
 
 

 

  

Abstract—This paper introduces an extension to the original 
error-based minimal control synthesis with integral action 
(Er-MCSI) algorithm, for controlling serial link manipulators.  
Minimal control synthesis (MCS) methods have a number of 
attractive features: no a priori knowledge of the robot structure 
is required; eg. no need for parameter identification, no precise 
adjustment of control parameters is necessary and proven 
stability.  After a brief summary of the basic MCS algorithm, we 
introduce the new algorithm, which provides a more robust 
environment in terms of gain wind-up protection.  A proof of 
stability is also provided, together with simulation studies upon 
serial link manipulators, which demonstrate the excellent 
performance of the proposed algorithm, even under severe test 
conditions. 

I. INTRODUCTION 

Over the last two decades there has been considerable 
effort expended on introducing adaptive schemes for 
controlling mechanical manipulators [1]-[9].  The prime 
motivation for introducing such schemes is that the 
manipulator is usually a non-linear, multi-input, multi-output 
(MIMO) system, which has dynamically coupled degrees of 
freedom (DOF), together with significant parameter 
uncertainty.  In such circumstances the widely-used PID 
controller, for example, requires a redesign on each occasion 
that the manipulator payload or operating point changes.  

All of the methods cited in the references [1]-[9] require 
on-line identification of some unknown physical parameters 
of the manipulator.  This implies that, although on-line 
identification schemes make it unnecessary to know values of 
the parameters in advance, it does require that the 
manipulator dynamics have to be precisely described as a 
known set of non-linear dynamic equations.  Moreover, 
persistently exciting conditions on the demand signals are 
mandatory for guaranteed convergence of the estimated 
parameters [3], [6].  In addition, estimated parameters will be 
noise-sensitive, because their update laws are based on the 
use of first and second derivatives of the link displacements.  
These issues have hampered the practical use of adaptive 
control schemes for manipulator control, using the 
approaches taken by [1]-[9].    

In parallel with the above research effort, an adaptive 
control scheme based on the minimal control synthesis 
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(MCS) algorithm has been applied within a number of 
engineering fields: for example, the control of AC motors 
[10], the control of permanent magnet synchronous motors 
[11], the control of vehicle dynamics [12] and satellite 
attitude control [13].  The MCS algorithm [14]-[17] extended 
model-reference adaptive control (MRAC) [18] and 
significantly simplified the controller design.  In particular, 
MCS requires no a priori information on the plant model or 
on the controller gains, which is in sharp contradistinction 
with the standard MRAC formulation.  In addition, MCS does 
not require any on-line system identification procedure. 

The adaptive control scheme employed in this study is 
based upon the error-based minimal control synthesis with 
integral action (Er-MCSI) algorithm, [19], which removes 
the operating-point sensitivity that is a feature of the original 
MCS/MRAC algorithms.  Thus, adaptive parameters can be 
set without reference to plant operating regimes. 

This paper is organized as follows.  Section II provides a 
brief introduction to the standard MCS and also the Er-MCSI 
algorithms.  In the section III we propose a generalized 
improvement to the Er-MCSI algorithm, with an associated 
stability proof based upon passivity theory.  Section IV is 
devoted to simulation studies on a serial link manipulator and 
relevant conclusions are drawn in section V.     

II. THE MCS AND ER-MCSI ALGORITHMS 
This section briefly describes the historical development of 

the MRAC, the MCS and the Er-MCSI algorithms.  Analytic 
details are described in the following section. 

