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Abstract - A quasi-passive dynamic walking robot is built 
to study natural and energy-efficient biped walking. The robot 
is actuated by MACCEPA actuators. A reinforcement learning 
based control method is proposed to enhance the robustness 
and stability of the robot’s walking. The proposed method first 
learns the desired gait for the robot’s walking on a flat floor. 
Then a fuzzy advantage learning method is used to control it to 
walk on uneven floor. The effectiveness of the method is 
verified by simulation results. 
  

Index Terms - passive dynamic walking, reinforcement 
learning, fuzzy advantage learning, biped robot. 
  

I.  INTRODUCTION 

Passive Dynamic Walking (PDW) research was 
originally proposed by McGeer [1]. His PDW robots were 
able to walk down an inclined floor without any actuators. 
Compared with biped robots based on zero moment point 
(ZMP) stable criterion and mainstream trajectory tracking 
methods, PDW robots walk in a more natural and 
energy-efficient way and are regarded as an important way 
to study the underlying principles of human walking. 
Instead of trying to control the robot to keep balance 
according to the ZMP criterion, stable passive dynamic 
walking is viewed as a periodical motion. It is understood as 
a continuous passive fall, only intermittently interrupted by 
a change of foot contact [2]. During this process the passive 
dynamics of the robots are fully made use of, through which 
natural and energy-efficient walking is achieved. 

After McGeer, several PDW and quasi-PDW robots 
were built [3]. Although natural and energy-efficient 
walking was achieved easily in PDW, the stability and 
robustness of the robots remained impractical. The stability 
of the PDW robot relies on the initial condition and the 
limited cycle of the mechanism. And the quasi-PDW robots 
controlled by simple feedback controllers are sensitive to 
disturbances when walking in rough terrain.  

To enhance the stability and robustness of quasi-PDW 
robots, reinforcement learning controllers were introduced 
to control the robots’ walking [4,5]. Morimoto et al. [5] 
demonstrated a poincaré-map based reinforcement learning. 
However, this method uses a human walking pattern as the 
target trajectory for the robot. It is difficult to decide 
whether this pattern is appropriate for robots, because of 
marked physical disparities between humans and robots. In 
this paper we proposed a method which automatically learns 

a target walking pattern for our planar quasi-PDW robot. 
Then, based on the learned gait and control strategy, a fuzzy 
advantage learning (FAL) method is used to control the 
robot’s walking in uneven terrain. In this method, with the 
strong generalization ability of fuzzy inference systems 
(FIS), the stability and robustness of the robot is enhanced. 

This paper is organized as follows. Section 2 describes 
the quasi-PDW robot and its dynamics model. Section 3 
proposes the reinforcement learning method which learns 
the target walking gait for the robot and the FAL method 
which controls the robot’s walking based on the learned 
gait. Simulation results are shown in section 4. Finally in 
section 5, conclusions and future works are given. 

II. ROBOT PROTOTYPE AND DYNAMICS MODEL 

A. Mechanical Prototype 
The quasi-PDW walker shown in Fig.1 has 2 legs and 

a trunk. Each leg has a thigh, a shin and a curved foot which 
is connected to the shin without an ankle joint. The 2 hip 
joints and 2 knee joints are actively actuated. An 
angle-bisecting mechanism [6] is used to keep the trunk 
always on the two legs’ angle bisector. Thus the robot has 3 
internal degrees of freedom (DOF) - at the hip and the 
knees. Each knee joint has a knee lock and a knee cap. 
When the swing leg is fully extended, or when the leg is in 
supporting mode, the knee lock is active and keeps the leg 
straight. The knee cap prevents the knee from 
over-extension. The mechanical parameters are listed in 
Table.1.  

The robot is actuated by MACCEPA actuators [7]. 
MACCEPA actuator is made up of two RC motors and a 
spring. The joint actuated by this kind of actuators can be 
viewed as driven by a torsional spring with independently 
controlled stiffness and equilibrium position. At each joint a 
rotational potentiometer is mounted as a sensor to read the 
joint angle. Two detecting sensors are mounted on each foot 
to give out the exact moments of collisions and foot 
clearances. A LF2407 DSP (digital signal processor) is used 
to control the RC motors and process the signals of the 
sensors.  

