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Abstract— This work deals with the problem of force/position
trajectory tracking under uncertainties arising from surface
position and orientation. A robotic finger with a soft hemi-
spherical tip of uncertain compliance parameter is considered
in contact with a rigid flat surface. A novel adaptive controller
is designed using online estimates of the unknown parameters
and is proved to achieve force and position tracking by ensuring
the convergence of the estimated normal to the surface direction
to its actual value. The performance of the proposed controller
is demonstrated by a simulation example.

I. INTRODUCTION

Many applications of robots involve tasks in which the
robot end-effector is in contact with the environment. In
such tasks, the end-effector position and the interaction force
between the robot and the environment, have to be simulta-
neously controlled to achieve either setpoint targets, or de-
sired trajectories. In the force and motion control problems,
uncertainties may arise from both the robot model and the
environment. Robot model uncertainties are mainly owing
to the lack of knowledge of system parameters. Moreover,
kinematic uncertainties affecting the robot and the contact
kinematics or surface Jacobian may appear whenever the
shape of the contacted surface and its position are unknown.
For a compliant contact, there are further uncertainties re-
garding the stiffness parameter.

The majority of the works dealing with surface kinematic
uncertainties consider rigid contact between the end effector
and the environment [1]–[6]. In the rigid contact case, the
end-effector can not move along the surface normal; hence,
end-effector velocities lie on the plane tangent to the surface
at the contact point. This fact allows the use of tip velocities
in the identification of the constraint surface [1]. For a
frictionless point contact, the contact force lies on the surface
normal and can be directly used to determine the constraint
Jacobian [2], [3], [5]. In the more practical case of contact
with friction both measurements of velocities and force are
used to calculate the surface normal direction [6]. In order
to avoid calculation errors and the use of force derivatives in
the control law, an adaptive force-motion controller with esti-
mates of the constraint Jacobian is proposed in [4] exploiting
the geometrical relationship between force and end-effector
velocity. Regarding uncertainties on surface position, vision
systems have been additionally used to identify the desired
position [1], [5].
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In the case of compliant contact, the previous methodolo-
gies cannot be applied because the force error is coupled with
the tip velocities. The problem of force/position regulation
does not require an online adaptation of the stiffness parame-
ter to guarantee system stability [7]–[9]. On the other hand,
surface kinematic uncertainties affect the convergence of the
position error [9]. Nevertheless, the problem of force/position
regulation has been successfully solved under both stiffness
and kinematic uncertainties by an online adaptation of the
surface normal direction that converges to its actual value
[8]. There are some works in force and position tracking
under stiffness parameter uncertainties none of which how-
ever deals with surface kinematic uncertainties [10]–[13]. In
fact in [10] adaptive force control is applied to estimate
unknown parameters under the unrealistic assumption of a
constant robot inertia matrix while in [11] adaptive control
is applied for the unknown stiffness after fully linearizing and
decoupling system dynamics. The works of Yao et al. [12]
and Villani et al. [13] involve the use of the force derivative
in the control law through the reference velocity derivative
and hence they require extra control effort to overcome the
problem of this noisy signal. At our knowledge there are
no works that deal with surface kinematic uncertainties in
compliant contact.

This work considers surface kinematic and stiffness un-
certainties as in [8] but deals with the problem of force and
position tracking as opposed to regulation [8]. An adaptive
controller is proposed and is proved to achieve the control
target by ensuring the convergence of the estimated surface
orientation to its actual value.

II. PROBLEM DESCRIPTION

Consider a robot finger with soft hemispherical fingertip
of radius r in contact with a rigid flat surface. Let q ∈ �nq

be the vector of the generalized joint variables and {B} the
inertia frame attached at the finger base (Fig. 1). Let the
surface frame {s} be attached at some point on the surface;
its position is denoted by ps and its orientation by matrix
Rs = [ns os as] such that ns ∈ �3 is the unit vector
normal to the contact surface pointing inwards. Consider also
the frame {t} at the finger rigid tip with position pt ∈ �3 and
rotation matrix Rt that can be parameterized by three rotation
angles ϕt ∈ �3 around the axes of the inertia frame. Let
the generalized rigid tip position be p =

[
pT

t ϕT
t

]T ∈ �6.