Fig.1 shows the block diagram of the adaptive feedback 
control system based on the MCS algorithm.  The adaptive 
feedforward gain, ( )r tK , and feedback gain, ( )tK , are 
generated via: 
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which require the provision of just two scalar weighting 
parameters, α  and β .  The control signal, u(t), is then 
generated by: 
 ( ) ( ) ( ) ( ) ( )rt t t t t= +u K x K r  (2) 
The essential difference between the MCS algorithm and 
MRAC is that, in the latter, an a priori knowledge of the plant 
dynamics is required to generate fixed gains, K and Kr, and 
the adaptive terms are then considered to be merely ‘small’ 
quantities.  Hence the corresponding MRAC control signal is: 
 ( ) [ ( )] ( ) [ ( )] ( )r rt t t t tδ δ= − − + +u K K x K K r  (3) 
In addition, within the MCS stability proof there is no 
requirement for a knowledge of the plant dynamics, in 
contradistinction to the more conventional MRAC algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Block diagram of the Er-MCSI adaptive control 
 
The error based minimum control synthesis with integral 

action (Er-MCSI) algorithm [19] is a modification of MCS. 
As indicated in Fig.2, the adaptive gains ( )I tK  and ( )E tK  are 
generated from the state error vector only.  The control signal 
is therefore generated as follows: 
 ( ) ( ) ( ) ( ) ( )I I E Et t t t t= +u K x K x  (4) 
where xI(t) is the integral of error and the gains themselves 
are generated by equations of the same structure as (1). 

This means that the adaptive gains and the control signal 
are insensitive to the operating points of both the plant and the 
reference model, so that the adaptive weighting parameters, 
α  and β , can be specified irrespective of these operating 
points.  Correspondingly, relatively high gains and faster 
adaptation can be achieved. 

III. THE GENERALIZED ER-MCSI ALGORITHM 
This study focuses on the Er-MCSI scheme but proposes a 

new, generalized, version of the algorithm, which is now 
formulated in this section. 

 
A. Plant system 

We assume that the MIMO plant that has m -DOF, each of 
which is described by the nth-order non-linear differential 
equation: 

 ( ) ( ) ( ) ( )Et t t t= + +x A x B B u d  (5) 
where: 

( 1) ( 1)
1 1 1

T mnn n
m m m

x x x xx x− −⎡ ⎤= ∈ℜ⎣ ⎦x  
is a state space vector and 

1( ) { ( ), , ( )} mn mn
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has block matrices in the canonical form: 
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( )tB is an m m×  strictly positive definite symmetric matrix 
(often it will be the inverse mass/inertia matrix in a robotic 
system).  Also: 

[ ]0 0 0 0

( )

{ , , } , with 0 0 1 Tmn m n
E

m

diag ×= ∈ℜ = ∈ℜB b b b b

[ ]1 2( ) ( ) ( ) ( ) T m
mt u t u t u t= ∈ℜu  is an input vector, and 

1 2( ) { , , , } , with [0 0 ]mn m T n
m i it diag d×= ∈ℜ = ∈ℜd d d d d

is a vector that includes any non-linear terms (eg. Coriolis 
terms, centrifugal terms and gravitational terms).  Hence, the 
plant is a coupled, non-linear, dynamical system.  It is 
assumed that the non-linear terms are bounded in their values 
across the entire state-space. 
 
B. Reference model system 

We introduce a linear reference model as follows: 
 ( ) ( ) ( )t t t= +x Ax Br  (6) 
where:

( 1) ( 1)
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )

Tn n mn
m m mt x t x t x t x t x t x t− −⎡ ⎤= ∈ℜ⎣ ⎦x

 
is a model state space vector, and: 
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1 2{ , , , } , with 0 0
Tmn m n

m i idiag b× ⎡ ⎤= ∈ℜ = ∈ℜ⎣ ⎦B b b b b

and [ ]1 2( ) ( ) ( ) ( ) T
mt r t r t r t=r  is the reference input vector. 

In the reference model, the dynamics of the multiple DOF 
are completely decoupled and each DOF has a stable transfer 
function 1( ) ( 1, , )i is i m−− =I A b . 
 
C. State error dynamics 

We introduce two vectors related to the model following 
error: 
The proportional state error vector: ( ) ( ) ( )PE t t t= −x x x  (7) 
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The filtered state error vector:  0 ( )

0

( ) ( )
t

t
FE PEt e dε τ τ τ−= ∫x x  (8) 

where 0ε is a sufficiently small value so that ( )FE tx  has 
virtually the dynamic properties of an integrated signal, but 
with a finite low frequency gain of 01/ ε .  In previous work, 
standard Er-MCSI has used the purely integrated vector of 

( )PE tx , which has occasionally caused the wind-up of the 
adaptive gains [19].  Thus, the reason for adding the new 
filtering effect is to cope with this wind-up phenomenon of 
adaptive gains, due to input saturation and signal noise, [20], 
and thus to stabilize the overall adaptive control over a long 
time period of operation. 

