
 

 

 

  

Abstract— Biological inspiration has a history of advancing 

the field of robotics. Increasingly, robots are also being used in 

the modeling of biological systems. In this paper, we use 

recorded cockroach electromyograms (EMGs) to drive 

artificial muscle (braided pneumatic actuator) activation and 

thereby robot joint motion, in an effort to model the 

transformation from EMG to behavior in the animal. A muscle 

activation model was developed that transforms EMGs 

recorded from behaving cockroaches into appropriate 

commands for the robot. The transform is implemented by 

multiplying the EMG by an input gain thus generating an input 

pressure signal, which is used to drive a one-way closed-loop 

pressure controller. The actuator then can be modeled as a 

capacitance with input rectification. The actuator exhaust valve 

is given a leak rate, making the transform a leaky integrator 

for air pressure, which drives the output force of the actuator. 

We find parameters of this transform by minimizing the 

difference between the robot motion produced and that 

observed in the cockroach. Results from evaluation on reduced-

amplitude cockroach angle data strongly suggest that braided 

pneumatic actuators can be used as part of a physical model of 

a biological system. 

I. INTRODUCTION 

UR laboratories have worked for over a decade on 

incorporating biological principles of locomotion into 

robotic designs. Previous research has resulted in a line of 

robots designed to be capable of walking and climbing 

behaviors observed in the cockroach Blaberus discoidalis[1-

4]. Increasing similarity of the robotic motor systems to 

those in the animal has prompted us to attempt to use a leg 

of Robot V[4] as a physical model for investigating the 

behavioral relevance of EMG signals in the cockroach 

neuromechanical system. 

The use of electromyograms for control is a matter of 

much investigation; particularly, the use of human EMGs to 

interactively control, among other things, orthoses[5, 6], 

prostheses[7], and exoskeletons[8, 9] is widely investigated. 

These projects generally use features of EMGs as an online 

measure of intent, with which to give commands to a 

feedback control system. Electromyograms are also used to 

estimate the state of human limbs[10]. Northrup et al.[11] 
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have used a general knowledge of the patterns of EMGs 

during human reaching movements to implement an 

activation-based controller for reaching movements in their 

robot actuated by braided pneumatic actuators (BPAs). They 

observe that this controller generates control with a lower 

stiffness than that generated by more traditional control 

methods, and humans interacting with it regard this motion 

as more natural. Rather than using EMGs per se, Reger et 

al.[12] used on-line neurograms from dissected lamprey 

central nervous systems to generate motion in a robot, which 

then feeds sensory signals back to the lamprey nervous 

system. Their intention has been to use this artificial 

behavior as a tool for investigating neural plasticity. In this 

paper, we are using BPAs as physical muscle models with 

transformed EMG signals as inputs, which is more similar to 

the use of EMGs in modeling by[13] in which human EMG 

signals are used in real time to drive corresponding 

simulated muscles in a computational model of the human 

arm. 

It is broadly accepted that the compliant properties of 

muscles are important and useful in locomotion[14, 15]. 

Muscle properties are tuned by neural inputs to react 

effectively to physical stimuli under varying conditions [16]. 

Another important function is that they filter motor neuron 

commands[17], and it has been shown that the filtering 

characteristics of the muscle, referred to as the 

neuromuscular transform, can be highly dynamic under 

varying previous stimulation[18, 19]. This shows that 

muscles are not merely filters but can act as highly dynamic 

portions of the neuromechanical system. Understanding 

them, then, is crucial in working towards a full 

understanding of the behavioral relevance of motor neuron 

activity. 

Considerable work has been done in the description of 

muscle properties in arthropods [20-22]. We believe our 

more behaviorally-oriented approach for describing 

neuromechanical relationships will complement their work. 

