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Abstract— The present paper introduces an evaluation of
the manipulation performance of a robotic arm with respect
to control accuracy and mechanical efficiency, taking into
consideration the effects of gravity and the dynamic process
between inputs and outputs in the robotic system. A measure
based on the output controllability ellipsoid is proposed, which
shows the relationship between the end-effector motion and
the joint driving force. Computer simulations demonstrate the
effects of gravity on the manipulation performance and the
benefits of the proposed measure for the trajectory planning.

I. INTRODUCTION

Robotic arms generally work in gravitational fields. There-
fore, we need to evaluate the manipulation performance of
the robotic arm by taking into consideration the gravitational
effect. Several measures for the manipulation capabilities of
a robotic arm have been proposed. These measures are useful
to the design of an arm mechanism, the trajectory planning,
and the determination of an optimal posture for a given task.

Qualitative measures based on the kinematic relationship
between the joint angular velocity and the end-effector
motion have been developed [3], [8], [12]. Yoshikawa [12]
proposed the manipulability ellipsoid for measuring the ease
of changing the end-effector by a set of joint velocities with
fixed magnitude and showed the manipulability measure by
the volume of the ellipsoid.

The arm dynamics cannot be ignored for a precise and
high-speed manipulation or for a detailed mechanical design.
Considering the arm dynamics, a number of performance
measures have been proposed [1], [2], [5], [10], [12]. By
extending the concept of manipulability to the dynamic
case, Yoshikawa [12] proposed the dynamic manipulability
ellipsoid based on the relationship between the end-effector
acceleration and the joint driving force and showed the
dynamic manipulability measure.

Here, we discuss the manipulation performance from the
viewpoint of the system theory. As shown in Fig. 1, there is
causality between the input and the output in the system, and
the characteristics of the entire system can be evaluated from
the state of its output for the given input. In the case of the
dynamic manipulability, the performance of a robotic arm
is evaluated based on the state of end-effector accelerations
(output) for the given joint driving forces (input) at the
moment. Therefore, the dynamic manipulability is regarded
as the measure of the static process.

To achieve a given task, it is important that the end-
effector can be arbitrary manipulated by applying the joint

Robotic system
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Fig. 1. Concept of dynamic process and static process in the robotic system

driving forces in a finite time. Therefore, the manipulation
performance of a robotic arm should be considered from the
viewpoint of a dynamic process rather than a static process.
In addition, it is necessary to consider the gravitation, which
affects the dynamic process in this system.

From the linear system theory, the output controllability
of the dynamic system indicates the effect of its input
on its output. Since quantitative measures of the output
controllability have been proposed [4], [11], the concept of
the linear system theory can be applied to the evaluation of
the manipulation performance.

In the present paper, the evaluation for the manipulation
performance taking gravity into consideration is proposed.
We present a useful ellipsoid, which expresses the set of
output controllable displacements of the end-effector in terms
of the given joint torque. The volume, shape, and orientation
of the ellipsoid can yield the performance evaluation of the
mechanical efficiency and the control accuracy of the robotic
arm quantitatively. We show the evaluation examples of the
two degree-of-freedom robotic arm and the two application
examples for the trajectory planning.

II. CRITERIA FOR CONTROLLABILITY

This section describes the definition of state controllability
and output controllability and their basic properties. Let the
state vector be x ∈ �q , the input vector be u ∈ �r, the
output vector be y ∈ �m, and the time be t > 0−. The state
equation and the output equation of a linear time-invariant
system can be described as

ẋ(t) = Ax(t) + Bu(t) (1)
y(t) = Cx(t) (2)

A ∈ �q×q, B ∈ �q×r, C ∈ �m×q

Here, we input the linear sum of an impulse function δ(t)
and its derivative as δ(k) = dδk−1(t)/dt. This impulsive
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input can be written as

u(t) = h1δ(t) + · · · + hqδ
(q−1)(t) (3)

where hi ∈ �m is weight vector for the input. Substituting
u(t) into (1) and integrating it from t = 0− to t = 0+ yields
[7]

x(0+) − x(0−) =
[
B AB · · · Aq−1B

] 

h1

...
hq


 (4)

A system is said to be state controllable if any initial state
x(0−) can be transferred to any final state at t = t+. The
necessary and sufficient condition for state controllability is
that the controllability matrix

V
�
=

[
B AB · · · Aq−1B

] ∈ �q×qr (5)

has full rank q [7].
Equations (2) and (4) yield an equation in terms of output

y(t), such as

y(0+)−y(0−) = C
[
B AB · · · Aq−1B

]


h1

...
hq


 (6)

A system is said to be output controllable if it is possible
to construct inputs that will transfer any given initial output
y(t−) to any final output until the final time t = t+. In
a similar manner to state controllability, the necessary and
sufficient condition for output controllability is that

N
�
= C

[
B AB · · · Aq−1B

]
= CV ∈ �m×qr (7)

has full rank m [9]. The matrix N is product of the matrices
C and V . Thus, if the system is state controllable, the
necessary and sufficient condition for output controllability
is that the matrix C has full rank.