B. Dynamics Model 
A simulation system is built for the robot. The 

dynamic model is shown in Fig.2. The dynamics equations 
of the biped robot are derived by Newton-Euler equations 
and the TMT method [2]. It has the following form: 
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Fig.1 Robot prototype 

  
TABLE I 

MECHANICAL PARAMETERS OF THE ROBOT 

  M /kg L/m I/(kg·m2) R/m 

Trunk 0.5 0.35 0.005 - 

Thigh 0.5 0.3 0.004 - 

Shin 0.5 0.3 0.004 - 

Foot 0.1 - - 0.2 

  
τθθθθθθ =++ )(),()( gCM &&&& , (1)

where θ  is the generalized coordinate vector,  is the 
generalized velocity vector,  is the generalized 
acceleration vector, 

θ&
θ&&

)(θM  is the generalized mass 

matrix,  is the matrix of centrifugal and Coriolis 
terms, 

),( θθ &C
)(θg  is the gravity terms, τ  is the torque vector 

applied by the MECCAPA actuators which is derived by the 
virtual work principle as follows: 

T]0,,2/)2(,2/)(,0,0[ 443131 τττττττ ×−−−−= . 
The definition of the generalized coordinates is 

changed during the walking process. When leg1 is the 
supporting leg and the knee joint of leg1 is locked, the 
generalized coordinates are chosen as 

 , where  and  are the 

coordinates of the hip joint, 

T
hh yx ],,,,,[ 5431 θθθθθ = hx hy

iθ  is defined in Fig.2. As 
aforementioned, the robot has 3 DOFs, so there are 3 
redundant coordinates in the generalized coordinates. Thus, 
constraint functions are added as follows: 

1121 )sin()( θθ ⋅−−+−= rrllxh , (2)

rrllyh +−+= )cos()( 121 θ , (3)

2/)( 315 θθθ += , (4)

where r is the radius of the curved foot. To apply the 
constraints to the dynamics equations, a Lagrange multiplier 
method is used. Let λ  be the Lagrange multiplier vector,   

 
Fig.2 Dynamics model 

T],,[ 321 λλλλ =  where 1λ  and 2λ  denote the 
x-direction and y-direction forces between the supporting 
foot and the ground respectively, and 3λ  denotes the 
torque between the two legs and the trunk applied by the 
bisecting mechanism. Combine (1), (2), (3) and (4), the 
complete dynamics function is derived as: 
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where A and B are terms in the second derivative forms 
of the constraint functions.  

Then, the values of the generalized accelerations and 
the multipliers are solved directly from (5). With these 
values, the one step walking process is simulated by a 
numerical integration of the generalized accelerations. 

To simulate the complete process of walking, we need 
to model the collision between the swinging leg and the 
ground. Suppose the collision is a perfect plastic collision, 
the swing leg is fully extended and the knee joint is locked 
when collision occurs. The generalized velocities after 
collision are derived from the generalized velocities before 
collision by the law of conservation of momentum. The 
equation is as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −+

00
θ

λ
θ && M

A
AM T

, (6)

where  and  are the generalized velocities after and 
before collision respectively, the Lagrange multiplier 

+θ& −θ&
λ  

denotes the impulses.  
In this simulation, the MACCEPA actuator is modelled 

as a spring-damper system. The dynamics equation of the 
actuator at the  joint is shown as: thi

iiiiii bk φϕφτ &×−−×−= )( , (7)

where  iτ  is the torque applied by the actuator, iφ  is the 

relative joint angle between the two links,  is the joint 
velocity,  is the damper coefficient which is set to 0.1 
during the simulation. The stiffness coefficient  and the 
equilibrium angle 

iφ&

ib

ik

iϕ  are actively controlled. 
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III. REINFORCEMENT LEARNING BASED DYNAMIC WALKING 
CONTROL 

Reinforcement learning is a series of learning methods 
which learn from the interaction between the agent and the 
environment. The learning algorithm maintains an action 
selecting policy which maps the states to the actions. The 
agent’s sole objective is to adjust the policy according to the 
reinforcement signals it receives from the environment so as 
to maximize the total reward it receives in the long run [8]. 
It explores the state-action space through trial-and-error 
search to find the optimal policy π  which maximizes 
the action-value function : ),( asQ

),(max),(* asQasQ π
π= , (8)

for all , and . In (8),  is the state set, 
 is the action set of a given state, Q* is the optimal 

action-value function. Having Q*, we can easily achieve the 
optimal action choosing. 

