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 Abstract – This paper presents a new CBR navigation 
scheme based on three behaviours: Wall Following, Corridor 
Following and Door Crossing. The system switches among CBR 
behaviours depending on a local grid built around the robot 
from sonar sensor readings. The main advantage of the 
proposed system is that it can easily adapt to any robot and 
environment, learning, both by training and by its own 
experience. The method has been succesfully tested in real 
environments with a Pioneer robot equipped with 8 frontal 
sonar sensors. 
 
 Index Terms – Behaviour, navigation, learning, case-based 
reasoning, robot. 
 

I.  INTRODUCTION 

Autonomous navigation is one of the main issues a 
mobile robot aims at. It is defined as the problem of reaching 
a defined goal in a safe way. Navigation may be achieved 
through a behaviour-based control, that has been established 
to serve as building blocks for robotic actions [2].  

According to Mataric [10], a robot behaviour is a control 
law that satisfies a set of constraints to achieve and maintain 
a particular goal. There are two main approaches to deal with 
robot behaviours in a behaviour-based navigation scheme: 
behaviour coordination and behaviour competition. 
Behaviour coordination mechanism ensures simultaneous 
activity of several independent behaviours and obtains a 
coherent behaviour that yields to the intended navigational 
task [14]. Its main difficulty is to find the cooperation rule to 
fuse behaviours in an efficient way, because it tends to cause 
the robot to be indecisive when the behaviours have mutually 
exclusive interest with nearly equal importance [19]. To that 
purpose, different techniques have been employed, such as 
the fusion of control signals addresed in [4]. Fuzzy logic has 
also been reported to do well in real unknown environments 
[14] [12]. Other methods prefer to combine fuzzy logic with 
neural network systems [7], or try to emulate the sitmulus-
response behaviour of a biological system [16].  

On the other hand, when using competitive behaviours 
the system has to elicit one from the set of them to perform 
the navigation task. The issue is to choose the correct 
behaviour that better fits the environment at each moment. 
Thus, a switching method among behaviours has to be 

employed. To that purpose, Zalama [22] proposes a model 
that is made up of several interconnected modules which 
allow the robot to obtain the linear and angular velocities. 
Rusu [17] employs command fusion to combine the output of 
several neuro-fuzzy subsytems for sensor-based navigation in 
indoor environments, but only simulated results are 
presented. 

When dealing with dynamic changing environments, 
behaviour-based systems need to adapt. However, changes 
are difficult to model and predict. The main drawback of 
modeling is the use of parameters to characterize kinematics 
and dynamics. These parameters need to be optimized for 
each specific problem, specially if different robots are used. 
Furthermore, if the robot is affected by physical problems, 
the same parameter optimization has to be used. Hence, it 
would be desirable to achieve a behaviour-based scheme 
able to adapt to changing circumstances without human 
supervision, allowing the system to work in a different robot 
after minor changes. 

In this context, Case-Based Reasoning (CBR) emerges 
as an alternative for adapting to environment changes. CBR 
is a learning and adaptation technique to solve current 
problems by retrieving and adapting past experiences [1]. As 
demostrated, when using CBR there is no need to study the 
robot kinematics nor the environment [20]. 

In this paper we propose a CBR navigation scheme 
based on three behaviours: Wall-Following, Corridor-
Following and Door Crossing. This navigation strategy is 
supported by a behaviour selector which switches among 
behaviours depending on a local grid built from sonar 
readings [13]. The paper is organized as follows: Section II 
presents the structure of the proposed behaviour-based 
system. Section III describes the CBR implementation of 
behaviours. Section IV shows the experimental results. And 
finally, conclusions are presented in Section V. 

II. BEHAVIOUR-BASED NAVIGATION SYSTEM 

The proposed behaviour-based system is made up of 
several interconnected modules which allows the mobile 
robot to obtain the traslational and rotational velocities that 
must be applied for navigation at any time. The modules of 
the system are presented in Fig. 1: 
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1. Sensors. It provides sonar readings for two purposes: i) 
build the local grid; ii) supply reactive information to 
behaviours to maintain an actualized knowledge of the 
closest environment. 
2. Local Map. It is a local grid built around the robot from 
sonar readings (Sensors). This grid is fast and easy to 
construct, efficiently combining any number of sensor 
readings. 
3. Behaviour Selector. Its main function is to switch among 
behaviours. The switching criteria is based upon a place 
recognition technique presented in [13]. 
4. Behaviours. It is composed of three submodules, one for 
each of the three competitive behaviours that have been 
implemented in the system. It recieves the switching 
information from the Behaviour Selector module to activate 
one of the behaviours. Its output is the traslational and 
rotational velocities that must be applied to the robot. 