The control signal is generated in a similar manner to those 
previously described: 
 ( ) ( ) ( ) ( ) ( )P PE F FEt t t t t= +u K x K x  (9) 
where ( ) , ( ) m m n

P Ft t ×∈ℜK K  are the adaptive gain matrices.  
Note that in the standard Er-MCSI algorithm, the vector 

0
( ) ( )

t m
I PEt dτ τ= ∈ℜ∫x C x  is used instead of ( ) mn

FE t ∈ℜx , 

with [ ]diag{ , , , } , 1 0 0 Tmn m n×= ∈ℜ = ∈ℜC c c c c , and 
the m m× adaptive gain ( )I tK  is used instead of 

( ) m m n
F t ×∈ℜK .  We generate a state error dynamic equation 

by using (5) and (6): 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( )) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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t t t
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t t t t
t t t t t t t t

= −

= − −

+ − + −

= − − +

x x x

Ax B B K x B B K x

A A x Br d
Ax B B K x B B K x ξ

(10) 
where ( ) ( ( )) ( ) ( ) ( )t t t t t= − + −ξ A A x Br d  can be rewritten, 
using (5) and (6), as: 
 ( ) ( ) ( )PE PE Et t t= − + +ξ Ax x B B u  (11) 
Equation (10) suggests that ( )tξ is a vector that must be 
negated if the model following is perfectly achieved and we 
therefore treat ( )tξ as a disturbance vector. 

Let us introduce the augmented error vector: 
2( ) ( ) ( )

TT T mn
E PE FEt t t⎡ ⎤≡ ∈ℜ⎣ ⎦w x x  

and the augmented adaptive gain matrix, 
[ ] 2( ) ( ) ( ) ( ) ( ) m mn

P Ft t t t t ×≡ ∈ℜΦ B K B K  
Using ( )E tw and ( )tΦ  in (10): 

 ( ) ( ) ( ) ( ) ( )PE PE E Et t t t t= − +x Ax B Φ w ξ  (12) 
Also, define the output error vector: 
 ( ) ( ) m

E E PEt t= ∈ℜy C x  (13) 
with the output error compensation matrix m mn

E
×∈ℜC .  The 

closed-loop error dynamics described by (12) and (13) are 
illustrated in the block diagram as shown in Fig.3. 

 
D. Design of a stable adaptive system 

In order to stabilize the closed-loop error dynamics shown 
in Fig.1, two conditions must be satisfied.  Firstly, in the 
linear forward loop, the compensator matrix EC  must be 
chosen so that the triple { , , }E EA B C  satisfies the strictly 
positive real (SPR) condition.  Correspondingly, the Kalman- 
Yakubovich lemma states the positive definite symmetric 
matrix, P , which solves the following Lyapunov equation:  
 , 0T + = − ∀ >A P PA Q Q  (14) 
yields EC  according to: 
 E E=C B P  (15) 
thus satisfying the SPR condition [18], [21].  Since A  is 
designed to be positive definite, the matrix P  is guaranteed to 
exist. 

The second condition is that the adaptive block in the 
feedback loop must satisfy the passivity condition described 
by the following inequality [21]: 

 
0 0
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for some positive scalar ρ .  It follows from substituting 
( )E tw and ( )tΦ  into (16) that: 
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As a general choice of ( )P tK and ( )F tK , we propose the 
following forms: 

 
( ) ( ) ( ) ( )
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t G q t t

×

×
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K y x
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where ( )PG q  and ( )FG q  are proper linear transfer functions, 
written in terms of the differential operator, q , which we call 
adaptive gain filters.  Since ( )0( ) 1/( ) ( )FE PEt q tε= +x x , (see 
(8)), ( )F tK can be written as: 