Equations (6) and (7) reveal that the set of the output-
controllable y steered by the input u of (3) is equivalent
to the range space of the matrix N . Thus, the set of the
output-controllable y, which is realizable by the input u
normalized as hT h ≤ 1, forms an ellipsoid in the m-
dimensional output space. The shape and size of the ellipsoid
reflect the characteristic of the output controllability, which
can be found by the singular value decomposition of the
matrix N .

Let the singular value decomposition of the matrix N ,
which has full rank m, be described as

N = UNΣNV T
N =

m∑
i=1

σNiuNiv
T
Ni (8)

ΣN =
[

diag(σN1, σN2, · · · , σNm) 0
]

(9)

where σN1 ≥ σN2 ≥ . . . ≥ σNm > 0 are the singular
values, UN and V N are orthogonal matrices, the ith column
vectors of which are uNi and vNi, respectively, and 0 is
a zero matrix. Thus, the set of output-controllable y can
be described as an m-dimensional ellipsoid having principal
axes σN1uN1, σN2uN2, . . ., σNmuNm (referred to as the

Output Controllability Ellipsoid: OCE), where uNi is the
unit vector indicating the principal axis and σNi is its radius.
The magnitudes of the singular values represent the strengths
of the effects of input on output [4], [6]. Therefore, the
effect of input on output is relatively strong in the direction
indicated by uNi, which has a larger singular value σNi.

There are the other indexes based on the controllability
Gramian [11]. However, the derivation of the Gramians
requires that the system matrix A is stable. A robotic arm
generally has an unstable system matrix A, as shown later
herein. Thus, it is difficult to apply a Gramian-based evalu-
ation to a robotic arm. In contrast, the evaluation based on
an output controllability matrix is independent of the system
stability. Therefore, it is possible to apply this evaluation to
a robotic arm.

III. PERFORMANCE EVALUATION OF ROBOTIC ARM

A. State Equation of Robotic Arm

The equation of motion of a n degree-of-freedom robotic
arm can be described as a time-variant non-linear system,
such as

M(θ)θ̈ + h(θ, θ̇) + g(θ) = τ (10)

where θ ∈ �n is the joint position, τ ∈ �n is the applied
joint driving force, M (θ) ∈ �n×n is the inertia matrix,
h(θ, θ̇) ∈ �n is the centrifugal force and the Coriolis force,
and g(θ) ∈ �n is the gravitational force acting on the robotic
arm.

Assuming that the position and orientation of the end-
effector is described as p ∈ �m, the kinematic relation
between θ and p can be described as a non-linear function
such as

p = f(θ) (11)

To apply the linear systems theory discussed in section II
to the robotic arm, we need to derive the linearized model
of the robotic arm. Linearizing (10) and (11) with respect to
the equilibrium points θ = θe, τ = τ e, and p = pe, which
satisfy θ̈ = θ̇ = 0, yields the linear time-invariant state
equation and the output equation with n inputs, m outputs,
and 2n state variables, as follows:

d

dt

[
δθ(t)
δθ̇(t)

]
= A

[
δθ(t)
δθ̇(t)

]
+ Bδτ (t) (12)

δp(t) = C

[
δθ(t)
δθ̇(t)

]
(13)

where

A =
[

0 In

−M−1G 0

]
θ=θe

, B =
[

0
M−1

]
θ=θe

C =
[
J 0

]
θ=θe

(14)

In is an n×n identity matrix, and J and G are the Jacobian
matrices concerning the structure of the robotic arm and the
gravitational force, respectively. Jacobians J and G are given
by

J(θ) =
∂f

∂θ
∈ �m×n, G(θ) =

∂g

∂θ
∈ �n×n (15)
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where δθ(t) = θ(t) − θe, δθ̇(t) = θ̇(t) − θ̇e, δτ (t) =
τ (t) − τe, and δp(t) = p(t) − pe.

