
Positive Span of Force and Torque Components of Four-Fingered
Three-Dimensional Force-Closure Grasps

Nattee Niparnan and Attawith Sudsang

Abstract— We consider a 3D grasping problem. We propose a
test of R3-positive span of force cones and a test of R3-positive
span of their torque set. Our methods consider directly the
quadratic force cone without pyramidal linearization of a cone.
The conditions can be computed in a constant time and they
are used as a heuristic for 3D force closure test. We also show
that our proposed heuristic greatly improve the performance
of existing grasp testing algorithms.

I. INTRODUCTION

For a robot to go completely autonomous, it should be able
to grasp and manipulate any unknown object efficiently. A
best method for such problem is yet to be found. A grasping
problem has been studied for a long time (see [1] for a
recent survey).A well known notion in the literature is force
closure. Force closure indicates that a grasp is firm in the
sense that any external disturbance to the grasped object can
be countered by the grasping hand.

Identify a good grasp can be done using many approaches.
One might choose to go completely systematic: defining the
object by an algebraic model and then represent the problem
as an optimization problem under various conditions using
various objective function. This approach receives the most
attention recently. For example, Liu et al. propose an enumer-
ative method to search for a grasp on a discrete domain [2].
This method is guaranteed to identify the grasp. However,
methods in this categories require elaborate computation
technique which takes a relatively large amount of time.

Instead of being completely deterministic, one might em-
ploy a stochastic approach. For example, Brost et al. [3]
proposes that a good quality grasp is common such that it is
best to randomly generate a few grasps and pick the best one.
Statistically, it is shown that one should be able to identify
a suitable grasp from a few number of candidate solutions.
In this approach, the important of a fast method to check
whether the grasp is usable is most essential.

In the past few years, several force closure testing methods
are proposed. For example, the ray shooting method of Liu
[4], the Q-Distance method of Zhu and Wang [5] and its
recent related method in [6], or the use of pseudodistance,
such as GJK [7], as in [8]. However, all of these methods
require considerable computation time. Introducing heuristic
approach is one way to improve performance. For example,
the work in [3] introduces a simple heuristic for 3D grasp.
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In this work, we investigate basic components of a 3D
grasp: forces and torques that are exerted by contact points.
Utilizing the characteristic of these components, we propose
an efficient method to test whether forces and torques each
separately satisfy necessary condition of force closure. Un-
like many other works, our method directly consider the
quadratic friction cone without pyramidal linearization. We
also empirically show that, by integrating our heuristic into
a force closure test, it could substantially reduce the overall
time to test a set of grasps.

II. GRASPING BACKGROUND AND NOTATION

A grasp is defined by a set of contact points. Force closure
is a property of a grasp, indicating that the grasp can counter
any external disturbance to the grasped object. Interaction
applying to the object is represented by forces and torques.
To represent a force and a torque simultaneously, we coalesce
a force f = (fx, fy, fz) and a torque τ = (τx, τy, τz) into a
wrench w = (fx, fy, fz, τx, τy, τz)T ∈ R6.

We associate a contact point with a set of wrenches that
the contact point could exert. The external disturbance is
also represented by a single wrench. A grasp is said to
achieve force closure when its contact points can produce
every wrench in the wrench space (R6). Canonically, force
closure property considers only directions of wrenches while
their magnitudes are neglected. Hence, it is usually assumed
that the contact can produce unlimited magnitude of force.

To check whether a grasp achieves force closure, we check
the wrenches associated to the contact points of the grasp.
Given two or more wrenches, we can produce other wrench
that is a positive combination of the original wrenches. A set
of wrenches achieve force closure when they can produce
every wrench encompassing all directions in the space. The
term Rn-positive span is defined to represent such property.

Definition 2.1: A set of n wrenches {w1, . . . ,wn} pos-
itively spans Rn if and only if, for any vector v in Rn,
there exists nonnegative constants α1, . . . , αn such that v =
α1w1 + . . . + αnwn.

Notice that this definition assumes that we can adjust the
size of each wrench freely, indicating that we consider only
the direction of the wrenches, not their particular size.

