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Abstract—Based on the methodology of sliding mode, this 
paper presents a robust controller for a class of under-actuated 
systems with mismatched uncertainties. Such a system consists 
of a nominal system and the mismatched uncertainties. The 
structural characteristic of the nominal system is that it is made 
up of several subsystems. Based on this characteristic, the 
hierarchical structure of the sliding mode surfaces is designed 
for the nominal system as follows. Firstly, the nominal system is 
divided into several subsystems and the sliding mode surface of 
every subsystem is defined. Secondly, the sliding mode surface 
of one subsystem is selected as the first layer sliding mode 
surface. The first layer sliding mode surface is then to construct 
the second layer sliding mode surface with the sliding mode 
surface of another subsystem. This process continues till the 
sliding mode surfaces of all the subsystems are included. For 
dealing with the mismatched uncertainties, a lumped sliding 
mode compensator is designed at the last layer sliding mode 
surface. The asymptotic stability of every layer sliding mode 
surface and the sliding mode surface of each subsystem is 
proven theoretically by Barbalat’s lemma. Simulation results 
show the validity of this robust control method through 
stabilization control of a double inverted pendulums system 
with mismatched uncertainties.  

I. INTRODUCTION 
ECHANICAL systems with fewer number of control 
inputs than the number of degrees of freedom to be 

controlled are called under-actuated systems. They arise in 
extensive applications. Some undesired properties of their 
dynamics, such as nonlinearities, non-holonomic constraints 
and couplings, make control design difficult. There have been 
increasing interests in the control problems of under-actuated 
systems in recent years.  

In this paper, we focus on a class of under-actuated systems, 
including Acrobot [1], inverted pendulum(s) system [2], [11], 
[12], TORA [3], ball-beam system [11], etc. Such systems 
can be depicted by a canonical state space expression. They 
are often used for research on nonlinear control and education 
in various concepts, because they are simple enough to permit 

complete dynamic analyses and experiments, but there exist 
strong nonlinearities and dynamic couplings. In practice, 
uncertainties often exist because of external and internal 
disturbances. This will make the control problems of such 
systems further complex. Two methods are often used to 
handle the uncertainties. One is to design a robust controller 
for resisting the uncertainties [4], [5] and the other is to 
estimate the uncertainties thought artificial intelligence 
[6]–[8]. In this paper, we will work at designing a robust 
controller to deal with the uncertainties.  
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Sliding mode control (SMC) is a powerful and robust 
nonlinear feedback control method. It has been developed 
and applied to feedback control systems for the last three 
decades [9], which provides a good candidate. The sliding 
mode controller is insensitive to system parameter changes or 
external disturbances when system states keep sliding on 
sliding mode surface. Under matched condition, SMC can 
deal with matched uncertainties effectively [10]. There exist 
two crucial issues associated with the applications of SMC to 
the under-actuated systems with mismatched uncertainties. 
One is how to design a suitable sliding mode surface, because 
the parameters of the sliding mode surface of under-actuated 
systems can’t be calculated directly by Hurwitz condition. 
The other is how to handle the mismatched uncertainties, 
because most physical systems do not satisfy the matched 
condition of SMC in practice. 

As for the first issue, the hierarchical sliding mode surfaces 
can be designed for the class of under-actuated systems that 
can be divided into several subsystems, such as Pendubot, 
inverted pendulum(s) system and so on. Based on this idea, 
Lo and Kou [11] designed a decoupled fuzzy sliding-mode 
controller, which didn’t prove the stability of the sliding 
mode surfaces strictly. Lin and Mon [12] presented a 
hierarchical fuzzy sliding mode controller, which only 
guaranteed the second level sliding mode surface was 
asymptotically stable. Wang, Yi, and Zhao [13] developed a 
hierarchical sliding mode controller whose sliding mode 
surfaces are asymptotically stable. However, [13] only 
considered such under-actuated systems with two subsystems. 
For the above second issue, the mismatched uncertainties 
have been considered by using sliding mode method in recent 
papers. [11] and [12] designed the distributed compensators 
and compensated the uncertainties at every layer sliding 
surface, but this made the controllers complex. [13] 
considered such a crucial issue in theoretical analysis, but 
didn’t show it in simulation.  