The generalized velocity ṗ =
[
ṗT

t ωT
t

]T ∈ �6 is related
to the joint velocity q̇ through the rigid tip Jacobian J =
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[
JT

v JT
ω

]T ∈ �6×nq as follows:

ṗ = J(q)q̇ (1)

At the center point of the contact area, we attach the contact
frame {c}, described by the position vector pc and the ori-
entation matrix Rc = Rs. For a soft hemispherical fingertip,
the contact point identifies with the rigid tip projection on
the surface i.e., Qspc = Qspt where Qs = I − nsn

T
s is the

projection matrix. Moreover, for a flat surface the projections
of pc and ps along the surface normal are equal (nT

s ps =
nT

s pc) and hence we can derive the material deformation as
a function of ps, pt :

Δx = r − nT
s (ps − pt) (2)

x
cp

tp

sp

s

t

B
s

sn

ˆsn

c

Soft Hemispherical 
Fingertip

Rigid Surface

Surface Estimate

Fig. 1. A robot finger with a soft hemispherical fingertip in contact with
a rigid surface

We reasonably assume that the integral of the stresses
that are distributed nearly semi-circularly over the contact
area of the deformed fingertip arises as an aggregated force
perpendicular to the surface at the contact point. The concen-
trated force can be expressed as Fc = nsf , where the force
magnitude f is assumed to be measurable by a sensor at-
tached at the fingertip [14] and is in general a monotonically
increasing, continuously differentiable nonlinear function of
Δx : f(Δx) if Δx > 0, f = 0 if Δx ≤ 0. A typical force-
deformation relationship is f(Δx) = ksΔxμ, μ ∈ �, where
ks is the elasticity model constant. The contact force Fc is
mapped to the rigid tip as a generalized force F = nf ∈ �6,
with n = [nT

s 0T
3 ]T ∈ �6 denoting the generalized normal

direction.
In this work, we consider the force/position trajectory

following problem under uncertainties arising from surface
position and orientation. We further assume that although
the force deformation relationship takes the typical structure
given above the elasticity model constant maybe unknown.

Uncertainties on the surface position and orientation affect
the accurate definition of the desired position trajectory
pcd(t) in the three dimensional space. Furthermore, mea-
surements of the contact point position can not be easily
obtained in the case of an area contact. These problems can
be easily overcome if the surface orientation is known. Then,
a trajectory defined in the three-dimensional space can be
projected on the surface Qspcd to annihilate errors that may
exist along the surface normal direction and since the rigid tip
projection on the surface identifies with the contact point i.e.
Qspc = Qspt, the error Qs(pt−pcd) can be used for control
purposes. Since the surface orientation is uncertain in this
work, the basic idea is to design a controller to achieve both
slope identification and force position tracking. In fact, the
controller is designed using online estimates of the unknown
parameters of surface orientation ns (Qs), surface distance
θ1 = nT

s ps and the inverse of elasticity model constant
θ0 = k−1

s and achieves desired force fd(t) ∈ �+ and
position pd(t) = [pT

cd(t) ωT
td(t)]

T ∈ �6 tracking by ensuring
the convergence of ns estimate to its actual value.

We assume that joint positions and velocities are measured
and that the rigid tip Jacobian J is known; hence, rigid tip
position and velocity can be calculated by using the robot
forward kinematic relationships. We further assume that the
robot dynamic model is known. The dynamic model of the
robot ignoring friction forces can be written as follows:

M(q)q̈+
(

1
2
Ṁ(q) + S(q, q̇)

)
q̇+g(q)+JT (q)nf = u (3)

where M(q) ∈ �nq×nq is the robot inertia matrix that is
positive definite, S(q, q̇) ∈ �nq×nq is a skew symmetric
matrix, g(q) ∈ �nq denotes the gravity vector and u denotes
the input control law.