a) Wall Following. This first behaviour tries to move the 
robot around the environment following the contour of 
its right wall at a predefined distance.  
b) Corridor Following. This behaviour allows the robot 
to go across a corridor by its centre. 
c) Door Crossing. The last behaviour permits the robot 
to cross a door to come in or come out of a room. 

5. Motors. This module recieves the traslational and 
rotational velocities that actually are applied to the robot 
motors. 

 

 
Fig. 1 Behaviour-Based Navigation System. 

Behaviours module receives switching information from 
the Behaviour Selector. By default, Corridor Following 
Behaviour is activated. When the Behaviour Selector module 
detects a wall in front of the robot in the Local Map, it forces 
to switch to Wall Following. Otherwise, if the Local Map 
presents a door pattern, the Door Crossing behaviour is 
selected. Due to its modularity, the system can be extended 
to more complex behaviours, by detecting new patterns in 
the local grid. However, really complex behaviours should 
be achieved via a deliberative layer supported through a 
hierarchical architecture to avoid loss of generality [21]. 

III.  CBR APPROACH TO BEHAVIOUR-BASED 
NAVIGATION 

CBR is a learning and adaptation technique to solve 
current problems by retrieving and adapting past 
experiences. CBR stores any possibly interesting situation in 
a casebase in the form of cases. A CBR case is a N-
dimensional input vector to characterize a given situation and 
the solution to that situation. The advantage of CBR 
compared to another techniques, such as neural networks, is 
that cases in the casebase are explicitly stored. Thus, cases 
can be easily analized to have a clear idea of what the robot 
has learnt and why it performs a given action. Furthermore, 
learning through CBR is preferable than neural networks 
since it is possible to seed the casebase with a-priori 
knowledge [8], and the training stage can be done from a 
small number of samples. 

A CBR cycle to solve a new situation consists of: i) 
retrieve the most similar case stored in the casebase to the 
current case; ii) adapt its stored solution to the current case; 
iii) evaluate the efficacy of the case to become the solution of 
the current case; iv) learn from the new experience. 
Therefore, when designing a CBR system it must be 
considered: i) the description of the problem; ii) the case 
instance; iii) how to retrieve a stored case evaluating the 
similarity between cases; iv) how to adapt the retrieved 
solution to solve a new situation; and v) how to learn new 
experiences. 

CBR has previously been used in robot navigation. Most 
approaches deal with static environments [3]. There are also 
some approaches to deal with dynamic environments, using a 
topological map of an a-priori known environment [5], 
although the topological map has to be reorganized when 
new opportunities are discovered. To overcome the problem 
stated, Kruusmaa proposes to use grids [8], but she 
concludes that CBR-based global navigation in beneficial 
only when obstacles are large and dense. There are also some 
approaches that concerns about CBR behaviour-based 
navigation (e.g. [15]). Likhachev [9] proposes and scheme 
that relies on acumulating experience over a time window 
while navigating in a given environment to make behaviours 
cooperate. However, this scheme is not adequate in dynamic 
environments where the layout changes frequently.  

In this work, we propose a CBR navigation scheme 
based on the three behaviours shown in Fig. 1. The casebase 
acts as as collection of sense/act pairs, in a reactive sense. 
The approach is valid for any environment, because it does 
not store information about any given environment, but 
reacts at a given time instant where there are obstacles at 
certain positions. Furtheremore, the CBR system: i) adapts 
dynamically to changes; ii) is able to learn peculiarities of 
the environment; and iii) eliminates the need to study the 
robot kinematics. 

 
A. Case Instance 

Fig. 2 presents the parameters to define our case. The 
input of the proposed case instance is defined by the instant 
sensor readings. The output of the case consists of the 
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traslational velocity (vr) and the rotational velocitiy (vt) to 
apply to the robot. These instant velocities implement the 
desired behaviour. Thus, they may vary depending on the 
selected one. The heading of the robot has not been included 
in the case instance because it does not affect to the problem 
since the robot must react to an obstacle configuration 
independently of its orientation. 