Definition 2.2: A wrench set W = {w1, . . . ,wn}
achieves force closure property when they positively span
R6.

A set of wrenches that can be exerted by a contact point
varies according to the model of the contact. This work
assumes a hard contact with Coulomb friction model [9].
A hard contact cannot exert a pure torque. A torque from
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the contact must be the result of the applied force only. A
contact point at p exerting a force f can be represented
by a wrench w = (f ,p × f). Since the contact point is
frictional, the contact point can exert some tangential force
without slip. The maximum ratio between the magnitude of
tangential force and the magnitude of the force in the normal
direction is indicated by the frictional coefficient µ between
the object and the contact point. This means that the set of
exertable force is define by a friction cone where the half-
angle θ of which is equal to tan−1(µ).

In this work, we make an extensive use of a plane contain-
ing the origin in R3. Let P be a plane in R3. We can represent
P by its normal vector n. Formally, P = {x|x · n = 0}.
We say that a vector x is on the positive(negative) side of P
when the sign of x ·n is positive(negative). Two vectors are
said to be on the different sides of P when one of them is
on the positive side and the other of them is on the negative
side.

III. THE HEURISTIC

The goal of our heuristic is to reduce the overall time to
test several grasps. This could be beneficial when we are
presented with a discrete set of grasps and to identify grasps
that achieve force closure. The heuristic relies on a necessary
but not sufficient condition. The heuristic itself is a test of
force closure possible to report a fault positive but not a
fault negative. The heuristic is required to be computational
inexpensive to be useful: it has to perform much faster than
the complete test of force closure.

From the definition of positive span, we can observe that
if a set of wrenches W positively span Rn, its projection on
any subspace Rk<n must also positively span that subspace.
However, this condition is only necessary but not sufficient.
This observation is the basis of our heuristic which is “If the
grasping wrenches do not positively span in any subspace,
this grasp does not achieve force closure”. Since we consider
a wrench which consists of two distinct entities: a force and
a torque, it is natural to consider the 3D force subspace and
the 3D torque subspace.

An interesting thing about torque is that it varies according
to the choice of the origin. However, force closure property
is invariant to the choice of the origin. There also exists a
special case when the origin coincides with the contact point
pi. In this case, every wrench associated with the contact
point pi has zero torque and we can neglect one entire set
of torque. In our heuristic, we check the positive spanning
of the torque sets at four different origins, each of which is
one of the four contact points of the grasp. If any of them
renders the torques that do not positively span R3, we can
conclude that the grasp does not positively span R6.

Our choice introduces five problems in 3D geometry. One
is a test of R3-positive span of four force cones in 3D and
the other four problems are tests of R3-positive span of three
torque sets in 3D. As to be shown in Section IV and V,
these five subproblems are simple to solve. This makes our
heuristic very efficient. In Section VI, it will be empirically

shown that introducing our heuristic is beneficial for force
closure test of several grasps.

A. Positively Spanning in R3

Lemma 3.1: Four vectors w1, . . . ,w4 positively span R3

when the negative of any of these vectors lies strictly inside
a pyramid formed by the other three vectors.

Ding et al. provided a proof of a more general version of
Lemma 3.1 which can be found in [10].

Lemma 3.1 indicates that if there exists at least one vector
that its negative lies inside the cone of the other wrenches, the
wrenches positively span R3. It also indicates that if at least
one vector has its negative not lies strictly inside the cone, we
can immediately conclude that they do not positively span.

Lemma 3.2: Let W be a set of vectors. If there exists a
plane P such that every vector in W lies either on P or on
the same side of P , then W does not positively span.

Proof: If such plane exists, there is no vector that lies
on the other side of P . Hence, a vector on the other side
cannot be written as a positive combination of the vector in
W .

In the upcoming section, we will encounter a need to
describe a set of all positive combinations of vectors. We call
such a set a positive span and denote by Ψ(W ) the positive
span of W which is defined by Ψ(W ) = {

∑
αivi|αi ≥

0,vi ∈ W}. When W does not positively span Rn, Ψ(W )
is a convex subspace. We can also represent Ψ(W ) by the
intersection of several half spaces defined by planes which
are tangent to Ψ(W ). We call these planes bounding planes.
We will restrict normal vectors of bounding planes to point
inward such that x · n ≥ 0 for all normal vectors n of
bounding planes of Ψ(W ).