 
0

1( ) ( ) ( ) ( )T m mn
F F E PEt G q t t

q ε
×= ∈ℜ

+
K y x  (19) 

 
Proof 
Let us consider the first term of the left hand side of (17): 

Proposition 
The passivity condition (17) is satisfied if the transfer 

functions ( )PG q and ( )01/( ) ( )Fq G qε+ described in (18) 
and (19) are output strictly passive (OSP). 
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Fig.3 The closed error system with adaptive feedback
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( ) ( ) ( ) ( ) ( )

t T
E P PEf t dτ τ τ τ τ= ∫ y B K x  

It follows from the substitution of (18) that: 

0
( ) ( ) ( ) ( ) ( ) ( ) ( )

t T T
P E E PE PEf t G q dτ τ τ τ τ τ= ∫ y B y x x  

Since ( )tB is symmetric, it can be factorized as 

( ) ( ) ( )
T

t t t=B B B .  Substituting this into the above 
equation yields: 

( ) ( )0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Tt T
P E E PE PEf t G q dτ τ τ τ τ τ τ= ∫ B y B y x x

Since ( )PG q  is output strictly passive (OSP), we can always 
find 1ρ  such that: 

( ) ( )22
1 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tt T

P E E PE PEf t G i dρ ω τ τ τ τ τ τ τ≥ ∫ B y B y x x

for all ω .  Since ( )tB  is bounded and strictly positive 

definite, we can also find 2ρ  such that 2( )t ρ>B .  

Therefore, since ( )PE tx  is linearly related to ( )E ty  by (13) 
we can always find 3ρ  such that: 

2
30 0

( ) ( ) ( ) ( )
t tT T

PE PE E Ed dτ τ τ ρ τ τ τ≥∫ ∫x x y y  

Consequently it follows that: 
22 2 2

1 2 3 0
( ) ( ) ( ) ( )

t T
P E Ef t G i dρ ρ ρ ω τ τ τ≥ ∫ y y  

A similar result applies to the second term of the left hand 
side of (17), hence the proposition is proven to be valid. 

 
 
Remark 1.  ( )PG q  or ( )1/( ) ( )Fq G qε+  must be OSP and 
should not be simply SPR, or input strictly passive (ISP).  The 
SPR and the ISP conditions only require Re[ ( )] 0G iω >  for a 
transfer function that is analytic in the right half plane.  But 
we must ensure that ( )G iω  is bounded for all ω.  Note that 
the ‘PI’ adaptation laws [18], that the MRAC and MCS have 
used to date, are not OSP, although they are SPR, since the 
corresponding transfer functions are of the form 

/ ,  ( , 0)sβ α α β+ > . 
Remark 2.  The OSP condition on ( )FG q  is stricter than that 
on ( )PG q , since ( )1/( ) ( )Fq G qε+  already has nearly / 2π−  
of phase shift across most of the frequency spectrum, due to 
the term 1/( )q ε+  and the small value of ε.  Hence ( )FG q  
must have a phase margin less than / 2π  and greater than 0. 
 

IV. SIMULATION STUDY  
This section describes a simulation study of the new 

method (known as the generalized Er-MCSI algorithm) 
applied to the control of a serial link manipulator.  Such a 
system is typical of a non-linear coupled mechanical system. 
 

A. Plant description 
The mechanical model for the simulation is a two link 

serial manipulator, as shown in Fig.3.  The gravitational 
acceleration works downward (in the opposite direction to the 
y-axis) and the physical parameters are chosen as follows: 

1 1 1 2
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l m l m r r m
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Fig.4 Configuration of a two serial link manipulator 
 
The initial conditions on the link angles are 1 2 0θ θ= = , 
which means the arm starts from a horizontal posture and 
therefore suffers from the worst possible case of maximum 
gravitational moment force at t = 0.  In addition, the actuator 
input torque limitations are assumed to be 

, ( 1,2)Li i Liu u u i− ≤ ≤ = . 
 