In this paper, we use hardware-in-the-loop error 

minimization to find parameters for an EMG-to-valve-

command transformation, using EMG and joint angle data 

gathered from the cockroach. This model consists of two 

components; a transform from EMG to BPA activation 

commands, which is necessary to model muscle activation 

dynamics, and the dynamics of the physical robot itself, 

which are used to model the associated muscle and limb 

dynamics in the animal. A simplified representation of the 

neuromuscular transform is illustrated in Figure 1a. Muscle 

force is related to muscle activation through the dynamics of 
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the active contractile elements in the muscle fiber. In 

arthropod muscle systems there are relatively few motor 

neurons, suggesting that the activation can be approximated 

as a leaky integration of an EMG-derived signal. Before this 

integration the neural/EMG signal undergoes transformation, 

an important part of which occurs at the synapse between the 

motor neuron and the muscle.   

 

 

Fig. 1 Schematics of transformation between EMG and force in the 

animal (a) and in the robot (b). 

This suggests a means of using BPAs to model these 

muscle dynamics by using the air pressure in an actuator as 

an analogue of the activation level in the corresponding 

muscle (Figure 1b). In this work we assume a constant leak 

rate for the actuator, which acts as the integrator, and we use 

EMG input transformation to model the first stage of signal 

processing which translates EMGs into behavior. 

  

II. METHODS 

Data is gathered from the cockroach, then filtered and 

time-scaled for use in robot control.  Cockroach EMG 

signals are transformed to produce on-off valve control 

signals for corresponding BPAs on the robot. Other moving 

joints on the robot leg are controlled to approximate 

observed corresponding cockroach joint trajectories. 

Because transform properties are initially unknown and are 

expected to vary widely between individuals, suitable 

transform parameters are found through hardware-in-the-

loop minimization of error between the observed cockroach 

joint trajectory and the generated robot joint trajectory. 

 

A. Data from the cockroach 

Data used in this paper is from restrained forward walking 

on an oiled plate, as described in[23]. EMG voltages were 

recorded at 10 kHz from levator and depressor muscles of 

the coxa-trochanter (CTr) joint of a Blaberus discoidalis 

cockroach. Simultaneous video was taken at 250 Hz. Prior to 

further processing, the time values of all cockroach data 

were then slowed by a factor of 20  based on dynamic 

similarity scaling rules, because the robot is 20 times the size 

of the animal. At this new time base, the video data is 

available at 55.9 Hz, and the EMG data at 2.24 kHz. EMG 

data was then low-pass filtered with a passband of 224 Hz 

and stopband of 279.5 Hz, before being resampled at 559 Hz 

for robot control. The video-derived angle data was low-pass 

filtered with a passband of 5.59 Hz and a stopband of 8.94 

Hz to remove noise which was expected to introduce 

spurious error in the optimization process. No filtering 

specifically for noise removal was carried out on the EMG 

signal. All data was then trimmed so that the dataset 

represented an integral number of step cycles; this way the 

data could be “played” through the robot multiple times in 

order to reduce the effect of startup transients. The resulting 

data represented 7 steps, taking a period of 13.5 seconds at 

the robot time base, corresponding to 3 seconds of behavior 

in the animal. 

 

Fig. 2 Setup for gathering simultaneous EMG and joint angle data 

from the cockroach. Data shown are a subset of the data used in 

this paper, before the described filtering. (adapted from[23, 24]) 

B. The robot 

     
Fig. 3: Robot V, constructed with inspiration from the death-head 

cockroach Blaberus discoidalis. It is actuated by Festo  brand BPAs 

(artificial muscles). At right is a close-up of the right middle leg.  

 

The robot used in this study is Robot V[3, 4] shown in 

Fig. 3, a robot modeled after the cockroach Blaberus 

discoidalis, but at 20 times the size of the animal. Each of its 

Festo  braided pneumatic actuators has separately controlled 

inlet and exhaust valves capable only of fully open and fully 

closed positions, which are fast enough to respond usefully 

to pulse width modulation (PWM) frequencies of up to about 

100 Hz. We used the coxa-trochanter joint on the right 

middle leg of the robot. The range of motion of this joint is 

35°-100° in the robot and is 28°-104° in the animal, both 

measured in a coordinate system defined such that when the 

coxa and femur are extended in a line the angle is 180°.  To 

simulate the oiled-plate experimental environment, the foot 

WeB9.2

637



 

 

 

was fitted with a low-friction furniture slider. We used 55.9 

Hz PWM on the control valves in order to match the rate of 

the angle data available from the recorded video.   