IV. POSITIVE SPAN OF FORCE COMPONENTS

In this section, we concentrate on the question whether
four 3D force cones positively span R3. Since positively
spanning property does not consider the size of vectors, our
method deliberately considers forces by their direction only.

The key concept of this method is to maintain a set of
force cone and iteratively add another cone. At each step, we
check whether the new cone, together with the positive span
of the previous cones, positively span R3. The computation
done in each step requires only a manipulation of a direction
of vector in 3D. It will be shown that this step is complete
and correct.

Since we concern only a direction of a vector, it is
sufficient to represent a cone by its axis vector and its half
angle. The axis of a force cone is the inward normal vector of
the contact point and the half-angle of the cone is computed
from the frictional coefficient. Without lost of generality, we
assume that half-angle is the same for all cones. However,
our method is not limited to such assumption, it can be
modified for various half angles.

We define Fi as a force cone associated with the contact
point pi whose unit inward normal is ni. Formally, Fi is
equal to {f |(f ·ni)/|f | ≥ cos θ}. We also define a negative
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cone −Fi = {−f |f ∈ Fi} as the cone consisting of the
negative member of Fi.

We say that a cone has non-boundary intersection with
another object when the intersection is not on the boundary
of the cone. The boundary of a force cone is the set
{f |(f · ni)/|f | = cos θ}. We present a necessary and
sufficient condition for several force cones to positively span
R3 as follows. The condition is basically an extension of the
Lemma 3.1.

Lemma 4.1: Let F1, . . . , Fn be force cones of contact
point at p1, . . . ,pn. These force cones positively span R3

when there exists a non-boundary intersection between the
negative of any cone and the positive span of the other cones.

Proof: Let −F1 be the negative cone having non-
boundary intersection with the positive span of F2, . . . , Fn.
Let v be a vector in the non-boundary intersections. When v
exists, we can always find three non-coplanar vectors in the
positive span set such that v lies strictly inside the pyramid
formed by the three vectors. Obviously, −v is a vector in F1.
Hence v is a negative vector lying strictly inside a pyramid
of the other three vectors being a member of the positive
span set. From Lemma 3.1, these cones positively span R3.
The condition is sufficient.

Next, we consider the necessity of the condition. Let W =
Ψ(

⋃n
i=2 Fi). We will show that if −F1 does not contain

any wrench that lies strictly inside W , then no vector in
−W can be written as a positive combination of members
of F1, . . . , Fn. Hence, they do not positively span R3.

Assume that there exists a subset A of F1 and a subset
B of W such that the positive combination of vectors in A
and B is a vector in −W . Since F1 and W is a positive
span, a positive combination of vectors in A and a positive
combination of vectors of B must be a vector in F1 and
a vector in W , respectively. Hence, it is sufficient to show
that, there does not exists a vector a ∈ F1 that its positive
combination with any vector in W is a vector in −W .

Since −a does not lies in W , there exists a bounding plane
P of W such that −a is on the negative side of P . In other
words, a lies on the positive side of P . Obviously, any vector
in −W is on the negative side of P . Hence, it is not possible
to write any vector in −W by a positive combination of a
and some vector in W .

To test four force cones, we pick two cones arbitrarily,
says Fi and Fj , and then check whether these two cones
positively span R3. If they do not, we pick another cone,
says Fk. From Lemma 4.1, the only possibility that these
three cones do positively span R3 is that −Fk must have
non-boundary intersection with Ψ(Fi ∪Fj). Thus, we check
for such intersection. If none such intersection exist, then,
we take the last cone into account. Again, by Lemma 4.1,
we know that these four cones positively span R3 only when
the negative of the last cone has non-boundary intersection
with Ψ(Fi ∪ Fj ∪ Fk). The checking whether a negative
cone intersect with positive span of one cone, two cones and
three cones are described in Section IV-A, IV-B and IV-C,
respectively.