 

 
Fig. 2 Case definition. 

B. Retrieval process 

 Minor differences among sensors readings may lead to 
different cases. However, these differences usually 
correspond to same situations. Since it has been proven that 
it is better to combine discrete and continuous attributes in 
CBR systems [18], the problem instance can be improved by 
discretizing the sensor reading. Hence, the method 
discretizes sonar readings into 5 intervals: i) critical (0-20 
cm); ii) near (20-50 cm); iii) medium (50-10 cm); iv) far 
(100-150 cm); v) no influence (more than 150 cm). This 
discretizing process assumes for our reactive behaviours that 
far obstacles do not influence while the closer an obstacle is, 
the more dangerous the situation is. 

Our casebase is organized as a flat memory. Thus, the 
retrieval process consists of matching all cases in the 
casebase against the current one. The most similar case is 
selected evaluating the similarity between cases through a 
discretized Manhattan distance. Let N be the number of input 
sonar readings of the problem case instance. Let 

[ ]NxxxX ,,, 21 �=  and  [ ]NyyyY ,,, 21 �=  be two 
vector of sonar readings. Assuming that the vector with the 
number of intervals for each sonar is 

[ ] [ ]5,,5,5,,, 21 ll == NrrrR , the used discretized 
Manhattan distance is defined as: 
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where [ ]NwwwW ,,, 21 �= , is the vector of weights for 
sonars. The larger the weight of a sonar, the more is its 
influence in the retrieval process. We have considered that 

every weigth is equal to one, so that we do not favour any 
direction rather than others. 

C. Behaviour Training, Learning and Adaptation 

In any CBR system, learning is one of the most 
important tasks. There are two main learning approaches: 
learning by observation and learning by own experience. 
Learning by observation happens when the case library is 
seeded with a set of initial cases. Learning by own 
experience is done after each cycle of the reasoner. In our 
behaviour-based system, both approaches are used to learn 
each of our three implemented behaviours (Wall Following, 
Corridor Following and Door Crossing), separately. 

An initial off-line stage is used to learn by observing a 
human, who guides the robot using a keyboard to achieve the 
desired behaviour. This supervised learning has the 
advantage of adapting to any situation. Also, the human 
driver considers the kinematics and dynamics of the problem. 
During this stage, the robot captures its instant sensory 
readings to build a case each time a different sensory pattern 
is detected. These cases are stored in the case library, 
together with their solution. 

To reduce the time of the retrieval process, the casebase 
obtained through this off-line stage is organized by dividing 
it into classes using a MaxMin algorithm. Each class has a 
prototype. These prototypes become the cases of our 
casebase. Let S be the number of stored cases in the 
casebase. Let C be the number of classes which the casebase 
has been splitted. Then, the prototype of a class i is: 

∑
∈∀
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=
S

ik
k
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1
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It is necessary to note that this clustering stage averages 
cases of every class. Furthermore, the algorithm only 
depends on a threshold Tmax, which controls the maximum 
size of our classes. If Tmax is high, the number of classes is 
small and the casebase presents a few cases. If it is low, the 
casebase has more cases (classes). However, its selection is 
not critical and can be broadly chosen. In this paper, our 
experiments were carried out with Tmax=1000. This leads to 
less than 100 classes. 

While the robot is moving around the environment 
performing the selected behaviour, it learns by its own 
experience. When the sensory pattern changes, the system 
retrieves the most similar case in the casebase. Then, if the 
discretized Manhattan distance between the current case and 
the retrieved one is lower than a threshold Tadapt, the solution 
of the retrieved case is adopted. Otherwise, a new situation 
has been detected. Therefore, the case is adapted, used and 
stored. 