B. Output Controllability of the Robotic Arm

The controllability matrix V and the output controllability
matrix N of the robotic arm can be obtained by substituting
the matrices A, B, and C of (14) into (5) and (7), respec-
tively. This yields

V =
[

0 M−1 · · · (−M−1G)n−1M−1

M−1 0 · · · 0

]
(16)

N = J
[

0 M−1 0 (−M−1G)M−1 · · ·
· · · (−M−1G)n−1M−1

]
(17)

If the controllability matrix V ∈ �2n×2n2
has full rank,

then the robotic arm is state controllable, and the joint
position can be arbitrary steered by the joint driving force.
Since the inertia matrix M has generally full rank, (16) indi-
cates that the controllability matrix V always has full rank.
Therefore, a robotic arm is necessarily state controllable.

If the output controllability matrix N ∈ �m×n2
has full

rank, then the robotic arm is output controllable, and the
position and orientation of the end-effector can be arbitrary
steered by the joint driving force. Since a robotic arm
is always state controllable, the necessary and sufficient
condition for a robotic arm to be output controllable is that
the structure Jacobian J has full rank, as stated in Section II.
Thus, a robotic arm maintains output controllability unless
the configuration of a robotic arm is singular.

In the above discussion, we have assumed that there is no
constraint imposed on the maximum joint driving forces and
that the weights of the components related to the translational
and rotational motion of the end-effector are the same. When
these assumptions do not hold, normalization of input and/or
output variables is needed [12].

C. Performance Evaluation based on Output Controllability
Ellipsoid

The size and shape of the output controllability ellipsoid
(OCE) indicate the characteristics of output controllability
(Fig. 2). The major axis of the OCE can be obtained as
σN1uN1, where σN1 is the maximum singular value and
uN1 is its singular vector, as shown in (8). By steering the
position and orientation of the end-effector in this direction,
the effect of the joint driving force (input) on the position and
orientation (output) of the end-effector is maximized. There-
fore, we can minimize the joint driving force by steering
its end-effector in this direction from the equilibrium point.
This means that the mechanical efficiency is the highest.
(In robotics, the mechanical efficiency is described as the
manipulability [12].) Note that the control accuracy is the
lowest in this direction. Since the robotic arm has high-
sensitivity in this direction, even a small input error, such
as noise, greatly affects the motion of the end-effector.

The minor axis of the OCE can be obtained as σNmuNm

when the matrix N has full rank m. The effect of the
joint driving force (input) on the position and orientation

(output) of the end-effector is the lowest in this direction. The
maximum joint driving force is needed in order to steer the
end-effector in this direction from the equilibrium point. This
means that the mechanical efficiency is the lowest. However,
the control accuracy is the highest since the robotic arm has
low sensitivity in this direction.

Using the OCE makes it possible to evaluate the per-
formance of a robotic arm with respect to efficiency and
accuracy. In general, high efficiency and high accuracy are
desired for a robotic arm. Since the major axis indicates the
direction of high efficiency and low accuracy and on the other
hand the minor axis indicates the direction of low efficiency
and high accuracy, the two performances cannot be satisfied
simultaneously. For the performance evaluation based on the
OCE, we are required to take the above characteristics into
consideration.

Major axisMinor axis

High Accuracy High Efficiency

Fig. 2. Output controllability ellipsoid

D. Performance Measure

From (17), the output controllability matrix N consists of
the gravitational Jacobian matrix G, the structure Jacobian
matrix J , and the inertia matrix M . Thus, the output
controllability depends not only on the configuration and
dynamic parameters of a robotic arm, but also on the gravity
loads acting on the robotic arm.

For the quantitative evaluation of its performance, the
performance measure can be described as follows.

1) Volume Measure ν [6]:

ν(N) = (det(NNT ))1/2 = σN1σN2 · · ·σNm (18)

The volume measure ν, which shows the volume of the OCE,
indicates the degree of the effect of the joint driving force
(input) on the position and orientation (output) of the end-
effector. Therefore, if ν becomes larger, then the mechanical
efficiency becomes higher, while if ν becomes smaller, the
control accuracy becomes higher.

2) Condition Number Measure µ [4]:

µ(N) = σNm/σN1 ≤ 1.0 (19)

The condition number measure µ is the ratio of the maximum
and minimum radii of the OCE, which indicates the isotropic
measure of the OCE. The closer this index is to unity, the
closer the shape of the OCE is to a sphere and the better the
balance between the control accuracy and the mechanical
efficiency. In addition, the closer this index is to zero, the
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more the OCE is squeezed along the minor axis, and the
worse the balance between the control accuracy and the
mechanical efficiency. Therefore, the performance is notably
different, depending on the steering direction of the end-
effector.