During evaluations of the model performance, the body-

coxa degrees of freedom on the robot were fixed as closely 

as possible to the near-constant orientation observed in the 

animal.  The femur-tibia joint was controlled to track the 

joint angles observed in the animal, and the muscles 

actuating the coxa-femur joint were controlled using the 

transformed EMG data. Since the EMG data were available 

at 559 Hz, the inlet valve duty cycle commands were 

updated at this rate, even though the PWM frequency was 

only 1/10 this speed. A description of the real-time control 

system and control methods used for joint angle tracking can 

be found in [4]. 

C. EMG transformation 

 

The EMG input processing method is summarized in Fig. 

4. An EMG signal pre-processed as described in section A is 

amplified to produce a signal we refer to as “input pressure”.  

This signal is fed to a modified pressure controller, which 

produces the inlet valve duty cycles.  These inlet duty cycles 

give rise, through valve and actuator dynamics, to air 

pressure in the actuator.  This, along with the pressure in the 

opposing BPA, gives rise through actuator and robot 

dynamics to joint motion. 

The modified pressure controller, shown in Fig. 

4(bottom), converts the EMG potential (voltage/pressure) 

signal to a flow (current/airflow) signal, because the inlet 

valve controls airflow rather than pressure.  The pressure 

error is proportional to the difference between input and 

actuator pressure, as the flow would be if we attached an 

actual pressure source to the actuator.   

For each BPA, then, we must define three parameters to 

describe the full transformation: 1) input pressure gain, 2) 

pressure controller gain, and 3) actuator leak rate.  Six 

parameters must be specified to describe the transformation 

for one joint; three for each muscle of the antagonistic pair. 

Many assumptions and simplifications were made in the 

development of this model. We model only one muscle 

pulling in each direction, process EMG signals as if they 

emanate from only one excitatory motor neuron, and set the 

exhaust rate to be constant; evidence indicates more 

complex behavior in the animal in each of these cases.  Also, 

implicit in the model is the assumption that the EMG voltage  

signal has a continuous, one-to-one relationship with muscle 

activation, and that the activation dynamics are dependent on 

the current activation level.  The assumption of a one-to-one 

relationship is reasonable for the Depressor Coxa at least, 

since there was only one excitatory motor neuron active in 

these behaviors for that muscle. 

D. Optimization methods 

We must use optimization to systematically find the best 

transform parameters. Even if we did have a well-understood 

transformation and analytical methods for finding the 

parameters, variation between individual animals and 

experimental setup (for example, electrode placement) 

would require us to either fully describe individual and 

experimental variation (which is not feasible) or tune the 

parameters for the best fit to each individual’s mapping from 

observed EMG voltage to observed joint motion. Therefore, 

we concluded that an optimization strategy would be most 

practical for estimating transformation parameters. 

Most of our model is in hardware so any evaluation of the 

error must also take place in hardware. Choosing a rapidly 

converging optimization strategy was essential because it 

takes about 48 seconds to evaluate the joint angle error at 

one point in parameter space, the problem is six-

dimensional, we initially had little knowledge of the search 

space, and it is undesirable to run the robot continuously for 

very long periods of time.  There are a number of “fast” 

gradient descent and quadratic minimization algorithms 

available, but most of these suffer degradations of 

performance and/or stability when subjected to a noisy 

gradient. We chose Stochastic Meta-Descent (SMD)[25] as a 

method for step-size adjustment because it does not have 

these failings.  

 

 

 
Fig. 4: EMG input transformation. Representative signals are shown at 

various stages in the process; the block “Antagonist Actuator Pressure” 

includes all the elements shown from filtered EMG through actuator 

pressure, for the opposing muscle. The bottom block is a detailed view of 

the modified pressure controller. 