III. CONTROLLER DESIGN

For simplicity we consider the case of a linear elasticity
model that implies fd = ksΔxd, ḟd = ksΔẋd. Hence,
estimates of the deformation trajectory and its derivative can
be expressed with respect to the force trajectory fd, ḟd and
the online estimate of parameter θ0, θ̂0 as follows:

Δx̂d = θ̂0fd (4)

Δˆ̇xd = θ̂0ḟd (5)

The estimate of the deformation using (2) can be given by:

Δx̂ = r − θ̂1 + n̂T
s pt (6)

where θ̂1 and n̂s are online estimates of θ1, ns respectively.
The generalized estimate of normal direction denoted by n̂ is
defined according to the definition of n i.e. n̂ = [n̂T

s 0T
3 ]T .

The Euclidean norm of n̂ denoted by ‖n̂‖ depends on the
adaptation law and can take non-unit values. However, if the
adaptation law is such that ‖n̂‖ �= 0, the estimate of the
generalized projection matrix Q = I6 − nnT is defined as

Q̂ = I6 − n̂n̂T

‖n̂‖2
(7)
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Notice that the estimate Q̂ corresponds to a projection matrix
that enjoys the basic properties: Q̂ = Q̂T , Q̂ = Q̂2 and
Q̂n̂ = 0.

Let us define the reference velocity vector ṗr ∈ �6 in the
rigid tip operational space:

ṗr = Q̂ (ṗd − αΔp) +
n̂

‖n̂‖2

(
Δˆ̇xd − βδx̂ − γΔF

)
(8)

where α, β, γ are positive control gains, Δp = p− pd is the
position error, δx̂ = Δx̂−Δx̂d is the estimated deformation
error and ΔF =

∫ t

0
Δfdτ is the integral of the force error.

Using (4), (5) and (6), the reference velocity vector can be
written as follows:

ṗr =Q̂ (ṗd − αΔp) +
n̂

‖n̂‖2
(Δẋd − βδx − γΔF )

+
n̂

‖n̂‖2

(
−ζT θ̃ + βpT ñ

) (9)

where δx = Δx − Δxd is the actual deformation error,
ñ = [ñT

s 0T
3 ]T with ñs = ns − n̂s is the normal direction

error, ζT =
[

ḟd + βfd β
]

is a regressor vector and
θ̃T = [θ̃0 θ̃1] is the parameter error vector with θ̃0 = θ0−θ̂0,
θ̃1 = θ1 − θ̂1.

The reference acceleration p̈r can be calculated as follows:

p̈r =
d

dt

[
Q̂

]
(ṗd − αΔp) + Q̂(p̈d − αΔṗ)

+
d

dt

[
n̂

‖n̂‖2

]
(Δˆ̇xd − βδx̂ − γΔF ) − n̂

‖n̂‖2
γΔf

+
n̂

‖n̂‖2

{
d
dt

[
Δˆ̇xd

] − β( d
dt

[
Δx̂

] − d
dt

[
Δx̂d

]
)
}

(10)

where d
dt [·] denotes the time derivative of a matrix, vector

or scalar. The derivatives of the quantities appearing in (10)
are calculated as follows:

d

dt

[
Q̂

]
=

1
‖n̂‖4

[
2n̂T ˙̂nn̂n̂T − ‖n̂‖2

(
˙̂nn̂T + n̂ ˙̂nT

)]

d

dt

[
n̂

‖n̂‖2

]
=

1
‖n̂‖4

[
˙̂n‖n̂‖2 − 2n̂n̂T ˙̂n

]

d

dt

[
Δˆ̇xd

]
= θ̂0f̈d + ˙̂

θ0ḟd

d

dt

[
Δx̂d

]
= θ̂0ḟd + ˙̂

θ0fd

d

dt

[
Δx̂

]
= − ˙̂

θ1 + ˙̂nT
s pt + n̂T

s ṗt

where ˙̂n � [ ˙̂nT
s 0T

3 ]T , ˙̂
θ0 and ˙̂

θ1 are given by update laws
that will be defined through the subsequent stability analysis.