E. Difference between Output Controllability and Dynamic
Manipulability

The dynamic manipulability gives a measure of the ability
of performing end-effector accelerations along each task
space direction for a given set of joint driving forces [12].
Assuming the robotic arm is at rest, substituting (10) into the
equation obtained by differentiating (11) with respect to time
yields the relation between the joint driving forces (input)
and the end-effector accelerations (output), as follows:

p̈ = JM−1τ̃ (20)

where τ̃ = τ − g. As shown by (20), the current outputs
are determined only by the current joint driving forces,
but also they are independent of past inputs. Thus, the
dynamic manipulability is restricted to the measure of the
instantaneous process between inputs and outputs in a robotic
arm system.

On the other hand, in the case of the output controllability,
the current outputs are affected by the joint driving forces
and the gravitational loads that are applied to the robotic arm
from the past to the present, as mentioned before. The current
outputs are dependent on current and past inputs. Thus, the
output controllability can be viewed as a measure of the
dynamic process between inputs and outputs in a robotic arm
system. The evaluation that takes into account the dynamic
process and the effects of gravity for a finite time interval is
desirable with respect to motion control and motion planning.

We deal with a particular robotic arm in a zero gravity
field (ex., the space shuttle robotic arm). Since the gravity is
zero, substituting G = 0 into (17) yields

N =
[
0 JM−1 0 · · · 0

]
The singular values and the singular vectors of N coincide
with those of JM−1 in (20). When the state variable is
independent of the effect of gravity, the concept of the
output controllability coincides with that of the dynamic
manipulability.

IV. SIMULATION

In order to verify the performance measure based on the
output controllability, we conduct example simulations using
the two degree-of-freedom robotic arm in the vertical plane
shown in Fig. 3. We define the end-effector position as the
output variable. Gravity is exerted in the −y direction. Let
mi be the mass of the ith link, and let li be the length of
the ith link. In addition, let lgi be the length to the center
of mass of the ith link, and let Ii be the moment of inertia
about the center of mass of the ith link.

1

21l

1gl

2l

2gl

1m

2m

1I

2ILink 1
Link 2

x

y

g

Fig. 3. Two degree-of-freedom robotic arm (l1 = l2 = 1m, lg1 =
lg2 = 0.5m, m1 = 30kg, m2 = 15kg, I1 = 30/12kg · m2, I2 =
15/12kg · m2)

A. Effect of Gravity on Output Controllability

This section verifies the effect of gravity on the output
controllability. We first observe the difference between the
output controllability under gravity and that under zero
gravity. The OCE can be obtained as Fig. 4 when neglecting
the gravity effect. Figs. 4(a) and (b) show the OCE obtained
by setting θ2 = 30 and 60 deg, respectively, and varying θ1

from −90 to 90 deg, where the figure of the OCE is enlarged
ten times. Figs. 4(c) and (d) show the volume measure ν and
the condition number measure µ, respectively, for each value
of θ2. In this case, the output controllability depends only
on the value of θ2. If θ2 is constant, both ν and µ remain
constant. Therefore, even if the configuration is changed as
shown in Figs. 4(a) or (b), the size and isotropy of the OCE
never change.

On the other hand, when taking gravity into consideration,
the OCE is given as Fig. 5. Figs. 5(a) and (b) show the
OCE of the same configuration as used in Figs. 4(a) and
(b). Figs. 5(c) and (d) show the volume measure ν and
the condition number measure µ, respectively. According
to the change of the gravitational load by the variation of
configuration, both of the measures are also changed. This
yields a change in the size and isotropy of the OCE. In
addition, as shown in Figs. 4(c) and 5(c), the size of the
OCE under gravity is larger than that of the OCE under zero
gravity. Therefore, gravity causes not only high efficiency but
also low control performance in a robotic arm. In addition,
the balance between the efficiency and the accuracy depends
on the gravitational load. As shown above, gravity clearly
has a large effect on the output controllability. Thus, it is
necessary to consider the effects of gravity.

Next, we verify the configurations that have the minimum
and maximum effect of gravity. The effect of gravity on
the output controllability depends only on the gravitational
Jacobian G, as shown in (17). Hence, the magnitude of the
eigenvalue of the gravitational Jacobian indicates the effect
of gravity on the output controllability. Here, we obtain the
determinant of G as the product of the eigenvalues.

