure that tracking is realized even with very noisy images.

frame 0 frame 50 frame 100

Fig. 1. Example of centroid-based tracking.

The centroid of the image I(x, y) is calculated from the
moments, as shown below; here, I(x, y) is a silhouette image
having a value of 1 in the target region and 0 elsewhere:

(Cx, Cy) = (m1,0/m0,0,m0,1/m0,0) (1)

The general form of the moment is expressed as:

mp,q =
∫ ∫

xpyqI(x, y)dxdy (2)

Because the calculation of moments is regular for the x
and y coordinates and it is easy to parallelize it in hardware,
it is suited for high-speed processing.

By using not only the centroid but also 2nd order moments
and above, it is possible to detect the planar angle of the tar-
get and to use invariants to rotation and scaling for tracking.
However, this is valid only for movement in a plane and
cannot be applied to three-dimensional movement. Though
there are some methods that can deal with three-dimensional
movement by performing coordinate transformation in the
moment calculation[6], there is a restriction that the target
has to be a figure in the same plane.

In this paper we propose a method of realizing continuous
tracking of a three-dimensional object by calculating, either
analytically or by using a table, moments of a translating
and rotating object whose shape is known and matching the
moments with those of the input image.

II. 3D TRACKING USING NEWTON’S METHOD

A. Algorithm

We introduce x = [x y z θx θy θz]T as the po-
sition and orientation of the target object and m =
[m0,0 m1,0 m0,1 m2,0 · · · ]T as the observed moments.
We define x̃ as the estimation of x, and the value that the
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moment takes is m̃(x̃). The difference between x and x̃ is
∆x̃, and the difference between m and m̃(x̃) is ∆m̃(x̃).
We obtain

m = m̃(x̃) + ∆m̃(x̃) (3)

≈ m̃(x̃) +
∂m̃(x̃)

∂x̃
∆x̃ (4)

∆x̃ ≈
(

∂m̃(x̃)
∂x̃

)+

(m − m̃(x̃)) . (5)

Here A+ is a pseudo inverse matrix of A.
Therefore, x is calculated iteratively as follows:

xk = x̃k−1 + ∆x̃k (6)

∆x̃k =
(

∂m̃(x̃k−1)
∂x̃k−1

)+

(m − m̃(x̃k−1)) . (7)

Here, m̃(x̃) is calculated in either way below according
to the category the target object belongs to.

1) Sphere and Spheroid: Under weak perspective projec-
tion, the projection image of a ball is always a circle, re-
gardless of the object’s rotation. When the three-dimensional
coordinates of the center of the ball in the camera coordinate
system are (X,Y,Z), the equation of the projected circle is

(
x − f

X

Z

)2

+
(

y − f
Y

Z

)2

= f2 R2

Z2
, (8)

where R is the radius of the ball and f is the focal length
of the camera lens. This is identical to a circle with its
center at the origin and a radius of 1, scaled by fR/Z
vertically and horizontally and shifted by (fX/Z, fY/Z)
in the image plane. Therefore, the moments of the circle
image are calculated in advance and the effects of scaling
and shifting are corrected for.

The effect of scaling on the moments is corrected for as
follows. When x′ = ax, y′ = by and I ′(x′, y′) = I(x, y),
the moments of I ′(x′, y′) are

m′
p,q =

∫ ∫
x′py′qI ′(x′, y′)dx′dy′ (9)

=
∫ ∫

(ax)p(by)qI(x, y)abdxdy (10)

= ap+1bq+1

∫ ∫
xpyqI(x, y)dxdy (11)

= ap+1bq+1mp,q. (12)

The effect of shifting on the moments is corrected as
follows. When x′ = x − xs, y

′ = y − ys and I ′(x′, y′) =
I(x, y), the moments of I ′(x′, y′) are

m′
p,q =

∫ ∫
(x − xs)p(y − ys)qI(x, y)dxdy (13)

For example, when p = 1 and q = 0, the moment is
calculated by:

m′
1,0 =

∫ ∫
(x − xs)I(x, y)dxdy (14)

= m1,0 − xsm0,0. (15)

In the general case, it is calculated using Equ. (31) shown
later.