B. Decoupled linear reference model 

The linear reference model is a two-DOF decoupled 
second-order model.  According to (6) we therefore have: 

1 1 2 2( )
T

t θ θ θ θ⎡ ⎤= ⎣ ⎦x  

2 2
1 1 1 1

2 2
2 2 2 2

0 1 0 0 0 0
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0 0 2 0

n n n

n n n

ω ζ ω ω

ω ζ ω ω

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− −⎣ ⎦ ⎣ ⎦

A B  

with the natural frequencies 1nω , 2nω and the damping ratios 

1 2,ζ ζ .  These are determined as: 
 1 2 1 24 / , 1n n stω ω ζ ζ= = = , for a given settling-time, st .  
 
C. Synthesis of the compensator matrix, EC  
The compensator matrix EC has to be determined in order to 
satisfy the Kalman-Yakubovich lemma, (14) and (15), when: 
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A B  

As a candidate of the positive definite symmetric matrix P  
we choose: 

( )

( )

1 1 1 1

2
1 1 1 1

2 2 2 2

2
2 2 2 2

/ 2 1/ 0 0

1/ / 0 0

0 0 / 2 1/

0 0 1/ /

n

n n

n
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d

d

d

d
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⎢ ⎥
⎣ ⎦

P  

where 1d  and 2d are non-dimensional free parameters.  The 
matrix Q is then obtained, according to (14), as: 

( )

( )

1

1 1

2

2 2

0 0 0
0 2 1 / 0 0

2
0 0 0
0 0 0 2 1 /

n

n

n

n

d

d

ω
ω

ω
ω
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⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Q  

In order to assure the positive definiteness of Q  we set: 
 0.5 ( 1,2)id i> =  
so that the corresponding eC is obtained via (15) as: 

 
2

1 1 1 1
2

2 2 2 2

1/ /( ) 0 0
0 0 1/ /( )

n n
e

n n

d
d

ω ζ ω
ω ζ ω

⎡ ⎤
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⎣ ⎦
C  (20) 

Note that the rôle of the compensator matrix eC  is  identical 
to the construction of a ‘sliding surface’ as described in [2], 
[6]-[8].  In particular, (13) with (20) yields: 

( )
( )

2
1 1 1 1 1 11

2
2 2 2 2 2 2 2

(1/ ) /( )

(1/ ) /( )

n PE n PEE

E n PE n PE

x d xy
y x d x

ω ζ ω

ω ζ ω
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which are none other than sliding surfaces.  In the simulations 
we set 1 2 1d d= = , which provide stable tracking 
performances. 
 
D. Adaptive gain filter parameters 

Two types of adaptive gain filters were tested: 

Type 1: ( ) ( ) /( )P FG q G q qβ α ε= = + +  (21) 

Type 2: 
2 2( ) /( 1)

( ) /( )
P

F

G q q q
G q q

β γ τγ
β α ε

⎧ ⎫= + +⎪ ⎪
⎨ ⎬

= + +⎪ ⎪⎩ ⎭
 (22) 

Those choices satisfy the OSP condition on ( )PG q  and 

( )1/( ) ( )Fq G qε+ .  The type 1 filter is almost the same as the 
normal MRAC/MCS approach ( ( ) ( ) /P FG q G q qβ α= = + ), 
except that the pure integration term is replaced by a 
first-order filter in order to satisfy the OSP condition.  
Usually, the parameter ε  is assigned to a small value (the 
same value as 0ε in (19)), so that the type 1 filter may be 
considered to be a virtual PI filter with proportional gain β  
and integral gain α .  In the type 2 filter, ( )PG q  is of 

second-order with a natural frequency 1/ γ  and damping 
ratio / 2τ . 
 
E. Simulation results 

A square-wave signal of 2s period, 0.5rad amplitude and an 
offset of 0.5rad is used as the reference signal for both links, 
but with a π/2rad phase shift between them, in order to 
examine any cross-coupling effects in the responses.  The 
settling-time ts of the linear model is assigned to be 0.3s for 
most of the simulations.  A set of four simulation studies are 
described below. 
 