 

The Hessian of the error multiplied by a vector v is 

necessary for SMD, and we estimated it at point p in the 

parameter space as: 

Hv
E
p (p+ rv) E

p (p)

r
+O(r) (1) 

as shown in[26] where, with the arbitrary constant r chosen 

sufficiently small, the O(r) term can be ignored. 
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We estimate the gradient by calculating the error measure 

at p, then at six points p+ pj where pj is a vector 

containing only one nonzero element: the perturbation dj in 

the j
th

 dimension.  For estimation of Hv, the same 

calculations are carried out for the perturbed point p+rv. 

Since the dj required for the gradient signal to be larger 

than the noise inherent in the hardware-evaluated value 

function can be rather large with respect to the magnitude of 

the parameters (in some of our runs 50% or more), SMD, 

when configured to be stable, would often specify steps 

smaller than dj. We therefore extended the algorithm to take 

a step of dj in the j
th

 dimension in this case if the error value 

at p+ pj was lower than at p. Otherwise, the sign of dj was 

changed to look for lower values in the other direction.  In 

this way, if SMD is not advancing the point, we are at least 

performing a linear parameter search.  We further extended 

SMD so that if a convergence criterion was met, search 

would start again from a new point in the parameter space, 

looking for another local minimum rather than wasting time 

sitting at a local minimum doing a gradient descent on noise. 

E. Optimization run protocol 

An initial set of parameters which produced a relatively 

large angular motion was chosen by hand. Given an initial 

point, the optimization program executes the following: 

1) Run and record data from a robot diagnostic. 

2) Run the value function 10 times to “warm up” the robot 

(iterations -10 to -1, gradient not computed). 

3) Run SMD as extended above, until the specified number 

of iterations (typically 15) has been reached, or the run is 

terminated manually. 

4) Run and record diagnostic for comparison with that 

recorded in (1). 

5) Convert data gathered into a more easily useable form, 

and write converted data files to disk 

 

The above sequence takes about 2.5 hours. The value 

function runs a shorter diagnostic, both to monitor robot 

status and even out differences in initial conditions, before 

running through the data twice and recording the coxa-femur 

angle output on the second run for use in calculating the 

error value.  Error is defined as the sum of the squared 

difference between reference (cockroach) and robot joint 

angle data. 

III. RESULTS 

The optimization protocol was performed using EMG and 

joint position recordings from one animal.  Progress towards 

convergence is shown in Fig. 5 for two different 

optimization runs. The optimization illustrated in Fig. 5 

converged at a point at which the corresponding joint motion 

is far from closely matching the motion recorded in the 

animal.  We also used optimization to tune the model 

parameters to a modified reference joint trajectory with the 

same mean value but scaled down to  of the original range. 

The resulting minimum error (Fig. 6a) is greatly reduced. 

This optimization converges to a local minimum and then 

jumps to begin searching for another local minimum.   

 

 
Fig. 5: Optimization runs (a) and joint angle tracking (b) executed with full-

scale  animal joint angle data as reference. The marker in (a) indicates 

where a second sub-run was initiated starting from the last point in the 

previous run. The robot data in (b) are from the first and best iterations in 

this run. 

 

 
Fig. 6: Data from quarter-magnitude runs complimentary to that in Fig. 5. 

The sudden jump upwards in (a) is due to the algorithm jumping to a new 

point to search for another minimum when the software detected 

convergence. 

 

Parts b of Fig. 5 and Fig. 6 show joint angle positions vs. 

time for the animal and the robot for full range and quarter 

range movements, respectively. In each case an 

improvement can be clearly observed, and the optimized 
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quarter-range results produce the best match. Fig. 7 shows 

that under the best set of parameters found for matching the 

 range signal, the transformation on the input signal 

produces essentially one pulse per EMG spike. 
 

 
Fig. 7: Depressor inlet valve duty cycle commands in relation to EMG and 

joint angle output for a portion of the “Robot, best” data shown in Fig. 6b; 

the best match between reference and robot angles. 

  

IV. DISCUSSION 

Optimization was successful in finding model parameters 

giving local minima of error, both for full-scale and  

magnitude reference angle signals. Regarding the 

performance of the optimization, we have not found search 

parameters which make SMD useful with an error signal this 

noisy– perhaps a better method of estimating Hv would be 

helpful. With our current implementation, the strategy is 

essentially a linear parameter search with ad-hoc step size.  