If the object is a spheroid, the projection image is always
an ellipse under weak perspective projection. Consider a
spheroid whose center is at the origin and whose rotation
axis is the x axis. When it is rotated by θy around the y axis
and θz around the z axis and is translated by (X,Y,Z), the
projection image is expressed by the following equations[7],
where Ra and Rb are the long axis and the short axis,
respectively.

(x′ − fX/Z)2

(fR′
a/Z)2

+
(y′ − fY/Z)2

(fRb/Z)2
= 1 (16)

x′ = x cos θz − y sin θz (17)

y′ = x sin θz + y cos θz (18)

R′2
a = R′2

a cos2 θy + R′2
b sin2 θy (19)

This is identical to an ellipse formed from a circle with
its center at the origin and a radius of 1, scaled by fRa′/Z
vertically and fRb/Z horizontally, rotated by θz , and shifted
by (fX/Z, fY/Z) in the image plane.

The effect of rotation on the moments is corrected for as
shown below. When x′ = x cos θ − y sin θ, y′ = x sin θ +
y cos θ, and I ′(x′, y′) = I(x, y), the moments of I ′(x′, y′)
are

m′
p,q =

∫ ∫
(x cos θ − y sin θ)p

(x sin θ + y cos θ)qI(x, y)dxdy (20)

For example, when p = 1 and q = 0, the moment is
calculated by:

m′
1,0 =

∫ ∫
(x cos θ − y sin θ)I(x, y)dxdy (21)

= m1,0 cos θ − m0,1 sin θ (22)

In the general case, it is calculated using Equ. (31) shown
later.

2) Coplanar Figure and Convex Polyhedron: When a
point on a three dimensional object X = (X,Y,Z) is moved
to X′ = (X ′, Y ′, Z ′) along with the object’s rotation and
translation, X′ is described as:

X′ = RX + t (23)

Here, R is the rotation matrix and t is the translation
vector. In the camera coordinate system, the object is on the
plane Z = Zc.

Assuming weak perspective projection, the projection im-
age of the object after rotation and translation (x′, y′) is
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x′ = f
X ′

Z ′
c

=
r11X + r12Y + r13Zc + tx

Z ′
c

(24)

y′ = f
Y ′

Z ′
c

=
r21X + r22Y + r23Zc + ty

Z ′
c

, (25)

where rij are the elements of the rotation matrix, and
tx, ty, tz are the elements of the translation vector. Here, Zc′

is the z coordinate of the centroid of the object after rotation
and translation.

On the other hand, a point in the projection image (x, y)
before rotation and translation is expressed as:

x = f
X

Zc
(26)

y = f
Y

Zc
(27)

Therefore, movement of a point in the image after rotation
and translation is expressed by the affine transform:

x′ =
Zc

Z ′
c

(r11x + r12y) +
f

Z ′
c

(r13Zc + tx) (28)

y′ =
Zc

Z ′
c

(r21x + r22y) +
f

Z ′
c

(r23Zc + ty). (29)

The effect of this affine transform on the moments is
corrected for as follows. When x′ = ax + by + c, y′ =
dx + ey + f , and I ′(x′, y′) = I(x, y), the moments of
I ′(x′, y′) are

m′
p,q =

∫ ∫
(ax + by + c)p(dx + ey + f)q

(ae − bd)dxdy (30)

= (ae − bd)
∑
i1

∑
j1

∑
i2

∑
j2

p!
i1!j1!k1!

q!
i2!j2!k2!

ai1bj1ck1di2ej2fk2mi,j (31)

where i = i1 + i2, j = j1 + j2, p = i1 + j1 + k1, q =
i2 + j2 + k2,
i1 ≥ 0, j1 ≥ 0, k1 ≥ 0, i2 ≥ 0, j2 ≥ 0, k2 ≥ 0.

Consequently, the moments of a planar object after rota-
tion and translation are calculated from the moments before
rotation and translation, which are calculated in advance.