(1)  Normal input torque limits are applied: 30Nm for link 1 
motor and 11Nm for link 2 motor 
 

Fig.5 shows the step response of the PID controller, and the 
proposed type 1 and 2 Er-MCSI controllers under the normal 
torque limits: 30Nm for the motor drive on link 1 and 11Nm 
on link 2.  These values are reasonable, since approximately 
16Nm and 4Nm, respectively, are required to sustain the 
initial horizontal posture of the manipulator.  As shown in 
Fig.5, all of the controllers yield a similar performance, with 
no discernable coupling effects between the links.  Note that 
the tuning of the PID controller requires the determination of 
6 gains (3 for each link) – a not inconsiderable effort. 
 
(2)  Strictly limited input torque limits are applied: 20Nm for 
link 1 motor and 7.3Nm for link 2 motor 
 

Fig.6 shows the results of repeating the simulation of Fig.5, 
except the input torques are strictly limited to 20Nm for 
motor 1 and 7.3Nm for motor 2.  These values are only 
slightly larger than those required to sustain the initial 
horizontal posture.  For the PID controller, the P, I and 
D-gains are appropriately re-tuned.  It is observed that θ1 
sinks below the 0 reference line, when using the type 1 
Er-MCSI controller; (Fig.6 (b)).  This is due to the 
gravitational moment being nearly of the same value as the 
maximum available motor torque.  However, the type 2 
Er-MCSI controller almost succeeds in preventing this 
phenomenon, as a result of increasing the parameter γ; (Fig.6 
(c)).  In this case, an initial sinking effect is observed only 
during the early stages of adaption. 

We observe that there is another method of coping with the 
severe limitations of the input torque when using the type 1 
and 2 Er-MCSI controllers.  That is, to increase the 
settling-time, ts, of the linear reference model.  Thus, in Fig.7 
the settling-time is increased to 0.35s, from the 0.3s used in 
Figs.5 and 6. As a result, the type 1 and 2 Er-MCSI 
controllers show a much improved performance that is now 
superior to that of the PID controller in Fig.6 (a). 
 
(3)  Control with observation noise. 

To investigate the sensitivity of the controllers under the 
influence of observation noise, we simulate the effect of the 
angular velocity measurement being contaminated with 
band-limited white noise, of maximum amplitude ~ 2rad/s.  In 
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Fig.5  Step responses of the PID controller and the 
type 1 and the type 2 Er-MCSI controllers under 
normal input torque limits

(a) Best tuned PID controller

(b) Type 1 Er-MCSI controller 
( 7 910 , 10 , 0.1α β ε= = = ) 

(c) Type 2 Er-MCSI controller 
( 7 910 , 10 , 0.1, 0.01, 2α β ε γ τ= = = = = ) 
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(c) Type 2 Er-MCSI controller 
( 7 910 , 10 , 0.1, 0.04, 2α β ε γ τ= = = = = ) 

(b) Type 1 Er-MCSI controller 
( 7 910 , 10 , 0.1α β ε= = = ) 

(a) Best tuned PID controller 
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Fig.6  Step responses of the PID controller and the 
proposed type 1 and the type 2 Er-MCSI controllers 
under strictly limited input torque. 

order to emphasise the resulting effects, the noise amplitude 
is somewhat exaggerated with respect to the maximum 
amplitudes of link velocity, which are ~ 5rad/s. 
Fig.8 shows the performance of the types 1 and 2 Er-MCSI 

controllers.  Again we observe the initial sinking 
phenomenon of θ1 with the type 2 controller, then a gradual 
recovery as time progresses.  Overall, both of the controllers 
are satisfactory in their insensitivity to the large amplitude 
observation noise. 
 
(4)  Wind-up suppression of the adaptive gains 

We now employ first-order filters in the process of 
generating the adaptive gains (see (19), (21) and (22)) to 
suppress potential wind-up, [20].  To see the effect, we 
observe the adaptive gains over a relatively long simulation 
time, as shown in Fig.9.  Only the elements of the adaptive 
gain matrix FK  are shown, since the elements of EK  do not 
show the wind-up effect. 