This is probably slower than a working SMD, but it is stable, 

and it appears to work for this problem. Incidentally, with 

evaluation times as long as they are, choosing step size 

updates by hand every 15 iterations involves a little more 

human input, but not necessarily much more time overall, 

than automating the process. Explicit modeling of noise in 

the error measurement may make more elegant methods of 

optimization useful for this problem. 

The duty cycle output to the robot shown in Fig. 7 

indicates that most of the transformation is effectively being 

ignored, at least at this time scale. The best sets of model 

parameters effectively turn it into something resembling one 

pulse per EMG spike. It is possible that with higher flow 

valves or a much higher PWM frequency duty cycles lower 

than 100% would be chosen regularly. The forcing of this 

transformation into one pulse per EMG spike is quite 

interesting, however, since it points strongly to another input 

transformation we have been considering: one pulse of air 

per spike, the duration of which is determined by the area 

under the corresponding EMG spike.  This is in effect an 

even more “direct” transformation- one could argue it’s 

hardly a transformation at all; just a discretization. This 

method would also lose less information than the current 

one, since it is possible to time the opening of valves quite 

precisely even though the valves do not open and close fast 

enough to do PWM much faster than in the current set up.  

The EMG activity in Fig. 7 before the high-frequency 

burst starting between 5.7 and 5.8 seconds is noise in the 

signal either from crosstalk with the levator EMG or some 

other neuronal activity. The kink in the robot angle trace at 

about 5.35 seconds, following the onset of inlet valve pulses 

related to this noise, is a good indication that this signal does 

not have the meaning being ascribed to it by our 

transformation, because the animal trace has no 

corresponding change in slope. Explicit removal of this 

crosstalk could significantly improve performance of the 

transformation. A thresholding function for the spike 

detection necessary for the pulse-per-spike transform 

mentioned above can accomplish much, if not all, of this 

crosstalk removal. 

As shown in Figure 6b, it appears that although this robot 

is capable of reaching within 7° of the minimum and 

maximum angles observed in the animal’s behavior, it is not 

capable of approaching this range while under control of this 

transformation. One of the most likely contributing factors 

for this problem is that we have chosen constant exhaust 

rates in the actuators, corresponding to a constant decay rate 

in the activation dynamics of the muscle. Including a 

dynamic exhaust rate would enable a considerably larger 

motion, since muscles could retain more air during 

contraction and release more during relaxation. Indeed it is 

apparent that relaxation dynamics are not constant in real 

muscle[27], sometimes to an extreme extent, with apparent 

sudden switching from “hold” to “relax”[19, 28]. Adding 

this further complexity to the system may enable a better 

fitting of the shape of the joint motion as well. 

Another probable contributing factor for the limited 

motion produced by the robot is dissimilarity between the 

robot and the cockroach, particularly in range of motion. The 

robot can generate almost the full range of motion desired 

here, but the cockroach EMGs are controlling muscles in the 

animal which can generate a much larger range of motion, 

and are therefore less affected by saturation of the muscle 

length-tension relationship. Higher maximum inlet flow 

rates, introduced by using higher-capacity valves and hosing, 

may mitigate this effect but are unlikely to solve it 

completely. When the amplitude of the joint motion to be 

modeled is reduced, the robot is also farther from saturation, 

and is able to match the gross shape of the trajectory quite 

well (Fig. 6b). 

Despite these concerns, the model performance as shown 

in Fig. 6b strongly suggests that our approach holds promise. 

Five out of seven angle maxima are matched well, 

amplitudes of the minima are matched, although the shape is 

different, and the speed of motion also generally matches 

quite well.  There is no angle feedback in the model system, 

as there is not in the corresponding transformation of EMG 

to motion in the animal. The similarity in motion produced 

by both systems when given the same EMG input is 

therefore indicative of some input-output equivalence 

between the systems, though we have not shown any direct 
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evidence the analogue between BPA air pressure and muscle 

activation is valid. 