Because it is difficult to calculate the Jacobi matrix
∂m̃(x̃)/∂x̃ directly, it is calculated via parameters of the
affine transform p̃(x̃) = (ã(x̃) b̃(x̃) c̃(x̃) d̃(x̃) ẽ(x̃) f̃(x̃))
as follows:

∂m̃(x̃)
∂x̃

=
∂m̃(x̃)
∂p̃(x̃)

∂p̃(x̃)
∂x̃

(32)

In addition, the moments of a convex polyhedron with-
out self-occlusion can be calculated from the sum of the
moments of all visible surfaces. Whether each surface is
visible or not can be determined using a basic hidden surface
elimination algorithm, or more easily, the moments can be

obtained by dividing the sum of the moments of all surfaces
by two.

Because the direction of the each surface before rotation
and translation is different, the moment of each surface is
calculated by moving the line of sight as to be orthogonal to
the surface. In rotation and translation, the rotation matrix is
calculated for each surface by considering the movement of
the line of sight:

Ri = RR̂−1
i , (33)

where R is the rotation matrix of the object, Ri is the rotation
matrix of each surface, considering the movement of the line
of sight, and R̂i is the line of sight for each surface in the
moment calculation before rotation and translation.

3) Arbitrary Shape: In case of an object with an arbi-
trary shape, because it is difficult to calculate the moments
analytically from its position and orientation, it is necessary
to generate a table in advance. Under weak perspective
projection, because the change of the projection image by
x, y, z, θz can be described by the affine transform, the table
needs to have only θx, θy as inputs.

B. Simulation

We implemented the algorithm above with MathWorks’
Matlab software and conducted a simulation. The target
object was a box which followed the movement model of
uniform translational and angular velocity, and a variation
according to a normal probability distribution was added
to translational velocity and angular velocity components
in every frame. Its central projection image was given as
an input image, and tracking was performed by the above
algorithm, using moments up to 4th order with weights
to make the moment values uniform because they differ
depending on their order.

In the measurement of the moments from an input image,
a rectangular measurement window a little larger than the
target region calculated from the estimated position and
orientation was generated, and the moments in the window
were calculated. The measured moments and the moments
calculated from the estimated position and orientation were
both calculated with the projected coordinates of the centroid
of the target calculated from the estimated position and
orientation defined as the origin.

The tracking result is shown in Fig. 2. The vertices of
the recognized box are indicated by bright points. A graph
of the actual and estimated positions and orientations is
shown in Fig. 3. The position and orientation were accurately
recognized.

III. NOISE MODEL

The algorithm shown in the previous section does not
work properly when applied to noisy images like Fig. 1. In
calculation of the moments mp,q with either p or q being odd,
like m1,0 and m0,1 which are used to obtain the centroid,
changes in the moments due to noise in the measurement
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frame 0 frame 25 frame 50

frame 75 frame 100 frame 125

Fig. 2. Simulation Result: Box tracking using Newton’s method.

window are averaged out to almost zero; however, with both
of p and q being even, the changes do not averaged to zero.

It is thus necessary to calculate the expected values of the
changes in the moments due to noise in the measurement
window. It is necessary to model the noise for this calcula-
tion.

Consider the noise model below, for example. Assume that
the ratio of pixels having a value of 1 in the original input
silhouette image becoming 0 is α, and the ratio of pixels
having a value of 0 becoming 1 is β.

Defining the original input image, i.e. the target image,
as I(T )(x, y) and an image in which the pixel value in the
window region is 1 as I(W )(x, y), the expected measured
moments are

m̄p,q =
∫ ∫

xpyq
(
I(T )(x, y)(1 − α)

+
(
I(W )(x, y) − I(x, y)

)
β
)

dxdy (34)

= (1 − α − β)m(T )
p,q + βm(W )

p,q , (35)

where m
(T )
p,q are the moments of the target and m

(W )
p,q are the

moments of the image with the pixel value in the window
region being 1. The moments of the target image can be
estimated from the measured moments using the equation
above.