To solve the new detected situation, the system relies on 
a derivational adaptation [1]. It obtains a new solution for the 
current case using an analytical model. It would not be 
possible, for example, to take the two nearest cases and 
merge their solutions into a new case, since these two cases 
would not fit the environment layout.  The model is based on 
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an addtition of forces that implements behaviours. For each 
behaviour, the rotational velocity is calculated as: 
1. Wall Following. This behaviour is implemented adding 
three forces. The first (fparal), maintains the robot parallel to 
the wall. The second (fdist), tries to maintain the robot at a 
predefined distance of the right wall. And the third (favoid), 
avoids obstacles that appear while the robot is navigating. 
The expression of the rotational velocity is: 

avoiddistparalr fffv ++=  (3) 
2. Corridor Following. It is based on the same philosophy of 
the former behaviour, adding three forces. As in the Wall 
Following behaviour, fparal tries to move the robot parallel to 
a wall.  However, fdist does not try to maintain the robot at a 
distance of the wall, since it should move by the centre of the 
corridor. Thus, fdist takes into account its wideness. Finally, 
favoid avoids obtacles that may appear in the way of the robot. 

avoiddistparalr fffv ++=  (4) 
3. Door Crossing. In this case, only two forces are added. 
The first one is fperpen. This force allows the robot to stay 
perpendicular to the mark of the door. The last one (favoid), 
avoids the mark of the door, preventing the robot to collide 
with it. 

avoidperpenr ffv +=  (5) 
The traslational velocity is obtained in the same manner 

for our three behaviours. Let vt max and vr max be the maximum 
traslational and rotational velocities, respectively. Then, the 
traslational velocity is: 
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The higher the rotational velocity, the lower the 
traslational one. When the rotational velocity is maximum, 
the traslational velocity is null. Hence, when the robot is 
rotating at a high speed, it tends to traslate at a low velocity. 
In this paper, our experiments were realized with vr max=15 
º/s and vt max=0,1 m/s. 

IV.  EXPERIMENTS AND RESULTS 

The proponed system has been tested on a Pioneer robot 
equipped with 8 frontal Polaroid sonar sensors. The robot 
builds an evidence grid [11] to show where obstacles are. In 
these grids, free space is printed in black, obstacles in white 
and unexplored areas are presented in gray. It is necessary to 
point out that grids are simply used to graphically represent 
the environment. 

Before testing the system in the real robot, we run 
several tests under simulation to keep the environment under 
control. Their aim is to evaluate the learning and adaptation 
process. Tadapt was fixed to 0,1.  

Fig. 3 and Fig. 4 show the training and adaptation 
process of our Wall Following behaviour. The environment 
where the robot was trained is presented in Fig. 3a. The goal 
of the robot is to follow the wall on its right. It is initially 
heading right. After human guiding the robot (Fig. 3b), it has 
learnt to follow the wall turning left by observation, storing 

this knowledge in a casebase. The learning process continues 
in the environment of Fig. 4a. The robot is in the top area of 
the middle obstacle, heading right. It starts to follow the wall 
as presented in the grid of Fig. 4b. As the situation has been 
previously trained and stored in the casebase, the robot 
applies the solution of the most similar stored case to 
perform the behaviour. When it reaches the position in Fig. 
4c, the robot detects this is a new situation since the distance 
to the most similar case in the casebase is higher than Tadapt. 
As we can observe in Fig. 4c, this happens because the robot 
has been trained to turn left, and in the new situation the 
robot must turn right to follow the wall. Thus, the case is 
adapted, used and stored, learning by its own experience. 
When the robot is in the position of Fig. 4d, the robot finds a 
familiar situation, following the wall on the right. It must be 
noted that the robot has not been trained to perform a right 
turn at the end of the trace in Fig. 4a. However, the CBR 
system can resolve this case because it has been previously 
learnt through the adaptation process. 

 
Fig. 3. Wall Following Training: a) scenario; b) trace. 

 
Fig. 4. Wall Following Adaptation: a) trace; b) trained situation; c) new 
situation, adaptation; d) trained situation. 

First, the real robot was supervisedly trained so that it 
learnt by observation. Fig. 5 shows the trace of the robot 
when a human guides it to learn the three behaviours. It must 
be noted that this off-line stage is quite brief. However, this 
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is not a drawback since the CBR system can learn by its own 
experience while adapting to new situations. 

 
Fig. 5. Supervised training : a) Wall Following; b) Corridor Following; c) 
Door Crossing. 