The simplicity of the input transformations used here also 

suggest that in cases where a system is to be controlled using 

EMG as a command input, the use of BPAs as the actuators 

may substantially simplify the control system. 

In conclusion, we have developed and tested a method for 

transforming EMG recordings from the cockroach Blaberus 

discoidalis into control signals for pneumatic artificial 

muscles in a robotic joint. We used optimization methods on 

the physical robot to find parameters that minimize the error 

between animal and robot motion. While it is possible that 

further and/or improved optimization will find parameters 

with somewhat better performance, results from evaluation 

on reduced-amplitude cockroach angle data strongly suggest 

that braided pneumatic actuators could be effectively used as 

part of a physical model of insect EMG response. 

ACKNOWLEDGMENT 

B. L. Rutter thanks Dr. Michael Branicky for insightful 

suggestions regarding the optimization methods and 

reduced-amplitude tests. 

REFERENCES 

 
[1] R. J. Bachmann, G. M. Nelson, W. C. Flannigan, R. D. Quinn, J. T. 

Watson, and R. E. Ritzmann, "Design of a Cockroach-Like Hexapod 

Robot," presented at Structural dynamics and control, Blacksburg, VA, 

1997. 

[2] R. D. Quinn, G. M. Nelson, R. J. Bachmann, and R. E. Ritzmann, 

"Toward Mission Capable Legged Robots through Biological 

Inspiration," Autonomous Robots, vol. 11, pp. 215-220, 2001. 

[3] D. A. Kingsley, R. D. Quinn, and R. E. Ritzmann, "A cockroach 

inspired robot with artificial muscles," in International symposium on 

adaptive motion of animals and machines (AMAM '03). Kyoto, Japan, 

2003. 

[4] J.-u. Choi, B. L. Rutter, D. A. Kingsley, R. E. Ritzmann, and R. D. 

Quinn, "A Robot with Cockroach Inspired Actuation and Control," 

presented at IEEE / ASME international conference on advanced 

intelligent mechatronics, Monterey, CA, 2005. 

[5] S. Northrup, E. E. J. Brown, O. Parlaktuna, and K. Kawamura, 

"Biologically-inspired control architecture for an upper limb, intelligent 

robotic orthosis," International Journal of Human-Friendly Welfare 

Robotic Systems, vol. 2, pp. 4-8, 2001. 

[6] S. Lee, A. Agah, and G. Bekey, "IROS: an intelligent rehabilitative 

orthotic system for cerebrovascular accident," 1990. 

[7] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, "Control of 

Multifunctional Prosthetic Hands by Processing the Electromyographic 

Signal," Critical reviews in biomedical engineering, vol. 30, pp. 459, 

2002. 

[8] K. Kiguchi, S. Kariya, K. Watanabe, K. Izumi, and T. Fukuda, "An 

exoskeletal robot for human elbow motion support-sensor fusion, 

adaptation, and control," Systems, Man and Cybernetics, Part B, IEEE 

Transactions on, vol. 31, pp. 353-361, 2001. 

[9] H. Kawamoto, L. Suwoong, S. Kanbe, and Y. Sankai, "Power assist 

method for HAL-3 using EMG-based feedback controller," 2003. 

[10] A. T. C. Au and R. F. Kirsch, "EMG-based prediction of shoulder and 

elbow kinematics in able-bodied and spinal cord injured individuals," 

IEEE Transactions on Rehabilitation Engineering, vol. 8, pp. 471-480, 

2000. 

[11] S. Northrup, N. Sarkar, and K. Kawamura, "Biologically-Inspired 

Control Architecture for a Humanoid Robot," presented at Intelligent 

robots and systems, Maui, HI, 2001. 

[12] B. D. Reger, K. M. Fleming, V. Sanguineti, S. Alford, and F. A. 

Mussa-Ivaldi, "Connecting Brains to Robots: The Development of a 

Hybrid System for the Study of Learning in Neural Tissues," presented 

at Artificial life, Portland, OR, 2000. 