Ss∈ )(sAa∈ S
)(sA

Our method is based on reinforcement learning. It has 
2 steps. Firstly, we divide the walking process of the walker 
into several phases and learn the desired gait for the robot’s 
walking on flat floor based on a Q-learning algorithm. Then, 
using the learned gait, we apply a FAL method to control 
the robot to walk on rough terrain. 

A. Learning of the target gait 
Q-learning is an off-policy temporal-difference (TD) 

learning algorithm. In Q-learning the optimal action-value 
function Q* is directly approximated by the learned 
action-value function. The update rule of )(λQ  algorithm 
is defined as: [ ] )(),(),(max),(),( 11 tasQasQrasQasQ tttattttt Φ−++← ++ γβ (9) 

where β  is the learning rate, γ  is the discount rate, 
 is the eligibility trace [8]. )(tΦ

In this paper a )(λQ  algorithm is used to learn the 
nominal gait and its corresponding control policy for the 
robot’s flat floor walking. As previously noted, the 
quasi-PDW robot has 3 DOFs. However, if we choose joint 
angles and joint velocities to be the state vector as in a 
common robot control task, the state space will have 6 
dimensions which are too huge for the trial-and-error based 
Q-learning algorithm. To avoid the curse of dimensionality, 
we propose a novel phase division for the walking process 
to add prior knowledge into the learning algorithm. The 
walking course is divided into 3 phases by 3 events. The 
collision (C) event occurs when the swing leg impact to the 
ground. The mid-stance (M) event occurs when the hip joint 
angle of the swinging leg equals that of the supporting leg. 
The fully-extended (F) event occurs when the swing leg is 
fully extended and the knee joint is locked. The definition of 
the events and phases is shown in Fig.3.  

We define the state vector S as , where p 
is the phase number and K is the kinetic energy of COM. 
With this definition, the dimension of the state space is  

],[ KpS =

 
Fig.3 Definition of walking phases 

reduced. But the drawback of this definition is that the 
Markov property of the algorithm is broken. However, as 
the purpose of our method in this stage is to give out a target 
gait and the corresponding control strategy for the FAL 
method, this definition is able to tell different gaits apart and 
the simulation results verify the effectiveness. The action 
vector A is set as ],,,,,[ 431431 ϕϕϕkkkA = , when leg1 is 
the supporting leg. In our method the stiffness and the 
equilibrium angle of the actuators are tuned at the phase 
transforming moment. During one walking phase, the 
walking process is completely dependent on the passive 
dynamics of the robot and the actuators. When the walking 
phase transforms, a failure detection approach is also 
executed based on a set of thresholds of the joint angles for 
each phase. With this approach, the undesired posture of the 
robot leads to failure immediately, which increases the 
learning speed. 

In our algorithm, the reward is set as follows. If the 
robot falls down or fails to walk, a negative reward of -1 is 
given. If the robot achieves one step, a positive reward of +1 
is given. And we set the final goal of the learning to find a 
fixed point in the generalized coordinate space. If the 
generalized coordinates after collision are same as with the 
generalized coordinates at the beginning of a step, a fixed 
point is found, and a big positive reward of +100 is given. 
At the same time, the achieved gait and its control actions 
are recorded as the target gait and control strategy for the 
FAL learning control. 

B. FAL learning control 
As the state-action space of the walking robot is 

continuous, the most difficult problem for the learning 
controller is the generalization problem. To introduce 
generalization into the state presentation, several function 
approximators have been used, including CMAC, NN and 
FIS. Among them, FIS is considered to be the best due to 
the capability of embedding prior knowledge into fuzzy 
rules, the inherent locality property leading to faster local 
learning, and the strong generalization ability of fuzzy 
partition of state spaces [9]. In this paper we use FAL [9] as 
the learning controller which combines the generalization 
ability of FIS and the on-line learning ability of advantage 
learning.  