F1

F2

Fig. 1. Two force cones intersect with a unit sphere. The shaded area
represents the intersection between the positive span of two cones and the
sphere.

F1

F2
F3

(a)

n3

F ′
1

F ′
2

(b)

Fig. 2. Force cones as seen on the surface of the unit sphere. The picture
does not preserve the linearity. It rather illustrates the are of interest. (a) F3

and Ψ(F1 ∪F2). (b) Enlarging of F1 and F2 by the half angle of F3, i.e.,
the Minkowski’s sum of each cone.

A. R3-Positive Span of Two Force Cones

Lemma 4.2: Two force cones with half-angles θ1 and θ2,
respectively, positively span R3 if and only if the angle
between the axis of one cone and the negative of the axis of
the other cone is smaller than θ1 + θ2.

Proof: From the definition of a cone, when the angle
between the axis is smaller than θ1 + θ2, we can find a
vector x that strictly inside both cones, and vice versa.
Since we consider the axis of the negative cone, it means
that there exists a vector being a member of one cone and
a member of the negative of the other cone concurrently.
Hence, these two cones has non-boundary intersection if and
only if the condition is satisfied. From Lemma 4.1, The proof
is completed.

B. R3-Positive Span of Three Force Cones

Given three force cones F1, . . . , F3, two of them, namely
F1 and F2 are known to not positively span R3. Assume that
their half angle are θ1, . . . , θ3, respectively. Denote by ni the
axis of Fi. The question is whether −F3 has non-boundary
intersection with Ψ(F1 ∪ F2). Observed that the question is
equivalent to the question whether a vector n3 lies strictly
inside Ψ(F ′

1 ∪F ′
2), where F ′

i is a the cone Fi the half angle
of which is increased by θ3, the half angle of F3.

Since we concern only the direction of a force cone, let us
represent a force cone by its intersection with a unit sphere.
When we look at the surface of the sphere, the intersection
of Ψ(F1 ∪ F2) resembles a racetrack (see Fig. 1). Fig. 2
displays the transformation.

From Fig. 2, a vector n3 is strictly inside a Ψ(F ′
1 ∪ F ′

2)
only when n3 lies strictly inside F ′

1, F ′
2, or the area in

between, which is represented by a shaded region in the
figure. Checking whether a vector is inside a circular cone
is merely checking whether angle between the vector and
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F1

F2

(a)

F1

F2

(b)

Fig. 3. The area where a vector can lies inside Ψ(F ′
1 ∪F ′

2). (a) the great
circles that passing through the double tangents, i.e., the upper and the lower
plane. (b) the great circles that joining the double tangent of the same cone,
i.e., the left and the right plane.

F1

F2

n1

n2 r1

r1

(a)

r1

n1
n2

θ

t1a

t1b

(b)

Fig. 4. (a) The normal vectors of the left and right plane. (b) This figure
show the cones as viewed along n1+n2. The vectors that define the double
tangent of F1 and F2. The vector t1a and t1b are the results of rotating
n1 around r1 by θ and −θ, respectively.

the cone’s axis is smaller than the half angle of the cone.
The remaining problem is to check whether the vector lies
strictly inside the area in between.

The area in between can be represented by the intersection
of four half spaces, each of which has its normal vector
pointing inward to Ψ(F ′

1 ∪ F ′
2). Two planes are the planes

containing the great circles that are the double tangents of
F ′

1 and F ′
2 (see Fig. 3(a)). We call these planes the upper and

the lower plane. The other two planes are the planes joining
the double tangents of the same force cone, we call these
planes the left plane and the right plane (also see Fig. 3(b)).
Let P be the plane containing n1 and n2. Let ri ∈ P be
the vector that is perpendicular to ni. We restrict r1 to point
toward n2 and r2 to point toward n1, i.e., r1 · n2 > 0 and
r2 ·n1 > 0. Obviously, r1 and r2 are the normal vectors of
the left and the right plane, respectively. The vectors on F1

that define the double tangents to F2 can be calculated by
rotating n1 around r1 by θ1 and −θ1. Also, The vectors on
F2 that define the double tangents to F1 can be calculated
by rotating n2 around r2 by θ2 and −θ2 (see Fig. 4).