The gravitational load of the two degree-of-freedom
robotic arm can be obtained as

g(θ) =
[
(m1lg1 + m2l1)gc1 + m2lg2gc12

m2lg2gc12

]
(21)
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Fig. 4. Output controllability ellipsoid without gravity

where ci = cos θi, si = sin θi, c12 = cos(θ1 + θ2), and
s12 = sin(θ1 + θ2). Equation (15) yields the gravitational
Jacobian such as

G =
∂g

∂θ
=

[
α + β β

β β

]
(22)

where α = (m1lg1 + m2l1)gs1 and β = m2lg2gs12. Thus,
the determinant of G can be obtained as

detG = m2lg2(m1lg1 + m2l1)g2s1s12 (23)

When detG = 0, the effect of gravity is minimum. The
following three cases are obtained from (23), which are (i)
s1 = 0, (ii) s12 = 0, and (iii) lg2 = 0, where we take
m1 > 0 and m2 > 0 into consideration. Figs. 6(a) and (b)
show the configuration examples given as cases (i) and (ii),
respectively. In case (i), only link 1 is horizontal, and in case
(ii) only link 2 is horizontal. The configuration satisfying
case (iii) has the center of gravity of link 2 on the second
joint. In particular, if s1 = s12 = 0, at which links 1 and 2 are
horizontal, as shown in Figs. 6(c) and (d), the gravitational
Jacobian becomes G = 0, and so there is no effect of gravity
on the state variables.

On the other hand, at the point where the effect of gravity
is maximum, |detG| achieves the maximum value. Here,
detG is proportional to s1s12, and so |detG| achieves the
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Fig. 5. Output controllability ellipsoid with gravity

x

y

x

y

(a) (b)

x

y

x

y

(c) (d)

Fig. 6. Configurations of the robotic arm that have the minimum effect of
gravity

maximum value when |s1s12| = 1, which indicates that links
1 and 2 are in the vertical direction, as shown in Figs. 7(a)
and (b). The joint angle θ1 exerting the maximum effect
of gravity for a given θ2 can be obtained by deriving the
extremum of det G. The joint angles θ1 and θ2 satisfying
the above conditions form an isosceles triangle, the three
apexes of which are the first joint, the second joint, and the
point at the intersection between the y axis and the half line
from the second joint to the end-effector. If links 1 and 2
have the same length, then the end-effector is located on the
y axis, as shown in Fig. 7(c).
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x
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(a)
x

y

(c)

x

y

(b)

Fig. 7. Configurations of the robotic arm that have the maximum effect
of gravity

The above discussion is verified using the results shown
in Fig. 5(c). The volume measure ν of θ2 = 30 deg becomes
the minimum when θ1 = 0 and −30 deg. The robotic arms
in which θ1 = 0 deg and θ1 = −30 deg, respectively, have
horizontal links 1 and 2. Thus, the effect of gravity becomes
the minimum in these configurations and the control accuracy
then becomes the highest. The same is true for the simulation
results of θ2 = 60 deg.

On the other hand, the volume measure ν of θ2 = 30
and 60 deg becomes the maximum when θ1 = 75 and 60
deg, respectively. The end-effectors of these configurations
are located on the y axis. Thus, the effect of gravity becomes
the maximum. The mechanical efficiency then becomes the
maximum, but the control accuracy becomes the lowest.

In this section, the performance of a robotic arm has been
shown to depend deeply on the effect of gravity. In addition,
configurations that have lower effects of gravity can achieve
the higher control accuracy. In contrast, configurations that
have higher effects of gravity can achieve higher mechanical
efficiency.

B. Application to Trajectory Planning

The desired trajectory for a robotic arm is set on a
workspace such that the motion of the end-effector is not
adversely affected by small errors from a nominal joint
driving torque. We first discuss the difference in performance
of the robotic arm between the optimal trajectory obtained
by taking the effect of gravity into consideration and that
obtained by without considering the effect of gravity.

Fig. 8 shows the OCE for the cases with and without
gravity on the same scale. From this figure, even though
the end-effector is located at the equivalent position, p0 =
(−1.5, 0.75) m, the volumes, shapes, and orientations of the
OCEs are totally different. Thus, it is not necessarily the case
that the minimum sensitive direction with gravity coincides
with that without gravity.