In this paper, a robust controller based on the methodology 
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of sliding mode is presented for a class of under-actuated 
systems with mismatched uncertainties. Such a system 
consists of a nominal system and the mismatched 
uncertainties. The structural characteristic of the nominal 
system is that it consists of several subsystems. Based on this 
idea, the hierarchical structure of the sliding mode surfaces is 
designed for the nominal system as follows. Firstly, the 
nominal system is divided into several subsystems and the 
sliding mode surface of every subsystem is defined. Next, the 
sliding mode surface of one subsystem is selected as the first 
layer sliding mode surface. The first layer sliding mode 
surface is then to construct the second layer sliding mode 
surface with the sliding mode surface of another subsystem. 
This process continues till the sliding mode surfaces of all the 
subsystems are included. For the mismatched uncertainties, a 
lumped sliding mode compensator is designed at the last layer 
sliding mode surface. This viewpoint can simplify the design. 
The asymptotic stability of the whole sliding mode surfaces is 
proven theoretically. Simulation results show the validity of 
this robust control method by stabilizing a double inverted 
pendulums system with mismatched uncertainties.  

II. DESIGN OF CONTROL STRATEGY 
Considering a class of under-actuated systems with 

mismatched uncertainties, the state space expression of such a 
system can be depicted in the following form.  
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where  is defined as a state variable 
vector;  and 

T
1 2 2[ , , , ]nX x x x= L

fi bi   are the nonlinear functions 
of the state variables; d  is the term of lumped mismatched 
uncertainties, including system uncertainties and external 
disturbances;  is bounded by 

( 1, 2, , )i = L n

i

di | d  where | di i≤ di  is a 
known and positive constant;  is the single control input.  u

Equation (1) is the normal form of a class of SIMO 
under-actuated systems with mismatched uncertainties by 
different n, fi, bi and di. If n=2, it can represent Acrobot, 
TORA, single inverted pendulum system; if n=3, it can 
express double inverted pendulums system; if n=4, it can be 
considered as triple inverted pendulums system; etc.  

Let di = 0, (1) can be treated as the nominal system of such 
an under-actuated system. Therefore, it is considered that a 
hierarchical sliding mode controller can be designed for the 
nominal system and that a lumped sliding mode compensator 
can be designed for the mismatched uncertainties. The 
hierarchical sliding mode controller and the lumped sliding 

mode compensator work together and realize the robust 
control for the under-actuated systems with mismatched 
uncertainties. In the following two subsections, the robust 
controller using the methodology of sliding mode will be 
presented for such a system as (1) step by step.  

A. Hierarchical Sliding Mode Control for Nominal System 
The nominal system can represent n subsystems with 

second-order canonical form in terms of the physical 
structural characteristic of such under-actuated systems. The 
state variables ( x2i-1, x2i ) of the ith group can be treated as the 
states of the ith subsystem. And the state space expression of 
the ith subsystem is described by 

2 1 2

2 f b
i i

i i i

x x
x u

− =⎧
⎨ = +⎩

&

&
.          (2) 

In order to design the hierarchical sliding mode controller 
for the nominal system in this subsection, let us define the 
sliding mode surface of every subsystem at first.  

For the state variables ( x2i-1, x2i ) of the ith subsystem, the 
sliding mode surface is defined as 

2 1 2i i i is c x x−= + .        (3) 

Differentiating si with respect to time t, there exists 

2 1 2 2 f bi i i i i i i is c x x c x u−= + = + +& & & .      (4) 

Let 0is =& , the equivalent control of the ith subsystem can be 
obtained as 

eq 2( f ) /i i i i bu c x i= − + .        (5) 

According to si and ueqi, the hierarchical sliding mode 
controller can be designed. The structure of the hierarchical 
sliding mode surfaces is shown in Fig. 1.  

 

Sn

Sn-1 sn 

S1 s2 

x1   x2 x3   x4 

x2n-1  x2n 

S2 

 
Fig. 1. Structure of hierarchical sliding mode surfaces

As the hierarchical structure has been shown in Fig. 1, the 
sliding mode surface of one subsystem is chosen as the first 
layer sliding mode surface. Then the first layer sliding mode 
surface is used to construct the second layer sliding mode 
surface with the sliding mode surface of another subsystem. 
This process continues till the sliding mode surfaces of the 
entire subsystems are included. This hierarchical structure 
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makes the ith layer sliding mode controller include the 
information from the other i-1 layers. If the nth layer control 
law is gotten, it can control the nominal system of the 
uncertain under-actuated system with n subsystems. 