C. R3-Positive Span of Four Force Cones

This question is just an extension of the previous question.
Let W = Ψ(F1 ∪ F2 ∪ F3). First, let us consider the
intersection of W with the unit sphere. Again, we extend
each cone by the half-angle of F4, and check whether the
axis of F4 lies inside W ′ = Ψ(F ′

1 ∪ F ′
2 ∪ F ′

3) where F ′
i is

defined in the same way as in Section IV-B. Fig. 5 illustrates
W ′ as seen on the surface of the sphere. Obviously, a vector
n4 is inside W ′ when either it is inside Ψ(F1 ∪ F2), inside
Ψ(F2 ∪ F3), or inside Ψ(F3 ∪ F1), or, finally, inside the
pyramid defined by the axis of the three cones. The last area

F2

F3

F1

Fig. 5. W ′ as seen on the surface of the sphere. The shaded region is the
area need to be checked in addition to the other checking that can be done
by the previous method.

is illustrated as a shaded region in Fig. 5. The first three
zones (Ψ(Fi ∪ Fj)) can be checked directly by the method
described in IV-B. The remaining problem is whether n4 lies
strictly inside the pyramid of n1, . . . ,n3.

Since we know that the three cones do not positively
span, we know that n1, . . . ,n3 inevitably forms a pyramid.
We have to calculate the inward normal vector of the three
bounding facets of the pyramid. The normal vector of the
three faces of the pyramid is an ordered pairwise cross
product of n1, n2 and n3. However, we need to know the
correct order of the axis. There can be only two distinct
orders, namely (n1,n2,n3) or (n2,n1,n3). This can be
obtained directly by considering the facet that contain n1

and n2.
Obviously, the normal vector of the facet that contain n1

and n2 is either n1 × n2 or n2 × n1. The correct one the
one that its dot product against n3 is positive, since we know
that n3 must be on the inward side.

V. R3-POSITIVE SPAN OF TORQUE COMPONENTS

Let F be the force cone at the contact point p. We denote
by T the correspondent torque set of F . Formally, T = {p×
f |f ∈ F}. As in the case of force cones, we concern only the
direction of the torques. Since p× f must lies on the plane
perpendicular to p, T must also lies on the plane. Let us
denote such plane by Pp. Given a particular force vector f ,
observe that for all vectors f ′ lying on the plane containing
p and f , all the cross products p× v′ lie on the same line.
These facts are crucial because it implies that the rank of the
torque set is less than 3.

Any plane containing p and intersecting F generates
torques which all lie on the same line and no other plane
can generate a torque. Let l be the line containing p. If l
intersects F , every plane containing p always intersects F ,
hence, T is exactly Pp.

Let us consider the remaining case where l does not
intersect F . Let Pf be the plane containing the force f and
the position vector p. With respect to Pf , Pf ∩ F is a fan
lying on the same side of l. Hence, every force in Pf ∩ F
generate torques lying not only in the same line but also in
the same direction (sign). Since F is a convex set, all Pf

yield torques being a convex set in Pp. Hence, T is a fan in
this case. The boundary of the fan is the torque generated
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A

f b

f a
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p

(a)

F

nf

f b

f a

A

φ

B

(b)

Fig. 6. (a) The shaded regions represent tangential planes (b) The plane
perpendicular to nf and containing the point q. The radius of the boundary
of the cone is r = tan(θ)(p ·nf ). The angle φ equals to arccos(r/|AB|).

from two particular Pf that tangentially touch F . Formally,T
is a fan H = {αa + βb|α, β ≥ 0}, where a and b are the
boundary vectors of the fan H .

We can identify a and b by identifying the vectors fa and
f b being on the boundary of F such that the plane containing
the p and the vector tangentially touch the cone F (Fig. 6(a)).
Let nf be the axis of F , let A be the point having p as its
coordinate. We can calculate fa and f b by considering the
plane Π perpendicular to nf and containing the point q. Let
B be the point where the axis of F intersects Π. Fig. 6(b)
describes the calculation of fa and f b.