Assuming that the end-effector moves the same distance
in a straight line from p0 along the major axis of each OCE,
we compare the position errors of the end-effector at each
final point. The nominal joint torque for each trajectory is
obtained from (10) and (11) in advance. The input torque is
set as the sum of its nominal joint torque and the Gaussian
white noise. Applying the input torque to the feedforward
controller, we obtain the final position of the end-effector.

-2 -1.5 -1 -0.5 0
0

0.5

1

1.5

x [m]

y 
[m

]

Robotic
arm

without gravity

with gravity

Fig. 8. Output controllability ellipsoid for the cases with and without
gravity

This simulation is repeated 100 times. We let the moving
distance be 0.2 m, the total motion time be 1.5 s, and the
variance of the Gaussian white noise be (25, 25) N2m2.

Figs. 9(a) and (b) show the respective probability distribu-
tions of the final position of the end-effector for trajectories
with and without taking gravity into account. The ellipse
in each figure shows the two-σ error ellipse centered at the
average final position of the end-effector, where σ indicates
the standard deviation. The distribution of the final position
for the trajectory planned considering the effect of gravity
(Fig. 9(a)) is smaller than that planned without considering
the effect of gravity (Fig. 9(b)). This means that the robotic
arm can be controlled more precisely by taking gravity into
consideration.

This difference in control accuracy arises from the differ-
ence in the direction of the principal axis of the OCE in Fig.
8. Since the end-effector is insensitive in the direction of the
minor axis of the OCE, the end-effector is least affected by
input errors in this direction. Therefore, in order to control
the robotic arm precisely, the trajectory should be set such
that the normal corresponds with the minor axis and the
tangent corresponds with the major axis to the greatest extent
possible. In addition, the gravity should be taken into account
explicitly.

2 1.5 1 0.5 0
0

0.5

1

1.5

x [m]

y 
[m

]

(a) With gravity

2 1.5 1 0.5 0
0

0.5

1

1.5

x [m]

y 
[m

]

(b) Without gravity 

Goal

Goal
Start

Start

Fig. 9. Probability distribution of the final position of the end-effector for
trajectories with and without taking gravity into account

The two degree-of-freedom robotic arm has two configura-
tions that can trace the same position trajectory, as shown in
Fig. 10. However, such configurations have OCEs of different
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Fig. 11. Position errors at final position of end-effector for two different
configurations

volumes, shapes, and orientations. We discuss the effect of
the difference of the configuration on the trajectory planning.

The second simulation is conducted under the same con-
dition as that of the simulation in Fig. 9. We apply the
feedforward controller to the robotic arm and obtain the
final positions of the end-effector by repeating this proce-
dure 100 times. The final positions of the end-effector are
denoted by × in Figs. 11(a) and (b) for each trajectory,
which corresponds to the case shown in Figs. 10(a) and
(b), respectively. The final positions in Fig. 11(a) converge
around the desired goal point, while the final positions in
Fig. 11(b) are widely dispersed. Fig. 11(a) gives a more
accurate manipulation than (b), because, as shown in Fig.
10, compared to the configuration of (b), the configuration
of (a) has a lower sensitivity in the perpendicular direction
of the given trajectory.

Therefore, since the different configurations have the to-
tally different control accuracies, even if these can trace
the same trajectory, it is important to select the optimal
configuration according to the task.

V. CONCLUSION

The present paper proposed an evaluation of the manipu-
lation performances with respect to the control accuracy and
the mechanical efficiency of a robotic arm, taking gravity
into consideration.

The following are the findings of the present paper: (1)
The output controllability ellipsoid expresses the set of the
variation of the position and the orientation of the end-
effector from its equilibrium point when the joint driving

forces are slightly perturbed. (2) A trade-off relationship
exists between the control accuracy and the mechanical
efficiency. (3) The output controllability includes the grav-
itational effect. (4) The proposed measure is obtained by
considering the dynamic process between inputs and outputs
in a robotic arm system.

The simulation results revealed the following: (1) Gravity
has a significant effect on the manipulation performance for
the mechanical efficiency and the control accuracy. (2) The
robotic arm has particular configurations that can achieve the
best manipulation performance for each performance mea-
sure. (3) The proposed measures generate an improvement
in the control accuracy by planning a trajectory in which the
normal direction corresponds to the minor axis of the OCE.

The proposed measures, which are based on the output
controllability of the linearized dynamic robot model, are
valid for various types of practical robots, to which the linear
system theory can be applied. In the future, the applicability
of the measure shall be extended to robotic systems that have
complicated constraints, such as friction or non-holonomic
constraints. We will also consider task-oriented manipulation
explicitly, taking the gravitational effect into consideration.
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