[13] K. Manal, R. V. Gonzales, D. G. Lloyd, and T. S. Buchanan, "A real-

time EMG-driven virtual arm," Computers in Biology and Medicine, 

vol. 32, pp. 25-36, 2002. 

[14] A. Prochazka and S. Yakovenko, "Locomotor control: from spring-like 

reactions of muscles to neural prediction," in The somatosensory 

system: deciphering the brain's own body image, Methods & new 

frontiers in neuroscience, R. J. Nelson, Ed. Boca Raton, FL: CRC 

Press, 2002, pp. 141-181. 

[15] D. L. Jindrich and R. J. Full, "Dynamic stabilization of rapid hexapedal 

locomotion," The journal of experimental biology, vol. 205, pp. 2803-

2825, 2002. 

[16] G. E. Loeb, I. E. Brown, and E. J. Cheng, "A hierarchical foundation 

for models of sensorimotor control," Experimental brain research, vol. 

126, pp. 1-18, 1999. 

[17] U. Bassler and W. Stein, "Contributions of structure and innervation 

pattern of the stick insect extensor tibiae muscle to the filter 

characteristics of the muscle-joint system," The journal of experimental 

biology, vol. 199, pp. 2185-2199, 1996. 

[18] V. Brezina, I. V. Orekhova, and K. R. Weiss, "The Neuromuscular 

Transform: The Dynamic, Nonlinear Link Between Motor Neuron 

Firing Patterns and Muscle Contraction in Rhythmic Behaviors," 

Journal of neurophysiology, vol. 83, pp. 207-232, 2000. 

[19] S. L. Hooper, V. Brezina, E. C. Cropper, and K. R. Weiss, "Flexibility 

of muscle control by modulation of muscle properties," in Beyond 

neurotransmission: neuromodulation and its importance for 

information processing, P. S. Katz, Ed. New York: Oxford University 

Press, 1999, pp. 241-274. 

[20] A. N. Ahn and R. J. Full, "A motor and a brake: Two leg extensor 

muscles acting at the same joint manage energy differently in a running 

insect," The journal of experimental biology, vol. 205, pp. 379-391, 

2002. 

[21] R. J. Full and A. N. Ahn, "Static forces and moments generated in the 

insect leg: Comparison of a three-dimensional musculoskeletal 

computer model with experimental measurements," The journal of 

experimental biology, vol. 198, pp. 1285-1299, 1995. 

[22] C. Guschlbauer, H. Scharstein, and A. Büschges, "The extensor tibiae 

muscle of the stick insect: biomechanical properties of an insect 

walking leg muscle," Journal of Experimental Biology, 2006 

(submitted). 

[23] A. K. Tryba and R. E. Ritzmann, "Multi-joint coordination during 

walking and foothold searching in the Blaberus cockroach. I. 

Kinematics and electromyograms," J Neurophysiol, vol. 83, pp. 3323-

36, 2000. 

[24] J. T. Watson and R. E. Ritzmann, "Leg kinematics and muscle activity 

during treadmill running in the cockroach, Blaberus discoidalis : I. 

Slow running," Journal of comparative physiology, vol. 182, pp. 11-23, 

1998. 

[25] M. Bray, E. Koller-Meier, P. Muller, N. N. Schraudolph, and L. V. 

Gool, "Stochastic optimization for high-dimensional tracking in dense 

range maps," IEE proceedings Vision image and signal processing vol. 

152, pp. 501-512, 2005. 

[26] B. A. Pearlmutter, "Fast exact multiplication by the Hessian," Neural 

computation, vol. 6, pp. 147, 1994. 

[27] V. Brezina, I. V. Orekhova, and K. R. Weiss, "Optimization of 

rhythmic behaviors by modulation of the neuromuscular transform," 

Journal of neurophysiology, vol. 83, pp. 260-279, 2000. 

[28] C. Guschlbauer, H. Scharstein, and A. Büschges, "Contraction 

dynamics of the stick insect extensor tibiae muscle," presented at 

Göttingen Neurobiology Conference, Göttingen, Germany, 2005. 

 

 

WeB9.2

641