A. R3-Positive Span of Three Torque Sets

We have established that a torque set of any contact point
is either a fan or a plane. Our problem is to check whether
the three torque sets positively span R3. When any of the
torque set is a plane, these sets can positively span R3 only
when there exists two vectors that are on the different sides
of that torque set plane. Let nt be the normal vector of
the torque set plane. If the other sets are fans, we check
whether the dot products of the boundary vectors with nt

have different signs. If the other sets are planes, we check
whether the normal vector of the other plane is not parallel
to nt.

The remaining case is when all three torque sets are fans.
This is done in the same manner as in the case of three force
cones (Section IV-B). First, we check whether two of them
positively span R3. If not, we check whether the negative
of the remaining fan has non-boundary intersection with the
positive span of the previous two fans.

A fan is a positive span of its boundary vectors. To check
whether two fans positively span R3 is equivalent to checking
whether their boundary vectors positively span R3. There are
four boundary vectors. By Lemma 3.1, we can directly use
the method checking whether a vector lies inside a pyramid
of three vectors, as described in the test of four force cone
(Section IV-C).

Now, let us assume that we have checked T1 and T2 and
they do not positively span R3. We then consider the third
cone Tc. Since T1 and T2 are fans, their positive span can
only be a half space, a larger fan, a plane, or a pyramid.
Each case is considered separately. We denote by Pi the
plane containing the fan Ti.

1) The Half Space Case: This case can be detected by
verifying that one fan, says Ta, has exactly one of its
boundary vectors lying on the plane containing the other fan,

says Tb, and the negative of that boundary vector lies strictly
inside Tb. In such case, the half space is defined by the plane
Pb. These three fans positively span R3 only when Tc has at
least one of its boundary vectors lies outside the half space.
This can be identified from the sign of the dot products of
the boundary vectors of Tc and the normal vector of Pb.

2) The Plane and Fan Case: When both T1 and T2 lie
on the same plane, their positive span forms either a fan
or a plane. It is a plane when the boundary vectors of T1

and T2 positively span the plane. This case is verified by
checking whether one fan has its negative boundary vectors
lie inside the other fans, and vice versa. In this case, the fans
positively span R3 only when the boundary vectors of Tc lie
on the different side of P1. If Ψ(T1 ∪ T2) is a fan, we can
check whether Ψ(T1 ∪T2) and T3 positively span R3 by the
same method for the case of two fans.

3) The Pyramid Case: The only remaining case is that
Ψ(T1∪T2) is a pyramid. In this case, −Tc has non-boundary
intersection with the pyramid only when one of the boundary
vectors of −Tc lies strictly inside the pyramid or when
−Tc intersects with any facet of the pyramid. A pyramid
is represented by an intersection of several half spaces, each
of which is described by a bounding plane.

We represent the bounding plane of Ψ(T1 ∪ T2) by a
sequence of vectors S = (v1,v2, . . . ,vn). Each bounding
plane is a plane whose normal vector is the cross product
of vi and vi+1 (the last facet is defined by vn × v1).
Since the pyramid is constructed from two fans, i.e., four
boundary vectors, the vector in the sequence S must be the
boundary vectors of T1 and T2. We have to determine which
boundary vectors constitute the sequence and in which order.
The requirement for the sequence is that, for every facet, all
other vectors in the sequence must be on the same side of
that facet.

This problem is equivalent to the computation of a convex
hull of two segments (four end points), which can be
represented by a sequence of points. The boundary of the
convex hull are segments joining the adjacent points in the
sequence. Each segment has all other points in the sequence
lie on the same side. This is analogous to the requirement
of the sequence S. Instead of considering the side of end
points with respect to a line, we considering the side of the
boundary vectors of one fan with respect to the the plane
containing the other fan.