We also define the error:

sp = ṗ − ṗr (11)

that can be written as follows:

sp = Q̂ṗ +
n̂

‖n̂‖2
Δẋ − n̂

‖n̂‖2
ñT ṗ − ṗr (12)

Substituting (9) in (12) we get:

sp = ŝQ + ŝn (13)

where

ŝQ = Q̂(Δṗ + αΔp) (14)

ŝn =
n̂

‖n̂‖2

[
δẋ + βδx + γΔF + ζT θ̃ − (ṗ + βp)T ñ

]
(15)

On the other hand sp can be expressed as follows:

sp = ṗ + A(n̂)p − v(ṗd,Δẋd, pd,Δxd, θ̃, n̂,ΔF ) (16)

where A(n̂) is a uniformly positive definite matrix for all n̂
given by:

A(n̂) = αQ̂ + β
n̂n̂T

‖n̂‖2
(17)

and

v =
n̂

‖n̂‖2

{
Δẋd + βΔxd − γΔF − ζT θ̃ + β(θ1 − r)

}
+ Q̂(ṗd + αpd) (18)

In the non-redundant case, we can also define the reference
joint velocity vector q̇r as:

q̇r = J−1ṗr (19)

and the error s as follows:

s = q̇ − q̇r = J−1sp (20)

The reference joint acceleration vector can be calculated by:

q̈r = −J−1J̇ q̇r + J−1p̈r (21)

using (10) and (19).
Now, we can propose the following model based input

control law:

u = JT n̂(fd−kfΔf)−Ds+Mq̈r+
(

1
2Ṁ(q)+S(q, q̇)

)
q̇r+g

(22)
The controller consists of a feedforward term of the desired
force trajectory magnitude and a proportional term of Δf
through the positive control gain kf , that lie on the estimated
normal direction as well as a feedback of s through the
positive definite gain matrix D. Substituting the input control
law (22) into the robot dynamic model (3) we obtain the
closed loop system:

Mṡ +
(

1
2Ṁ + S

)
s + JT n̂k′

fΔf + JT ñf + Ds = 0 (23)

where k′
f = kf + 1. Taking the inner product of the closed

loop system (23) with s we get:

d

dt

{1
2
sT Ms + k′

fI(δx) +
1
2
k′

fγΔF 2
}

+ k′
fΔfζT θ̃ +

[
fsp − k′

fΔf(ṗ + βp)
]T

ñ

+ βk′
fδxΔf + sT Ds = 0

(24)

where I(δx) =
∫ δx

0
{f(ξ + Δxd) − fd} dξ is the potential

owing to deformation error with I(δx) > 0 for δx �= 0. For
the case of linear force-deformation relationship the potential
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is given by I(δx) = 1
2ksδx

2. The parameter update laws are
chosen as follows:

˙̂
θ = −Γζk′

fΔf (25)
˙̂ns = −P {

Γn

[
I3 O3×3

] {
fsp − k′

fΔf(ṗ + βp)
}}
(26)

where Γ = diag [γi]
i=2
i=1, Γn = diag [γni]

i=3
i=1 are diagonal

matrices of parameter update gains and P is an appropriately
designed projection operator [15] with respect to a convex
set:

S =
{
n̂s ∈ �3, n̂T

s (0)n̂s ≥ ε
}

, ε ∈ �+ (27)

that contains the actual normal direction i.e. ε < cos φ, |φ| <
90◦ where φ denotes the angle of the initial estimate with the
actual normal vector (Fig. 2). Hence, the positive constant
ε is a measure of the allowed uncertainty. The projection
operator ensures that ‖n̂s‖ �= 0.

ˆ (0)sn

sn

ˆ ˆ (0)T
s sn n

ˆsn

Fig. 2. The projection operator convex set

Notice that the control law given by (22) and the update
laws (25), (26) do not require the use of force derivative.