Similarly, the variances of the measured moments can be
obtained from:

σ2
p,q =

∫ ∫ ((
xpyqI(T )(x, y)

)2(1 − α)

−(
xpyqI(T )(x, y)(1 − α)

)2

(
xpyq

(
I(W )(x, y) − I(T )(x, y)

))2

β

−
(
xpyq

(
I(W )(x, y) − I(T )(x, y)

)
β
)2

)
dxdy (36)
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Fig. 3. Simulation Result: Box tracking using Newton’s method.

= α(1 − α)m(T )
2p,2q

+β(1 − β)(m(W )
2p,2q − m

(T )
2p,2q) (37)

These variances can be used for normalization to flatten the
noise effect, depending on the order of the moment.

IV. 3D TRACKING USING PARTICLE FILTER

Even if the model above is introduced, Newton’s method
is not stable in the presence of a large amount of noise.
Furthermore, the algorithm does not work with images
having large motion between frames, though it is assumed
that the motion between frames is small at high frame rates.
An example of tracking failure is shown in Fig. 4

Newton’s method sometimes does not properly converge
if the difference between the initial value and the solution is
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large. Also, the effect of noise becomes larger as it converges
in every frame.

frame 103 frame 104 frame 105

Fig. 4. Simulation Result: Example of tracking failure.

By using a time-series filter such as a Kalman filter or
a particle filter [8], the convergence problem can be solved
and the effect of noise can be averaged temporally .

We describe an algorithm using a particle filter below.

A. Algorithm

The candidates of a set of positions and orientations and
velocity components of the target object in frame t are
defined by x(i)(t) = [x(i)(t) y(i)(t) z(i)(t) θ

(i)
x (t) θ

(i)
y (t)

θ
(i)
z (t) ẋ(i)(t) ẏ(i)(t) ż(i)(t) θ̇x

(i)
(t) θ̇y

(i)
(t) θ̇z

(i)
(t)]T (i =

1, ..., P ). Here, P is the number of candidates.
Based on the movement model, each candidate is updated

as follows:

x̃(i)(t) = Dx(i)(t − 1) + n(i)(t − 1) (38)

where n(i)(t) is Gaussian noise with an average of 0 and a
covariance matrix of Σ.

From the squared error of the moments measured from
the input image m(t) and the moments calculated from the
position and orientation candidates, the likelihood of each
candidate w(i)(t) is calculated:

w(i)(t) = α
(
aeb + 1

)
(b < 0) (39)

e = ||m(t) − m̃(x̃(i)(t))||2 (40)

α = 1/
∑

i

w(i)(t) (41)

By creating and deleting candidates based on the obtained
likelihood, {x(i)(t)|i = 1, ..., P} is generated.

By executing this in every frame, the candidates near
the position and orientation of the input image survive, and
continuous tracking is thus realized.

B. Simulation

We executed the above algorithm in our simulation. Noise
based on the noise model described in Section III, with α =
β = 0.4, was added to the same input image as that used
in Section II. The number of candidates was 1000, and the
average was regarded as the recognition result. Moments up
to 4th order were normalized to flatten the noise effect by
dividing each moment by its standard deviation, the square
root of the variance described in Section III.

The tracking result is shown in Fig. 5. The vertices of
the recognized box are indicated by bright points. Using
the particle filter, we demonstrated that the position and
orientation could be recognized even with noisy images. A
graph of the actual and estimated positions and orientations
is shown in Fig. 6. Though there are some errors in the
recognized position and orientation, continuous tracking was
realized.

frame 0 frame 25 frame 50

frame 75 frame 100 frame 125

Fig. 5. Simulation Result: Box tracking using particle filter.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose a method for three-dimensional
object tracking with rotation and translation using moments.
By using a time-series filter, we showed that tracking with
noisy images was possible. When using a particle filter
with our proposed algorithm, the number of moments to be
obtained from the input image is equal to the number of can-
didates. Therefore, we expect that the real-time processing
at high frame rates will be difficult. Some techniques are
required to overcome this problem, such as reusing the pre-
vious results for candidates having similar position and size
of the measurement window. Future work on this technique
will include simulation of arbitrary shapes, experiments using
real images, and real-time implementation of the proposed
algorithm.
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