Fig. 7 illustrates all possible cases of the side of end points
of two segments. We consider the side of the end point of
one segment with respect to the line defined by the other
segment. In the first case (Fig. 7(a)), both segments has its
end points lie in the same side. The convex hull in this case
are the end points of one segment follows by the end points
of the other segment. In the second case (Fig. 7(b)), end
points of one segment lie in the different sides while the end
points of the other segment lie on the same side. One end
point of the same-sided segment is removed. Finally in the
third case (Fig. 7(c)), both segments have their end points
lie in the different side. The sequence of end points is the
interwoven list of end points of both segments.

FrE4.4

4705



+

+

−
−

a1

a2

b1

b2

(a) a1, a2, b2, b1

+

− +

+

a1

a2b1

b2

(b) a2, b2, b1

+

−

+

−

a1

a2

b1

b2
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Fig. 7. Calculation of Ψ(T1∪T2) which is equivalent to the calculation of
a 2D convex hull of two lines. Instead of checking whether the other points
lie on the same side of the line containing the facet of the 2D convex hull,
we check whether the other boundary vectors lie on the same side of the
plane containing the facet of a 3D convex hull. The three pictures illustrate
all possible configurations of two segments. The caption of each figure is
the convex hull of the segments.

VI. NUMERICAL EXAMPLE
The most important concern of any heuristic method is

how they compete with a complete method. Our heuristic
sacrifices completeness in favor of fast rejection of a negative
answer. The obvious question is whether this trade off is
beneficial. The complete method which is used as a reference
method in our experiment is a point-in-convex-hull assertion
algorithm called GJK [7]. To the best of our knowledge,
GJK is the fastest way to determine whether the origin is
inside the convex hull of the primitive contact wrenches. We
use the improved implementation of GJK proposed by [11].
The running time of GJK is believed to be linear in practice.
However, it requires the cone be linearized. For GJK, we use
a 32-sided pyramids to represent a linear model of a cone.
Be noted that our heuristic does not linearize the force cones.

The test suite consists of several sets of 3D grasping
configurations. Each grasping configuration is described by
four contact positions and their respective inward normal
directions. The half angle of a force cone is assumed to be 10
degrees. The grasping configuration is randomly generated
from various 3D models illustrated in Fig. 8. For each model,
108 grasping configurations are randomly generated. The
experiments were run on Pentium Core 2 Duo machine with
1GB memory. The program is implemented in C++.

We compare the actual running time for testing all grasps.
The first method use GJK to test all grasps. The other method
use our heuristic as a rejection filter. If a grasp is not rejected
by our heuristic, we then perform GJK algorithm on the
grasp. The result of both experiments are shown in Table I.
Our method is labeled as “NEW”. We also count the number
the number of false positive solution and the total number
of positive answer of our method. The ratios between these
number are shown in the last column.

(a) (b) (c) (d)

Fig. 8. Test Objects.

TABLE I
RESULT OF THE EXPERIMENT

Time (s.) #Solution
GJK NEW Ratio Positive False Ratio

(a) 161.57 347.98 46.43% 273142 47996 17.57%
(b) 235.34 421.42 55.84% 301762 61751 20.46%
(c) 52.80 187.75 28.12% 48461 26355 54.38%
(d) 216.20 461.59 46.83% 217819 14702 6.74%

VII. CONCLUSIONS

We investigate the nature of the force set and the torque
set of a frictional contact point. Specifically, we show that
the torque set is either a fan or a plane while the force set is
a circular cone. We also provide methods to check whether
the force sets of four contact points positively span the force
space and whether the torque set of the same contact points
positively span the torque space.

The virtue of our method is that it can be computed in
a constant time. This speed is obtain from the fact that we
consider the actual quadratic force cone without pyramidal
linearization. Moreover, we utilize the fact that Rn-positively
span is unrelated to the size of the vector. This allow us to
derive a method relying on a relative direction of vectors,
planes and half space. The computation of such conditions
requires only simple calculations.

We propose the use of our method as a fast heuristic to
four finger 3D grasping. Our heuristic works as a filter that
reject a grasping candidates that cannot positively span R3.
With our heuristic, it is shown that we can reduce the time
required to test a large set of grasp configurations.
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