Fig. 6 shows the performance of the robot in a real test 
environment. The scenario consists of a corridor and a door, 
as we can observe in the sight of the environment in Fig. 6a. 
The door is aproximately 90 cm wide, conforming a 45º 
angle with the corridor. The robot is initially located at point 
A (Fig. 6a), heading north. Since the system dectects the 
robot is in a corridor (Fig. 6b), the Corridor Following 
behaviour is activated at the beginning. The robot continues 
following the corridor until it reaches the position marked as 
point B. At this instant, the system detects a door pattern in 
the local grid of Fig. 6c. Therefore, the Door Crossing 
behaviour is activated, allowing the robot to cross the door it 
has found.  

 
Fig. 6. Real environment 1: a) sight of the environment; b) Corridor 
Following behaviour pattern; c) Door Crossing behaviour pattern; d) trace. 

The trace of the robot is superimposed in white color to 
the evidence grid built during the movement (Fig. 6d). It 
must be noted in this trace that: i) the robot follows the 
corridor from point A to point B in almost a straight way; ii) 
the door is crossed by its middle without colliding with its 
marks. Although the system is supported by the stored 
training, it also learns by experience through the adaptation 
process while performing both behaviours. Thus, as long as 
this experience is stored in the casebase, the system 
progressively adapts to each of the behaviours. 

A second test environment is presented in Fig. 7. It is 
made up of two corridors and a door. The first corridor is 
1.3m wide. The second is a little wider, 1.8m. The door is 
situated perpendicular to the second corridor, presenting a 90 
cm wideness. However, it is not centred on it. This door is 
closer to the left wall (40cm) than to the right wall (50cm). 

The robot starts at point marked as A in Fig. 7, heading 
north. The Behaviour Selector module detects a Corridor 
Following pattern at this position (Fig. 8a). Hence, the robot 
starts moving by the centre of the first corridor. When the 
autonomous agent arrives at point B, the Behaviour Selector 
module switches to Wall Following, since the local grid 
presents this pattern (Fig. 8b). However, this behaviour is 
desactivated as soon as the system reaches point C in Fig. 7. 
At this position, the system detects the pattern of the second 
corridor (Fig. 8c). Finally, the robot must cross the door. 
This is achieved by selecting the Door Crossing behaviour 
when it is at point D. 

 
Fig. 7. Sight of real environment 2. 

The trace followed by the robot in the environment of 
Fig. 7 is presented in Fig. 8e. Again, it is superimposed in 
white color to the built evidence grid. The robot follows both 
corridors in almost a straight manner. While the robot 
follows the first corridor, the north wall of the environment is 
detected. Thus, as stated before, the system switches to 
follow this wall. This behaviour tries to maintain the robot 
parallel to the right wall, until the second corridor appears. 
After that, the robot centres in this corridor. Finally, the 
system switches to Door Crossing. The robot crosses the 
door by its centre. However, the door is not simetrically 
centred in the corridor. Therefore, the agent approaches to 
the left wall, as we can see in Fig. 8e. Obviously, while 
moving, the robot uses trained situations, as well as it adapts 
to new ones. During the experiments, the robot learnt about 
40 new cases related to new situations for each of the 
behaviours. 

It is necessary to point out that there have not been 
formulated any explicit consideration about hardware 
structure, kinematics, sensor errors or environmental factors. 
Hence, if any of these parameters changes, the system adapts 
to the new situation. This allows the system to be valid for 
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different robot platforms. Furthermore, the system has been 
compared to a reactive scheme, the Potential Field Method 
[6]. Our system: i) presents less oscillations; ii) avoids the 
difficulty to move between close obstacles (e.g., doors). 

 
Fig. 8. Real environment 2: a) Corridor Following behaviour pattern; b) 
Wall Following behaviour pattern; c) Corridor Following behaviour pattern; 
d) Door Crossing behaviour pattern; e) trace. 

V.  CONCLUSIONS 

This paper has presented a new CBR scheme to 
behaviour-based navigation for a mobile robot. The 
proposed system is based on three behaviours: Wall 
Follwing, Corridor Following and Door Crossing. These 
behaviours are competitive. The system switches among 
behaviours depending on a local grid built from sonar sensor 
readings. The system learns by observation of a human 
driver and learns by its own experience. Furthermore, it is 
able to adapt to changes with no need to study the 
environment layout or the robot kinematics. The proposed 
behaviour-based system has been throughly tested on a 
Pioneer robot equipped with 8 frontal sonar sensors. Future 
work will focus on increasing the number of behaviours that 
can be selected, and on fusing behaviours to make them 
cooperate. 
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