Using (25) and (26) in (24) we get:

dV

dt
+ W = 0 (28)

where

V =
1
2
sT Ms + k′

fI(δx) +
1
2
k′

fγΔF 2

+
1
2
ñT

s Γ−1
n ñs +

1
2
θ̃T Γ−1θ̃ (29)

W = βk′
fδxΔf + sT Ds (30)

Function V is positive definite with respect to s, δx, ΔF
and parameter errors θ̃, ñs while function W is positive
definite with respect to s, δx. Hence, function V has a
negative derivative i.e. dV

dt = −W ≤ 0 and can be regarded
as a Lyapunov-like candidate function in order to prove the
following theorem.

Theorem: The input control law (22) with the update
laws (25), (26), applied in (3) achieves the convergence to
zero of force, position and velocity tracking errors as well
as slope identification i.e. Δf → 0, Δḟ → 0, QΔp → 0,
QΔṗ → 0 and ñs → 0.

Proof: dV
dt = −W ≤ 0 implies V (t) ≤ V (0) and

hence s (sp, ŝQ, ŝn), δx (Δf ), ΔF , θ̃, ñs (ñ) ∈ L∞. Hence,
given pd, ṗd, fd, ḟd are bounded trajectories, v ∈ L∞ and
consequently (16) implies ṗ + A(n̂)p ∈ L∞. Since A is
bounded and positive definite, it can be easily proved that
ṗ, p ∈ L∞ and in turn δẋ ∈ L∞. If the robot moves away
from singular positions, the boundedness of ṗ implies that q̇

is bounded. Hence, ˙̃ns, ˙̃
θ are bounded. From (23), ṡ can

be expressed as a sum of bounded quantities and hence
ṡ (ṡp) ∈ L∞. From (28)-(30), δx, s ∈ L2. Further, δx,
s are uniformly continuous because of the boundedness of
δx, s and their derivatives. Hence, it follows that δx → 0
(Δf → 0), s → 0 (sp, ŝn, ŝQ → 0). From (16), the
boundedness of ṡp implies that p̈ is bounded as a function of
bounded quantities and hence ṗ (δẋ) is uniformly continuous.
Furthermore, (23) implies that ṡ is uniformly continuous as
a function of uniformly continuous quantities. The uniform
continuity of δẋ, ṡ as well as the convergence of δx, s to
zero implies δẋ, ṡ → 0 and in turn JT (t)fd(t)ñ → 0. Using
the fact that fd(t) is strictly positive and the assumption that
J is non-singular we get

∫ t+T0

t

JT (τ)J(τ)f2
d (τ)dτ ≥ α0T0, ∀t ≥ 0

for some α0, T0 > 0 that implies ñ → 06 (n̂s → ns, Q̂s →
Qs). The convergence of n̂s to the actual normal direction
as combined with ŝQ → 0 implies Q(Δp + αΔṗ) → 0 and
consequently QΔp, QΔṗ → 0. Notice that the convergence
of θ̃ is not required.
Remark 1: The theorem holds even when kf = 0 and
γ = 0. However, the use of a proportional and integral term
for the force error in (22) and (8) respectively provides an
extra degree of freedom to the designer for improving the
performance of the system response through the appropriate
tuning of gains kf and γ.
Remark 2: For the case of the nonlinear force-deformation
relationship f = ksΔxμ, the estimated parameter is θ0 =
µ
√

k−1
s and the regressor ζ becomes:

ζT =
[

µ
√

fd( ḟd

μfd
+ β) β

]

Remark 3: In the presence of unknown friction and robot
dynamics the proposed controller can be extended to include
a regressor term for the unknown parameters. In this case the
convergence of the normal vector to its actual value would
require persistent excitation of the involved signals.
Remark 4: The above analysis is valid even if the source
of compliance is the surface or both the fingertip and the
surface. Furthermore, the controller will operate satisfactorily
even in surfaces with small curvature.