There are eight entries in the matrix FK , but only a few of 
the larger amplitude entries can be clearly distinguished in the 
figures.  When 0 and ε ε  are both set to zero, wind-up is 
exhibited by both the type 1 and 2 Er-MCSI controllers (Figs 
9(a) and 9(c)).  This wind-up of the adaptive gains is due to 
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(a) Type 1 Er-MCSI controller 
( 7 910 , 10 , 0.1α β ε= = = ) 

(b) Type 2 Er-MCSI controller 
( 7 910 , 10 , 0.1, 0.01, 2α β ε γ τ= = = = = ) 

Fig.7 Step responses of the proposed type 1 and the 
type 2 controllers under strictly limited input torque. 
The settling time 0.35st s=  
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(a) Type 1 Er-MCSI controller 
( 7 910 , 10 , 0.1α β ε= = = ) 

(b) Type 2 Er-MCSI controller 
( 7 910 , 10 , 0.1, 0.01, 2α β ε γ τ= = = = = ) 

Fig.8  Step responses of the type 1 and type 2 
Er-MCSI controllers with observation noise on the 
angular velocity measurement. 
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the input torque limitation and the observation noise, both of 
which provide model-following errors.  If left to continue, 
wind-up of the adaptive gains will degenerate the 
model-following performance and possibly lead to instability.  

However, as seen in Figs 9(b) and 9(d), the first-order filter 
of (19), (21) and (22) effectively suppresses the wind-up. 

 
(5)  Tuning the parameters of type 1 and 2 Er-MCSI 

controllers  

All of the parameters used in the type 1 and 2 Er-MCSI 
controllers can admit a wide range of tuning.  Every 
parameter, except γ , is dimensionless, so that each one can 
be selected as a constant value, irrespective to the plant size.  
Only the parameter γ has the dimension of time, so it should 
be determined according to the required settling-time, st .  
Our observations suggest that γ should be less than one-tenth 
the value of st .  However, an excessively small value of γ 
increases noise sensitivity.  The adaptive weights α and β are 
tuneable in a four or five decade range, and from the 
simulations in this paper, our observations suggest that good 

performance can be obtained when α is approximately 
one-hundredth the value of β. 

The parameters d and τ have a similar effect to damping 
coefficients and should be determined within the range 
0.5-2.0.  The parameters 0ε and ε have identical rôles - their 
reciprocal values specify the DC-gain of the integrators.  We 
specify a value of 0.1 for both of them, ensuring that the 
adaptive gains settle within ~ 20s. 
 

V. CONCLUSIONS 
In this paper we have proposed a generalized and improved 

error-based minimum control synthesis algorithm with 
integral action (Er-MCSI).  This adaptive controller can 
improve on the performance characteristics of MRAC [18], 
MCS [14]-[17] and basic Er-MCSI [19].  In common with 
MCS, the new controller does not require any a priori 
parametric knowledge of the controlled plant.  In common 
with Er-MCSI, the new algorithm is also insensitive to the 
operating points of the plant and the reference model. 

Stability analysis was performed for the new generalized 
algorithm using passivity concepts. 
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(a) Adaptive gains KF  of the type 1 Er-MCSI controller 
0 0ε ε= =  

(b) Adaptive gains KF  of the type 1 Er-MCSI controller 
0 0.1ε ε= =  
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(c) Adaptive gains KF  of the type 2 Er-MCSI controller 
0 0ε ε= =  

(d) Adaptive gains KF  of the type 2 Er-MCSI controller 
0 0.1ε ε= =  

Fig.9  Adaptive gain KF of the type 1 and 2 Er-MCSI 
controllers during extended simulation time. 
Simulation studies upon a two-link manipulator, with 

non-linear, coupled dynamics, are also described.  In the 
simulations we proposed two types of the new controller, that 
both satisfy the stability condition.  The detailed design 
procedures for these controllers were also described.  

The simulation studies demonstrated excellent model- 
following performance under some severe test conditions: 
significant gravitational moments, restrictive actuator torque 
limitations and large levels of observation noise 
contamination.  We also demonstrated that the proposed 
method for suppressing adaptive gain wind-up was 
successful. 
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