The FIS of the FAL algorithm serves as an advantage 
function evaluator and a continuous action generator. It is 
composed of N rules in the following form: 

iR : If  is ,  is and  is , then 1s
iL
1 2s ,...,2

iL ns i
nL
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where  is the input variables vector,  

are the membership functions,  and are the output 
of the  rule.  is the local action.  is the local 
advantage value.  are the action value and 
advantage value which are chosen from the local action set 

 and local advantage parameter set  respectively. 
Each value in  is associated with an advantage 
parameter in . The local actions compete with each other 
to be the selected action of the rule according to their 
advantage values.  

],...,[ 1 nssS = i
n

i LL ...
1

iU iV
thi iU iV

Rwp ii ∈,

iP iW

iP

iW

FAL includes two components: the critic evaluating 
the advantage function and the actor generating the control 
action. The output of the actor and critic are the weighted 
sum of the local action values and local advantage values :  

∑
Ω∈

=
ti

i
R

iRt pSU )()( α , (11)

∑
Ω∈

=
ti

i
R

iRtt tpwUSV )))(((),( α , (12)

where  is the input vector at t moment,  is the 

continuous action,  is the output of the critic 
which appraises the advantage value for the current 
state-action pair, 

tS )( tSU
),( tt USV

iRα  is the truth value of the rule, tΩ  is 
the set of activated rules. The structure of FAL algorithm is 
shown in Fig.4.  

To improve the policy of the learning algorithm, the 
advantage value of the rule  is defined as the 
advantage value of the local optimal actions. Then, the TD 
error is defined as follows: 

)(*
tt SV

),()()1()]([ *
1

*
11 ttttttttt USVSVSVre −−Γ−+Γ= +++ γ  (13) 

where r is the reward received at the t+1 moment, Γ  is the 
relative scaling factor. Then the update rule of the critic is 
written as:  

i
l
itwt

l
it

l
it Wpwtepwpw ∈∀Φ+= ++ )(),()()( 11 β . (14)

With the learned target gait and the corresponding 
control actions of the flat floor walking, the FAL algorithm 
is applied to control the robot to walk on uneven floor. Let 

 be the learned gait, and  be the 

corresponding actions, where p is the phase number,  

and  are the state vector and action vector for phase p 

respectively. When the robot is walking in uneven terrain or 
an environment with disturbances, there will be errors in the 
state variables. Define the error of phase p as , 

where 

][ d
p

d θθ = ][ dd
p

AA =
d
pθ

d
p

A

θθθ −= d
pe

θ  is the state vector. Let eθ  be the input of FAL, 
then the output of the system is: 

 
Fig.4 FAL scheme 

  

 
Fig.5 Control System 

 
  . UAA d

p += (15)

The structure of the system is shown in Fig.5. To 
control the robot’s walking, we choose the input state vector 
as , where  is the angle error of the 

hip joint of the supporting leg,  is the angle error of the 

hip joint of the swinging leg,  and  are their velocity 
errors respectively. At the same time we choose the output 
action of FAL as , where  is the 

equilibrium angle action for the hip joint,  is the 
stiffness action for the hip joint,  is the equilibrium 
angle action for the swinging knee joint. 

],,,[ 2121
eeeee θθθθθ &&= 1
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The reward of the learning process is defined as: 

⎩
⎨
⎧

−
−

= −       step      ，)(
 fail               ，1

1exp
r E

, 
(16)

where lastcur EEE −=  is the difference between the state 
error in current step and the state error in last step. 
 In [9], FAL algorithm was successfully applied to 
control an inverted pendulum system. The local advantage 
value sets of the algorithm in [9] were initialized with 
random values. However in our case, the walking robot has 
more input dimensions and output dimensions than the 
inverted pendulum system. Randomly initialized values will 
cause low efficiency of the learning process. Thus, we 
follow the following approach to initialize the local 
advantage values. We first construct a data set 

}...,{ 21 RNtttT =  according to the fuzzy partition of the input 
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variables, where  is the number of rules in FIS. We 
guarantee each  is associated with a rule , and 
only activate  when is used as input data in FAL. 
Suppose  is the input variables, we choose each action 

 in the local action set of  as the output action and 
simulate the walking process. When the robot encounters a 
phase transformation, the state error is recorded as . 