Notice that the theorem is valid provided that the contact
between the robotic finger and the surface is maintained
i.e. δx > −Δxd, ∀t ≥ 0. This corresponds to an upper
bound for the potential owing to deformation error, i.e.
I(δx) < fdΔxd − ∫ Δxd

0
f(ξ)dξ, ∀t ≥ 0 (Fig. 3) and in

turn to V < k′
f

(
fdΔxd − ∫ Δxd

0
f(ξ)dξ

)
, ∀t ≥ 0. Since

FrC10.2

4193



V is a decreasing function i.e. V (0) ≥ V , ∀t ≥ 0, start-

ing within the region V (0) < k′
f

(
fdΔxd − ∫ Δxd

0
f(ξ)dξ

)
ensures contact maintenance. For the case of linear force-
deformation relationship the condition can be written as:
V (0) < 1

2k′
ffdΔxd and ensures both contact maintenance

and less than 100% force overshoot.

dx x

x

f
f

df

dx x

x

ff

df

2 df

2 dx

E

E
E

E

0
( )dx

d dE f x f d

a) Nonlinear force-deformation 
relation

b) Linear force-deformation 
relation

1
2 d dE f x

Fig. 3. Contact maintenance and potential owing to deformation error

IV. SIMULATION RESULTS

Consider a two-dof planar manipulator with link lengths
l1 = 0.3 m, l2 = 0.2 m masses m1 = 0.8 kg, m2 =
0.6 kg and inertias Ii = mil

2
i

12 . The surface is modeled
by a line with slope ϕs = 105◦ with a normal vec-
tor ns =

[
sin ϕs − cos ϕs

]T
. Normal force magni-

tude is simulated by f = ksΔx where ks = 10, 000.
The end-effector initial contact point position is pc(0) =[

0.3615 0.1701
]T (m) and exerts a normal force of

f(0) = 4 N. The control purpose is to exert a time-variant
normal force with magnitude fd(t) = 9 + 3 cos(t) (N) that
corresponds to an initial step of 8 N and to track the desired
position trajectory pd(t) = Pd + Ad sin(t) where Pd =[

0.3915 0.2001
]T (m) and Ad =

[
0 0.1

]T (m) that
corresponds to an initial error of |oT Δp| = 0.021 m, where
o is the tangential unit vector, without loosing contact. The
initial estimate of the line slope given in the adaptive law is
ϕ̂s(0) = 90◦ that corresponds to an initial angle error of 15◦.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−8

−6

−4

−2

0

Δf

0 1 2 3 4 5

−0.02

−0.01

0

0.01

time (s)

oT Δp

 (m)

 (N)

Fig. 4. Force and position error response
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data2

f
fd

Fig. 5. Desired and actual force trajectories
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Fig. 6. Desired and actual tangent position trajectories
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Fig. 7. Normal vector estimate response
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Fig. 8. Parameters’ response θ̂(t)
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Fig. 9. Control input response

The estimate of elasticity model constant is k̂s = 9, 500, that
is 5% smaller than the actual, and corresponds to θ̂0(0) =
k̂−1

s . The initial estimate of θ1 is θ̂1(0) = 0.36 that is 8%
smaller than the actual. The force integrator is initially set to
0.45. The gains of the controller have the following values:
α = 12, β = 0.3, γ = 0.6, kf = 1.1, D = diag[7.5, 0.9],
Γ = diag[2 · 10−5, 8 · 10−3], Γn = diag[2.5, 0.25].

Fig. 4 shows the transients of force and position error
while Figs. 5, 6 show the desired and actual force and
tangent position trajectories. Fig. 7 shows the convergence
of the estimated normal vector coordinates to their actual
values. Force error converges in 0.5 s while the position error
convergence follows the convergence of the normal vector
parameters and is achieved in 4 s. Fig. 9 shows the response
of the estimated elasticity and surface position parameters
θ̂0, θ̂1 together with their actual values. Note that despite
the lack of convergence of the estimated parameters to their
actual values, the control target is achieved. Input torques,
shown in Fig. 9, remain small although the initial force and
position values do not belong to the desired trajectories.

V. CONCLUSIONS

This work proposes an adaptive controller for the problem
of force/position tracking to cope with parametric uncer-

tainties in surface kinematics and fingertip compliance. The
control scheme requires measurements of joint variables and
force magnitude. Future works will investigate the effect of
friction and dynamic model uncertainties.
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