Without loss of generality, the sliding mode surface of the 
first subsystem 1s  is defined as the first layer sliding mode 
surface , thus we have  1S

1S s= 1

2

1

1S

            (6a) 
The second layer sliding mode surface can be constructed 

as follow.  
2 1 1S a S s= +  

Similarly, the ith layer sliding mode surface can be defined as  

1 1 ( 2, , )i i i iS a S s i n− −= + = L .      (6b) 

For the first layer sliding mode surface, we define the 
control law and the Lyapunov function as  

1 eq1 smu u u= +          (7a) 
and  

2
1 1( ) / 2V t S= .         (7b) 

Here usm1 is the switch control of the first layer sliding mode 
controller.  

Differentiate  with respect to time t  and let 

. Here  and 
1( )V t

1 1 1 1 sgnS k S η= − −&
1k 1η  are positive constants. 

The following first layer sliding mode control law can be 
deduced from (3), (5), (6) and (7) at last.  

1 eq1 1 / bu u S= + &
1

i

i

         (8) 

Similarly, for the ith layer sliding mode surface, the control 
law and the Lyapunov function are defined as  

1 eq smi i iu u u u−= + +        (9a) 
and 

2( ) / 2i iV t S= .         (9b) 

Here usmi is the switch control of the ith layer sliding mode 
controller.  

Differentiate  with respect to time t and let 

, where  and 

( )iV t

sgni i i iS k S Sη= − −&
ik iη  are positive 

constants. The following ith layer sliding mode control law 
can be obtained from (3), (5), (6) and (9).  

num( ) / den( ) / den( ) 1,2, ,i iu i i S i i= + =& L n    (10) 

1 eq1

1 eq

b 1
num( )

num( 1) b 2i i i

u
i

a i u i−

=⎧⎪= ⎨ − + ≤ ≤⎪⎩

i

n
 

  1

1

b 1
den( )

den( 1) b 2i i

i
i

a i i−

=⎧
= ⎨ − + ≤ ≤⎩ n

n

 

Remark: Equation (10) is a recursive formula. Let i = n, the 
total control law of the nominal system with n subsystems can 
be gotten from it. As (10) has shown, only the switch control 
of the last layer sliding mode controller works and the switch 

controls of the other n-1 layers are merged during the 
deduction.  

Remark: In dynamic process, if any state deviates from its 
sliding mode surface, then the switch control of the last layer 
will drive it back to its own sliding mode surface. This makes 
the system states slide on the last layer sliding mode surface. 
Moreover, the states of every subsystem keep sliding on its 
own sliding mode surface.  

B. Compensator for Mismatched Uncertainties 
For the matched uncertainties, the above hierarchical 

sliding mode controller can resist them because of the 
invariant characteristic of the sliding mode. For the 
mismatched uncertainties, we will design a sliding mode 
compensator to resist them.  

Generally speaking, there are two methods to design a 
compensator of this hierarchical sliding mode surfaces. One 
is to design a distributed compensator and compensate the 
mismatched uncertainties at every layer sliding mode surface 
[11], [12]. Two weak points of this idea are that this makes 
the controller structure complex and that if the compensator 
at a certain lower layer does not eliminate the uncertainties, it 
will affect the stabilities of the higher layers. The other 
method is to design a lumped compensator and compensate 
the mismatched uncertainties at the last layer. Its advantage is 
that this method simplifies the control design. Thus, we 
consider designing a lumped sliding mode compensator at the 
last layer in this subsection.  

Based on the above viewpoints, the final control law of the 
uncertain under-actuated system with n subsystems can be 
defined as follow.  

n cu u u= +          (11) 

where un is the hierarchical sliding mode control law of the 
nth layer; and ucn is the sliding mode compensator at the last 
nth layer sliding mode surface. Here un and ucn are given by 

num( ) / den( ) / den( )n nu n n S= + & n  
and 

num ( ) sgn( ) / den( )cn c nu n S n= − ⋅ . 

where 

   1

1

d 1
num ( )

num ( 1) d 2c
i c i

i
i

a i i−

⎧ =⎪= ⎨
− + ≤ ≤⎪⎩ n

 

  Remark: From the design, the mismatched uncertainties are 
compensated by the lumped sliding mode compensator at the 
last layer sliding mode surface. Thus, it can be considered that 
all the mismatched uncertainties are added and eliminated at 
the last layer sliding mode surface. Moreover, the other lower 
n-1 layers can be considered as the sliding mode surfaces of 
the nominal system.  

III. STABILITY ANALYSIS  
In this section, we mainly make use of Barbalat’s lemma to 

prove the asymptotical stability of the entire sliding mode 
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surfaces. Because of the lumped sliding mode compensator at 
the last layer sliding mode surface, its stability should be 
analyzed at first.  