Then, the local advantage value of  is initialized as: 

RN
Tti ∈ iR

iR

it

jp iR

ije

iR

∑
=

−=
AN

k
ikij

j
i eepw

1

/)( , 
(17)

where  is the number of actions in the local action set. AN

IV. SIMULATION RESULTS 

A. Learning of the target gait 
We first apply the first stage of our method to learn the 

target gait for the simulated robot. We use the ε -greedy 
policy as the exploration policy. The simulation parameters 
are set as follows 2.0=β , 1.0=ε , 95.0=γ , 

5.0=λ . In our method, the policy improvement only 
occurs when the phase transforms. So we set the discount 
rate of the eligibility trace to be a fairly low value to 
conclude most of the reward to the recent selected actions. 
After an average of 2,000 trials a stable walking gait is 
found.  

The trajectories of the hip joints of the learned gait are 
shown in Fig.6. The trajectories of the knee joints are shown 
in Fig.7. The phase portrait of a 15 steps robot walking is 
shown in Fig.8. The x-axis and y-axis represent the joint 
angle and joint velocity of the hip respectively. The figures 
show a walking episode in which the robot begins with a 
predefined initial condition, and walks under the control of 
the learning controller. After several steps the robot’s 
walking is adjusted to the stable walking gait gradually. 

 
Fig.6 Simulated hip joint angles 

 
Fig.7 Simulated Knee joint angles 

 
Fig.8 Simulated phase portrait of the hip joints 

B. Walking on uneven floor 
Based on the learned target gait, we apply the FAL 

algorithm to control the robot’s walking on uneven floor. As 
aforementioned, FAL has the capability to add prior 
knowledge into the fuzzy rules. Before learning, we must 
define the fuzzy membership function and the local action 
sets based on the prior task knowledge. In this paper, 
triangular fuzzy membership functions and a strong fuzzy 
partition are used. The fuzzy partitions of the input variables 
are listed in Table.II. The values of the local action sets are 
defined in Table.III. With these parameters, the local 
advantage value sets are initialized. Then we control the 
robot’s walking on an uneven floor with the disturbance 
from -4cm to 2cm. The walking gait is shown in Fig.9. The 
trajectories of the hip joints are shown in Fig.10.  

The accumulated reward received by the learning 
algorithm is shown in Fig.11. The accumulated reward data 
is filtered with moving average of 20 trials. The robot learns 
a walking gait on the uneven floor within 100 trials. 

  
 TABLE II 

FUZZY PARTITIONS OF INPUT VARIABLES 

Input Fuzzy membership function 

)(1 radeθ  (-0.08,0,0.08) 

  )(2 radeθ (-0.08,0,0.08) 

)( 11 −⋅sradeθ&  (-0.24,0,0.24) 

)( 12 −⋅sradeθ& (-0.24,0,0.24) 
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TABLE III 
VALUES OF LOCAL ACTION SETS 

Action Local action sets 

   )(1 radactϕ {-1.2,-0.6,-0.2,0,0.2,0.6,1.2} 

)(
2

radactϕ  {-0.4,0,0.4} 

)( 1−⋅⋅ radmNk act  {-0.8,-0.4,-0.2,0,0.2,0.4,0.8} 

 
Fig.9 Uneven floor walking 

 
Fig.10 Simulated hip joint angles 

 
Fig.11 Accumulated reward 

V.  CONCLUSIONS 

In this paper, a planar quasi-PDW robot is 
demonstrated and a reinforcement learning based method to 
control the robot’s simulation walking process is presented. 
We first apply a Q-learning method to learn a nominal gait 
of the robot’s walking on flat floor. Then, a FAL algorithm 
is used to control its walking on an uneven floor. With our 

method, the robot quickly adapts to small disturbances in 
terrain. 

Our work in this paper is focused on the control of 
simulated walking. Our future work will apply this 
methodology to a physical robot. 
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