Theorem 1: Considering such an under-actuated system 
with mismatched uncertainties as (1), if the robust control law 
is adopted as (11) and the last layer sliding mode surface is 
defined as (6), then the last layer sliding mode surface is 
asymptotically stable.  

Proof: 

Let .  1

1

d 1
num ( )

num ( 1) d 2c
i c i

i
i

a i i−

=⎧
= ⎨ − + ≤ ≤⎩ n

Owing to the existent mismatched uncertainties, the 
Lyapunov function of the actual system at the last layer 
sliding mode surface is defined as follow. 

2( ) / 2n nV t S= . 

The mismatched uncertainties make the dynamic process 
of the actual system different from the nominal system. Thus, 

let nS S= n  and [ den( ) num( )] sgnn cn n n nS u n n k S Sη= + − −&
n . 

Differentiating ( )nV t  with respect to time t , there exists 

2

2

[ den( ) num ( )] | |

num ( ) | | num ( ) | |

n n n n n

n cn c n n n n

n c n c n n n

V S S S S

S u n n S k S

S n S n S k

η

η

= =

= + − −

= − − −

& &&

nS

. (12) 

Integrating both sides of (12) yields 

( )2

0 0
d num ( ) | | num ( ) | | d

t t

n n c n c n n n nV S n S n S k Sτ η= − − −∫ ∫& τ . 

We can find 

(
( )

2

0

2

0

(0) ( )

| | | | num ( ) num ( ) d

| | d

n n
t

n n n n n c n c

t

n n n n

V V t

S k S S n S n

S k S

)η τ

η τ

−

= + + −

≥ +

∫
∫

. 

Further, we can obtain 

( )2

0
(0) | | d

t

n n n n nV S k Sη τ≥ +∫ . 

The following equation can be obtained at last. 

( )2

0
lim | | d (0)

t

n n n n nt
S k S Vη τ

→∞
+ ≤∫ < ∞ . 

According to Barbalat’s lemma,  as 
, which means li , namely, the last layer 

sliding mode surface is asymptotically stable.       ■ 

2| | 0n n n nS k Sη + →

t → ∞ m 0nt
S

→∞
=

Theorem 2: Consider an uncertain under-actuated system 
as (1), adopt the control law is as (11) and define every layer 
sliding mode surface as (6). Then the lower n-1 layers sliding 
mode surfaces are still asymptotically stable. 

Proof: 
As we have expressed, the lumped sliding mode 

compensator can compensate the mismatched uncertainties at 
the last layers. Thus, the lower n-1 layers sliding mode 

surfaces can be treated as the nominal system.  
From (9), the Lyapunov function of the ith layer sliding 

mode surface is . Here 1 1. 2( ) / 2i iV t S= i n≤ ≤ −

Differentiating  with respect to time , there exists ( )iV t t
2| |i i i i i i iV S S S k Sη= = − −&& .      (13) 

Integrating both sides of (13) yields 

( )2

0 0
d | |

t t

i i i i iV S k dSτ η τ= − −∫ ∫& . 

Then, we have 

( )2

0
(0) ( ) | | d

t

i i i i i iV V t S k Sη τ− = +∫ . 

Further, we can get 

( ) ( )2 2

0 0
(0) ( ) | | d | | d

t t

i i i i i i i i i iV V t S k S S k Sη τ η τ= + + ≥ +∫ ∫ . 

The following equation can be obtained at last. 

( )2

0
lim | | d (0)

t

i i it
S kS Vη τ

→∞
+ ≤ <∫ ∞  

According to Barbalat’s lemma, 2| | 0i i i iS k Sη + →  as 
, which means t → ∞ lim 0it

S
→∞

= , namely, the ith layer sliding 

mode surface ( 1 ≤ i ≤ n-1 ) is asymptotically stable.     ■ 
Theorem 3: Consider an uncertain under-actuated system 

as (1), adopt the control law as (11) and define the sliding 
mode surfaces of all the subsystems as (3). Then the sliding 
mode surfaces of all the subsystems are asymptotically stable.  

Proof: 
From theorem 1 and theorem 2, there exists lim 0it

S
→∞

= . 

Here 1 ≤ i ≤ n. 
1) As has been defined that S1 = s1, the sliding mode surface 

of the first subsystem is asymptotically stable. 
2) Let us prove that the sliding mode surfaces of the other 

n-1 subsystems are asymptotically stable by contradiction. 
We assume that si ( 2 ≤ i ≤ n ) is not asymptotically stable, 

namely 
lim 0it

s
→∞

≠ .        (14) 

From (6b), we can obtain that 

1 1i i i isS a S− − + )i n≤ ≤ (2 . =

Calculating the limit of both sides of (6b) yields 

1 1

1 1

lim lim( )

lim lim

lim 0

i i i it t

i i it t

it

S a S s

a S s

s

− −→∞ →∞

− −→∞ →∞

→∞

= +

= +

= ≠

. 

This case contradicts the case li  (2m 0it
S

→∞
= )i n≤ ≤  that 

we have gotten from theorem 1and theorem 2. Therefore, our 
initial assumption (14) is false and the opposite case of (14) 
that lim 0it

s
→∞

=  (2 )i n≤ ≤  comes to existence. 

In a word, the sliding mode surfaces of all the subsystems 
are asymptotically stable from part 1 and part 2.      ■ 
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IV. SIMULATION RESULTS 
In this section, we shall demonstrate this robust control 

strategy is applicable to stabilize a double inverted 
pendulums system. The structure of such a system is shown in 
Fig. 2. It consists of three subsystems: the lower pendulum, 
the upper pendulum and the cart. Control objective of 
stabilizing the system is to balance both of the pendulums 
upright and put the cart to the rail origin by moving the cart. 

 
From (1), let n=3, the state space expression of the double 

inverted pendulums system can be described by 

1 2
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       (15) 

here x1 = θ1 is the lower pendulum angle with respect to the 
vertical line; x3 = θ2 is the upper pendulum angle with respect 
to the vertical line; x5 = x is the cart position with respect to 
the origin; x2 is the angular velocity of the lower pendulum; x4 
is the angular velocity of the upper pendulum; x6 is the 
velocity of the cart; u is the single control input; fi and bi ( i = 1, 
2, 3) are given in [11] and di is the mismatched uncertain term 
whose bound is known. 

For simulative comparison, the structural parameters are 
selected as the cart mass M=1kg, the lower pendulum mass 
m1=1kg, the upper pendulum mass m2=1kg, the lower 
pendulum length l1=0.1m, the upper pendulum length 
l2=0.1m, the gravitational acceleration g=9.81m·s-2, which 
have appeared in [12]. The mismatched uncertain terms of the 
system are assumed as follows. 

d1 = 0.0872 + 0.5ρ, d2 = 0.0872 + 0.5ρ, and d3 = 0.5ρ 

Here ρ is a random number whose range is from -1 to 1. 
Thus, the bounds of the mismatched uncertain terms d1, d2 
and d3 can be obtained as 0.5872, 0.5872 and 0.5. The lumped 
sliding mode compensator can be gotten. Further, the 
parameters of the hierarchical sliding mode controller are 
selected as c1=184.26, c2=15.96, c3=0.72, a1= -0.06, a2=0.45, 
k=1.50, and η=0.02 after trial and error. Control objective is 

(0, 0, 0, 0, 0, 0). Simulation results are shown as follows. 
Fig. 3 shows the angular curves and the positional curv

from the initial states (π/6, 0, π/18, 0, 0, 0) to the desired states 

es. 
The solid curves are with a compensator and the dashed 
curves are without a compensator. Although both controllers 
can make the double pendulums upright, the positional curves 
show the presented robust controller can resist the 
mismatched uncertainties effectively and realize the control 
objective. 
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Fig. 2.  Structure of double inverted pendulums system 

Fig. 3(a).  Angle of the lower pendulum  
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Fig. 3(b).  Angle of the upper pendulum  
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mpared with [12], our curves are smoother and the 
response time is shorter. Further, the presented controller is 
robust although it needs a large control force.  

Fig. 5 shows the entire sliding mode surfaces. By this 
robust control method, not only every layer sliding mode 
surface is asymptotically stable, but also the 

rfaces of all the subsystems possess the asymptotic stability, 
as we have proven in theorem 1, theorem 2 and theorem 3. 
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V. CONCLUSIONS 
In this paper, a robust controller using the methodology of 

sliding mode has been presented for a class of under-actuated 
systems with mismatched uncertainties. Such a system 
consists of a nominal system and the mismatched 
uncertainties. The nominal system is made up of several 
subsystems. Based on this structural characteristic, a 
hierarchical sliding mode controller has been designed for the 
nominal system. For the mismatched uncertainties, a lumped 
sliding mode compensator has been designed to deal with 
them. The asymptotic stability of the entire sliding mode 
surfaces has been proven theoretically. In the simulation, the 

have shown the validity of the control strategy. This provide
a robust control strat er-actuated systems 
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